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The paper presents a new (to the best of the authors’ knowledge) estimator of probability called the “Eph
√

2 completeness
estimator” along with a theoretical derivation of its optimality. The estimator is especially suitable for a small number of
sample items, which is the feature of many real problems characterized by data insufficiency. The control parameter of the
estimator is not assumed in an a priori, subjective way, but was determined on the basis of an optimization criterion (the
least absolute errors).The estimator was compared with the universally used frequency estimator of probability and with
Cestnik’s m-estimator with respect to accuracy. The comparison was realized both theoretically and experimentally. The
results show the superiority of the Eph

√
2 completeness estimator over the frequency estimator for the probability interval

ph ∈ (0.1, 0.9). The frequency estimator is better for ph ∈ [0, 0.1] and ph ∈ [0.9, 1].
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1. Introduction

Probability is a very important form of uncertainty de-
scription, though not the only. Other alternative forms
are fuzzy systems of Zadeh (Klirr and Yuan, 1996;
Zadeh, 1965), Dempster–Shafer belief/plausibility theory
(Shafer, 1976), possibility theory of Dubois and Prade
(1988), and info-gap theory of Ben-Haim (2006). How-
ever, probability theory seems to be most important in
this group of sciences. Thousands of students all over the
world acquaint themselves with it.

It is used in derivation of many mathematical formu-
las applied in physics, measurement theory, statistics, var-
ious identification methods, and in artificial intelligence,
e.g., in a probabilistic version of rough and fuzzy set the-
ory (Polkowski, 2002; Ziarko, 1999) for probability eval-
uation of decision rules, in classification, clusterization,
data mining, machine learning (Witten and Frank, 2005),
etc. Many of the methods are based on the assumption of a
large number of sample items. However, in real problems,
this assumption is frequently not satisfied. Even in the
case when we possess a seemingly large number of sam-

ple items, when the input space was partitioned into influ-
ence subspaces of particular rules, the number of sample
items being in a single rule subspace becomes frequently
very small. Figure 1 presents an example of input space
partition typical for rough set theory.

Fig. 1. Example illustrating a small number of sample items in
the problem of probability estimation of rules detected
with rough set theory or fuzzy set theory: sample items
in the whole input space (a), sample items in the sub-
spaces of single rules (regular input-space partition) (b).
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A similar problem concerns also decision rules de-
tected with the method of decision trees (Rokach and Mai-
mon, 2008). In this case, influence subspaces of particular
rules do not create the regular input-space partition as in
the case of rough sets (Fig. 2).

Fig. 2. Illustration of a small number of sample items occurring
in influence subspaces of particular rules detected with
the method of decision trees: sample items in the whole
input space (a), sample items in subspaces of single rules
(non-regular input space partition) (b).

The problem of a small number of sample items in
influence subspaces of particular rules occurs frequently
not only in rough set models, fuzzy set models or decision
trees models. It also occurs in classification, clusteriza-
tion, machine learning, data mining and in classic model-
ing problems.

Books mostly describe two main interpretations of
probability: the classic and the frequency ones. The
classic interpretation can shortly be presented as follows
(Hajek, 2010). If a random experiment can result in N
mutually exclusive and equally likely outcomes and if NA

of these outcomes result in the occurrence of the event A,
the probability of A is defined by (1),

P (A) =
NA

N
. (1)

The main creator of the classical definition was
Laplace (1814). It can be applied only in problems where
there is only a ‘finite’ number of possible outcomes, e.g.,
in the case of a dice, where six outcomes are possible.
In such problems the universe Uo of possible outcomes is
fully known and contains a finite number of results. But
there are experiments where the number of possible out-
comes can be infinite. Then the universe U of possible
outcomes is open and can never be fully learned. Such an
experiment is, e.g., tossing a coin until it lands head up.
The ‘frequentists’ made an attempt to correct the classi-
cal definition. Their main representative was von Mises
(1957). According to them, the “probability of an event is
its relative frequency of occurrence after repeating a pro-
cess a large number of times under similar conditions. If
we denote by nA the number of occurrences of an event

A in n trials, then, if

lim
n→∞

nA

n
= p, (2)

we say that P (A) = p” (Hajek, 2010).
This interpretation is called the long-run sequence

interpretation. Because in practice a very large (infinite)
number of experiments cannot be realized, we have to use
finite frequentism or a finite sequence interpretation, ac-
cording to which the probability is calculated on the basis
of data we have at our disposal. The definition of proba-
bility according to the finite-sequence interpretation is as
follows: “the probability of an attribute A in a finite refer-
ence class B is the relative frequency of actual occurrence
of A within B” (Hajek, 2010). According to this inter-
pretation, the probability estimate is calculated with the
formula (3),

P (A) =
nA

n
, (3)

where n is a finite number.
The frequentist interpretation of probability has

many weak points. Scientists proved that it results
in many illogicalities, paradoxes and unanswered ques-
tions (Burdzy, 2009; 2011a; Hajek, 2010; Piegat, 2011a;
2011b). The weak points and faults of frequentist inter-
pretations were the reason for many scientists to search
for new interpretations of probability. The most known
alternative interpretations are subjective probability the-
ory proposed by De Finetti (1975), the logical probabil-
ity theory of Carnap (1952), and the propensity theory of
probability of Popper (1957). Also Khrennikov (1999)
and Rocchi (2003) proposed new interpretations. Read-
ers can acquaint themselves with these interpretations in
the works of Burdzy (2009; 2011a; 2011b), Hajek (2010)
and Piegat (2011a; 2011b).

However, the new interpretations are also being dis-
cussed, and various questions and objections have been
formulated against them. Therefore, some scientists are
of the opinion that probability theory should be repulsed.
One of them is Burdzy, whose book The Search for Cer-
tainty. On the Clash of Science and Philosophy of Prob-
ability (Burdzy, 2009) has aroused a vivid discussion
among scientists (Burdzy, 2011a; 2011b).

Accepting many critical opinions concerning the uni-
versally used frequency interpretation of probability, Pie-
gat proposed a completeness interpretation of probability
(Piegat, 2011a; 2011b). Very shortly, according to this in-
terpretation, to determine the probability of a hypothesis
h concerning an event, first the complete evidential set or,
shortly, Evidential Completeness (EC) should be defined.
It is a set of evidence pieces which would fully prove the
truth of the hypothesis.

Because in practice we possess only a partial and in-
complete evidence set, we can determine on its basis only
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the minimal, lower limit of probability ph min of the hy-
pothesis h and the minimal probability ph̄ min of the anti-
hypothesis h̄ = NOT h . It enables calculation of the up-
per probability limits ph max and ph̄ max of the hypothesis
and the anti-hypothesis, according to

ph max = 1 − ph̄ min,
ph̄ max = 1 − ph min.

(4)

In most problems with probability forecasting in the
open universe U of events going outside the universe Uo

of the possessed evidence knowledge, we are not able to
precisely determine the probability ph of the hypothesis
concerning the event considered. Only an interval of its
possible values (5) can be determined,

ph ∈ [ph min, ph max] (5)

Also the estimate Eph of the probability ph can be
determined, that is, its approximate value. However, the
number of different estimators can be considerable. It
depends on the estimation criterion and the way of esti-
mation. Piegat (2011a; 2011b) proposed the first, simple
completeness estimator phR. It represents the uncertainty
interval (5) of the probability ph and it minimizes the max-
imal, absolute error of the estimate in relation to all possi-
ble values of ph (6),

phR = 0.5(ph min + ph max). (6)

In the case of a binary event (e.g., a coin toss, oc-
currence of a certain event or not) in which nh means the
number of confirmations of the hypothesis h and nh̄ the
number of confirmations of the anti-hypothesis h̄, the es-
timator phR takes the form of (7),

phR =
1
2

+
nh − nh̄

2nSEC
. (7)

where nSEC means the number of results (evidence
pieces) necessary for a satisfactorily precise (e.g., with ac-
curacy of 99%) proof of the hypothesis truth. The details
can be found in the works of Piegat (2011a; 2011b). Esti-
mates Eph calculated with the estimator (7) converge with
an increasing number n of evidence pieces to the precise
value of the probability ph. However, the convergence
speed is small and can be increased. After many analy-
ses, a new estimator of probability was found that will be
demonstrated in the next section.

2. New estimator Epha of the probability ph

of the hypothesis h

The universally used frequency estimator has many sig-
nificant drawbacks. It has great errors for a small num-
ber n of sample items with which we often have to deal
in practical problems (data insufficiency). The frequency

estimator also gives hardly acceptable results in the case
of a single sample item. It suggests probability values 0
or 1, which means certainty. This phenomenon is called
the “single case problem” (Burdzy, 2009; Hajek, 2010).
When we have at our disposal only a homogeneous data
set, e.g., {H, H, H, H, H}, where H means, for instance
the head of a coin, the frequency estimator also suggests
the probability ph = 1, which means certainty. This prob-
lem is better described by Piegat (2011b). The next fault
of the frequency estimator is its considerable oscillating
both at small and at large numbers of sample items where
oscillations should not occur and the probability should
stabilize (Burdzy, 2009; Larose, 2010).

In this paper a new estimator of the probability ph

will be proposed that is generally denoted Epha (8),

Epha =
1
2

+
nh − nh̄

2(n + a)
, (8)

where nh is the confirmation number of the hypothesis
h, nh̄ is the confirmation number of the anti-hypothesis
h̄ = NOT h and n = nh + nh̄ means the entire number
of confirmations. A few examples of binary hypotheses
and anti-hypotheses include the following:

• h: obesity increases the danger of diabetes, h̄: obe-
sity does not increase the danger of diabetes;

• h: in a coin the head dominates, h̄: in a coin the tail
dominates;

• h: speedy driving increases crash danger, h̄: speedy
driving does not increase crash danger.

Generally, in a problem more than two hypotheses
relating to the problem outcome can be formulated. Then
we speak about n-ary hypotheses, e.g., about trinary-
hypotheses.

Some general features of the Epha completeness esti-
mator

• Probability estimates calculated both by the complete-
ness estimator Epha and by the frequency estimator
frh = nh/n for a large number of sample items. These
estimates converge to the same value. It is the value of the
true probability ph defined by (2). Below, the proof of this
statement is given. Remark that n = nh + nh̄, a being a
finite number.

We have

lim
n→∞Epha = lim

n→∞

(
1
2

+
nh − nh̄

2(n + a)

)

= lim
n→∞

n + a + nh − nh̄

2(n + a)

= lim
n→∞

nh + nh̄ + a + nh − nh̄

2(n + a)
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= lim
n→∞

2nh + a

2(n + a)

= lim
n→∞

2nh

2(n + a)
+ lim

n→∞
a

2(n + a)

= lim
n→∞

nh

n + a
= lim

n→∞
nh/n

1 + a/n

= lim
n→∞

nh

n
= ph.

(9)

Thus, the completeness estimator Epha for n → ∞ iden-
tifies the precise value of the probability ph, similarly to
the universally used frequency estimator frh.

• The probability estimate Epha(1) calculated by the
completeness estimator Epha from one single sample
item.

If a single sample item is a confirmation of the hy-
pothesis h (the notation for such a sample item is 1h), then
the estimate Epha(1h) is determined by

Epha(1h) =
1
2

(
2 + a

1 + a

)
. (10)

For a > 0, the estimate Epha(1h) satisfies the condition
0.5 < Epha(1h) ≤ 1. If, e.g., a = 1, then Epha(1h) =
0.75. Instead, the probability estimate ph determined by
the frequency estimator frh(1h) from one sample item
confirming that the hypothesis h equals 1,

frh(1h) =
nh

n
=

1
1

= 1. (11)

Thus, it can be said that the frequency estimator re-
alizes from one sample item drastic or extreme reasoning
concerning the hypothesis h. If the single sample item is a
negation of the hypothesis h (denotation of such a sample
item is 1h̄), then the estimate Epha(1h̄) is given by

Epha(1h̄) =
1
2

(
a

1 + a

)
. (12)

If a > 0, then Epha(1h̄) satisfies the condition 0 ≤
Epha(1h̄) < 0.5. If, e.g., a = 1, then its value is given by

Epha(1h̄) = 0.25. (13)

In the case of the frequency estimator frh(1h̄), the
probability estimate from one sample item 1h̄ negating the
hypothesis h equals 0,

frh(1h̄) =
nh

n
=

0
1

= 0. (14)

Thus, also in this case the frequency estimator realizes
drastic and extreme reasoning from one sample item.
From a single negation of the hypothesis h, it concludes
its zero-probability. Instead, reasoning about the proba-
bility ph realized by the completeness estimator Epha for
a = 1 can be called a “moderate” one. In the case of

this estimator, the reasoning caution (radicalism) can be
controlled with coefficient a. For a = 0 (no caution), the
estimator Epha becomes the frequency estimator frh and
realizes drastically radical and risky reasoning from one
sample item. Increasing a increases the reasoning caution
from one sample item. As a → ∞, the reasoning becomes
maximally cautious (no risk, no radicalism).

• The probability estimate Epha(0) calculated by the
completeness estimator Epha at the lack of sample items
(n = 0).

The estimate value for this case is given by (15)

Epha(0) =
1
2

+
nh − nh̄

2(n + a)

=
1
2

+
0 − 0

2(0 + a)
=

1
2
. (15)

This estimate (it is a hypothesis referring to the real value,
not a statement) is reasonable and acceptable because it
minimizes to 0.5 the maximal possible absolute error of
the estimate in relation to the real value of the probability
ph in a situation when nothing is known about the prob-
ability. Any other estimate value Epha(0) �= 0.5 would
increase the maximal possible estimate error over 0.5. In-
stead, the frequency estimator frh at the lack of sample
items (n = 0) is not able to infer any conclusion referring
to the hypothesis probability ph,

frh(0) =
nh

n
=

0
0
, (16)

because the result of division 0/0 is undetermined.

3. Determining the optimal value of the
coefficient a of the reasoning caution
from one sample item 1h confirming
the hypothesis h for the completeness
estimator Epha

The coefficient a in the formula (8) of the estimator Epha

can be called a reasoning caution from one sample item
because with its increase the caution increases while rea-
soning risk and radicalism decrease. Before deriving the
formula for the optimal value of this coefficient, consider
probability estimation from one, single sample item 1h.
Let us assume that we have to deal with a coin for which
the true head probability equals ph and the true tail prob-
ability equals ph̄ = 1 − ph. Let us assume that one toss
gave the head, thus nh = 1 and nh̄ = 0. What will the fre-
quency estimator conclude from this experiment result? It
will conclude as below,

frh(1h) =
nh

n
=

1
1

= 1.

In most cases such a conclusion is incorrect because (in
most cases, apart from the case ph = 1) the true proba-
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bility ph is not equal 1 but it has a fractional value, i.e.,
0 < ph ≤ 1.

Let us denote by Δ(1h) the absolute error of such a
conclusion,

Δ(1h) = |ph − frh(1h)| = |ph − 1|. (17)

Now, let us analyze the situation where a single toss did
not give heads but tails (nh = 0, nh̄ = 1). Such a sample
item will be denoted by 1h̄ because it is a sample item con-
firming negation h̄ of the hypothesis h about head domi-
nation in the coin. Which conclusion concerning the hy-
pothesis h does the frequency estimator infer from such a
sample item? We get

frh(1h̄) =
nh

n
=

0
1

= 0.

Let us denote by Δ(1h̄) the absolute error of such a
conclusion,

Δ(1h̄) = |ph − frh(1h̄)| = |ph − 0| = ph. (18)

Now, let us assume that we have at disposal a large num-
ber N → ∞ of sample items from experiments of coin
tossing, and Nh of these sample items are heads, which
confirm the hypothesis h, and Nh̄ sample items are tails,
which confirm the anti-hypothesis h̄ (N = Nh + Nh̄).
Let us denote by Δ(Nh) the sum of absolute errors of all
individual conclusions from all Nh single sample items,

Δ(Nh) = N · Δ(1h) = N · |ph − 1|. (19)

Because the number N of all sample items ap-
proaches infinity, then, according to the definition (2) of
probability, Nh = N · ph and Nh̄ = N · (1 − ph). Thus,
the error sum of all sample items confirming the hypothe-
sis can be transformed from (19) into (20),

Δ(Nh) = Nh · |ph − 1| = N · ph|ph − 1|. (20)

On the basis of a similar reasoning, we get the formula

Δ(Nh̄) = Nh̄ · Δ(1h̄) = Nh̄ · ph = N(1 − ph)ph (21)

determining the error sum Δ(Nh̄) of all individual conclu-
sions from sample items confirming the anti-hypothesis h̄.

The error sum of conclusions from all N sample
items, both from Nh sample items confirming the hypoth-
esis h and from Nh̄ sample items confirming the anti-
hypothesis h̄, is determined by

Δ(N) = Δ(Nh) + Δ(Nh̄)
= Nph|ph − 1| + N(1 − ph)ph

= 2N(1 − ph)ph.

(22)

If N approaches infinity, then so does the error sum
Δ(N). It hampers theoretical analyses concerning the

Fig. 3. Dependence of the average error Δaver(1) of the one-
sample item conclusion concerning the real value ph of
hypothesis probability for the frequency estimator frh.

sum. However, we can calculate from (22) the mean, av-
erage conclusion error Δaver(1) of a single sample item,
independently of whether it was the sample item 1h con-
firming the hypothesis h or the sample item 1h̄ negating
the hypothesis h,

Δaver(1) = Δ(N)/N = 2(1 − ph)ph. (23)

The functional surface of the average error Δaver(1) of
the reasoning about probability from a single sample item
is demonstrated in Fig. 3.

Because in real problems we do not know the pre-
cise value of the probability ph, inferring from one sample
item we are convicted to make estimation errors of prob-
ability. A global measure of these errors is the area A
under the curve of Δaver(1) = f(ph) that in case of the
frequency estimator frh in Fig. 3 equals 1/3. The follow-
ing question can be asked: “Does the application of other
probability estimators, different from frh = nh/n, allow
decreasing the area A of the average error Δaver(1) and
thus decreasing errors of probability estimation?”.

To answer this question, let us consider the idea de-
scribed below.

Instead of the frequency estimator that from one sam-
ple item 1h confirming the hypothesis calculates the es-
timate frh = 1 and from one sample item 1h̄ negat-
ing the hypothesis calculates the estimate (conclusion)
frh(1h̄) = 0, let us apply another estimator Eph of a
more cautious character, which from one single sample
item 1h will conclude (calculate) an estimate Eph(1h) ≤
1 and from one sample item negating the hypothesis will
conclude an estimate Eph(1h̄) ≥ 0 satisfying the condi-
tion (24),

Eph(1h) + Eph(1h̄) = 1. (24)

It should be mentioned that (24) is satisfied also by the
frequency estimator frh. Because the true but unknown
hypothesis probability equals ph, the error Δaver(1h)) of
concluding from one sample item by the estimator Eph is
given by

Δ(1h) = |ph − Eph(1h)|. (25)
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Instead, the error Δ(1h̄) of this estimator for one
sample item negating the hypothesis is given by

Δ(1h̄) = |ph −Eph(1h̄)| = |ph − [1−Eph(1h)]|. (26)

If we have at our disposal N sample items and N → ∞,
then the number Nh of sample items confirming the hy-
pothesis h equals ph · N and the number Nh̄ of sample
items negating the hypothesis equals (1 − ph) · N . Thus,
the error sum Δ(Nh) of individual conclusions from all
sample items confirming the hypothesis is determined by
the formula (27) and the error sum Δ(Nh̄) of all sample
items negating the hypothesis is determined by (28),

Δ(Nh) = |ph − Eph(1h)|phN, (27)

Δ(Nh̄) = |ph − [1 − Eph(1h)]|(1 − ph)N. (28)

The error sum Δ(N) of all individual conclusions
from N sample items is determined by

Δ(N) = |ph − Eph(1h)|phN

+ |ph − [1 − Eph(1h)]|(1 − ph)N.
(29)

From (29) we can calculate the average error Δaver(1)
of probability estimation from one sample item, inde-
pendently of whether the sample item confirms (1h) or
negates (1h̄) the hypothesis,

Δaver(1) = Δ(N)/N
= |ph − Eph(1h)|ph

+ |ph − [1 − Eph(1h)]|(1 − ph)
= Δaver(1h) + Δaver(1h̄)

(30)

The average error Δaver(1) of a single sample item
consists of the part Δaver(1h) representing conclusion er-
rors from sample items 1h confirming the hypothesis and
the part Δaver(1h̄) representing sample items 1h̄ negat-
ing the hypothesis. The functional surface of the first part
Δaver(1h) of the whole error Δaver(1) is demonstrated
in Fig. 4.

Fig. 4. Functional surface of the dependence Δaver(1h) =
f(ph, Eph(1h)) of the first component of the total er-
ror Δaver(1) representing weighted estimation errors of
sample items 1h confirming the hypothesis h.

The functional surface of the second component
Δaver(1h̄) of the entire error is shown in Fig. 5.

Fig. 5. Functional surface of the dependence Δaver(1h̄) =
f(ph, Eph(1h)) of the second component of the whole
single-sample item error Δaver(1) of probability esti-
mation generated by sample items 1h̄, negating the hy-
pothesis h.

Fig. 6. Functional surface of the complete dependence
Δaver(1) = f(ph, Eph(1h)) of the average absolute
error of one-sample item probability estimation.

Figure 6 demonstrates the functional surface of the
complete dependence (30). It delivers some interesting
information. The precise value ph of probability is not
known and we cannot control it. However, we can con-
trol the value of Eph(1h) of the probability estimate from
one sample item, which means that we can choose such
a value of Eph(1h) which will minimize the risk of com-
mitting large errors of probability estimation. This risk
is represented by cross-sections of the error Δaver(1)—
function for assumed values of Eph(1h). Figure 7 demon-
strates the section of the functional surface from Fig. 6 for
Eph(1h) = 1. This value corresponds to the conclusion
from one sample item 1h made by the frequency estimator
frh.

Already the visual analysis of Fig. 6 allows per-
ception of other values of Eph(1h) that are better than
Eph(1h) = 1 used by the frequency estimator frh =
nh/n. An example can be Eph(1h) = 3/4, which gener-
ates error area A = 0.19792 smaller than Eph(1h) = 1,
where the error area A = 0.33333. It allows a consider-
able decrease in large-error risk by the completeness esti-
mator.

Examples presented in Figs. 7–9 show in a very clear
way that assigning to the single sample item 1h the radi-
cal confirmation strength Eph(1h) = 1 by the universally
used frequency estimator frh = nh/n is not the best idea
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Fig. 7. Cross section of the average, single-sample item er-
ror Δaver(1) from Fig. 6 for the probability estimate
Eph(1h) = 1 that corresponds to the estimate calcu-
lated by the frequency estimator frh = nh/n.

Fig. 8. Cross section of the average, one-sample item error
Δaver(1) function from Fig. 6 for the estimate value
Eph(1h) = 3/4 assigned to one sample item 1h con-
firming the hypothesis h.

because there are other values as, e.g., Eph(1h) = 3/4
that considerably decrease the large-error risk of proba-
bility estimation. Further on, the optimal value of the
one-sample item estimate Eph(1h) that minimizes the
cross section area A of the one-sample item error func-
tion Δaver(1) = f(ph, Eph(1h)) will be derived.

The average one-sample item error Δaver(1) is ex-
pressed by

Δaver(1) = |ph − Eph(1h)|ph

+ |ph − [1 − Eph(1h)]|(1 − ph).
(31)

The function (31) is not continuously differentiable
and changes its mathematical form in each of the four
sectors Si of the space of independent variables, ph and
Eph(1h) (Fig. 10).

As can be seen in Figs. 6–9, the optimal value of the
one-sample item estimate Epopt

h (1h) that minimizes the
cross-section area A of the error function (31) lies over
the value Eph(1h) = 1/2. Thus, the cross–section of the
error function goes through the sectors S4, S3, and S2.
Because the one-sample item error function (31) is sym-
metrical in relation to ph = 1/2 (see Fig. 6), for calcula-

Fig. 9. Cross-sections of the average, one-sample item error
function Δaver(1) = f(ph, Eph(1h)) from Fig. 6 for
estimate values Eph(1h) = 1/2 and Eph(1h) = 1/4
assigned to one sample item 1h confirming the hypothe-
sis h.

tion of the error area A the formula (32)

A

= 2

1−Eph(1h)∫
0

(1 − 2ph)[1 − Eph(1h)]dph

+ 2

1/2∫
1−Eph(1h)

[2ph(1 − ph) − [1 − Eph(1h)]]dph.

(32)

can be used.
After integrating the function (32), the formula for

the area A of the cross section of the one-sample item er-
ror function Δaver(1) is achieved,

A =
1
3
− [1 − Eph(1h)] + 2[1 − Eph(1h)]2

− 2
3
[1 − Eph(1h)]3.

(33)

The following formula expresses the derivative
dA/dEph(1h):

dA

dEph(1h)
= 1 − 4[1 − Eph(1h)] + 2[1 − Eph(1h)]2.

(34)
After equating the derivative function (34) to zero
and solving the resulting equation, the optimal value
Epopt

h (1h) of the probability estimate is achieved. This
value should be assigned to one sample item 1h confirm-
ing the hypothesis h (35),

Epopt
h (1h) =

1√
2

=
√

2
2

= 0.70711. (35)
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Fig. 10. Four sectors S1–S4 in the space of independent vari-
ables ph and Eph(1h) of the one-sample item, average
error function Δaver(1) = f(ph, Eph(1h)).

After inserting the optimal value Epopt
h (1h) in the for-

mula (33), the minimal error area Amin = 0.19526 is
achieved. This area is a little smaller than the value
A = 0.19792 achieved for Eph(1h) = 3/4 = 0.75
and shown in Fig. 8. The minimal error area is shown
in Fig. 11.

Fig. 11. Cross-section of the function Δaver(1) of the absolute,
average, one-sample item error for the optimal one-
sample item estimate Epopt

h (1h) =
√

2/2.

In Section 2 the completeness estimator Epha of
probability was proposed,

Epha(1h) =
1
2

+
nh − nh̄

2(n + a)
, (36)

where a is the coefficient of the concluding caution from
one sample item 1h confirming the hypothesis h. The op-
timal value Epopt

h (1h) =
√

2/2 can now be used for de-
termining the optimal value of a. If only one sample item
1h is at our disposal, then nh = 1, nh̄ = 0, and n = 1. For
these values the formula (36) takes the following form:

Epha(1h) =
1
2

+
1

2(1 + a)
=

1
2

(
2 + a

1 + a

)
. (37)

Taking into account that the optimal value of
Epopt

ha (1h) =
√

2/2, we get

Epha(1h) =
1
2

(
2 + a

1 + a

)
=

√
2

2
. (38)

Solving (38), the optimal value of the caution coefficient
a is achieved,

aopt =
√

2.

Thus, the formula for the optimal probability estimator
minimizing the sum of absolute estimation errors assumes
the following form:

Eph
√

2 =
1
2

+
nh − nh̄

2
(
n +

√
2
) . (39)

In this formula nh means the number of sample items
confirming the hypothesis h, nh̄ the number of sample
items negating the hypothesis, and n the entire number
of sample items (n = nh + nh̄). The formula (39) for
the optimal estimator was derived in a fully theoretical
way. Thus, the following question would be very justified:
“How precisely will this estimator estimate probability in
practical problems?”. Therefore, in the next section the
results of test experiments of the completeness estimator
Eph

√
2 will be presented.

4. Results of comparative experiments of
probability estimation by the complete-
ness estimator Eph

√
2 and the frequency

estimator frh = nh/n

Before presentation of the experimental results, the fol-
lowing question will be asked: “Is it at all possible to test
the accuracy of probability estimation of any estimator?”.
In the case of a binary problem such as coin tossing, to
precisely determine the probability ph of the hypothesis h
(head domination), an infinitely large number of experi-
ments of coin tossing would be necessary, which is phys-
ically impossible. However, we can be supported in this
task by computers. Thanks to random number generators
we can get large series of 1s and 0s generated with as-
signed probability. Though an infinitely large series of
numbers cannot be generated, computers can generate as
long series as necessary to allow estimation of probability
with satisfactorily large accuracy.

Computer generators have been used in ran-
dom experiments by many scientist, e.g., by Larose
(2010). To test and to compare the accuracy of
both competitive estimators Eph

√
2 and frh, experi-

ments were performed in which 1000 series with 10000
of 1s and 0s were generated with different probabil-
ities ph of 1s: 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.99. Thus, the number of different
ph-probabilities was equal to 11. Each generated “1”



Optimal estimator of hypothesis probability for data mining problems with small samples 637

should be understood as hypothesis h confirmation and
each generated “0” as negation of this hypothesis. Be-
cause in each experiment the ph-probability was known,
after generating each series of numbers, calculation of
probability estimates Eph

√
2(n) and frh(n), comparison

of their values with the true probability ph and calculation
of absolute errors of both estimates were possible.

Figure 12 demonstrates a diagram of absolute errors
the completeness and of the frequency estimator for iden-
tification of the probability ph = 0.5 on the basis of small
numbers of sample items n ≤ 25. It shows a picture of
only the first small part of the long series consisting of
10000 numbers.

Fig. 12. Diagram of the average, absolute, estimation error
Δfrh

(n) of the frequency estimator frh and of the er-
ror ΔEp

h
√

2
(n) of the completeness estimator Eph

√
2

for small numbers of sample items n ∈ [1, 25] cal-
culated on the basis of 1000 experiments with 10000
numbers in each experiment. The estimated probabil-
ity was ph = 0.5.

Figure 12 also shows considerable differences of ac-
curacy of both estimators, especially for very small sam-
ple item numbers n < 10. In particular, for n = 1 (sin-
gle case problem), the average error of the frequency es-
timator equals 0.5, whereas the error of the completeness
estimator equals 0.2071. The difference is greater than
100%. For the interval n ∈ [6, 10], the average errors
are Δfrh

= 0.1401 and ΔEph
√

2
= 0.1183. For the

next, greater sample item numbers, accuracy differences
between both estimators disappear because both estimates
converge. This phenomenon is shown in Fig. 13, where
the full series of 10000 sample items is presented.

Because of the scale of Fig. 13 (n ∈ [1, 10000]),
differences between both estimates for small numbers of
sample items n < 25 are not perceptible. However, the
convergence of both estimates for large n is well visi-
ble. The frequency estimator identifies the probability
ph = 0.5 with the absolute error Δfrh

< 0.05 beginning
with the sample item nfrh

0.05 > 167 and the completeness
estimator Eph

√
2 beginning with the sample item

n
Eph

√
2

0.05 > 165.

The estimation error Δfrh
(n) decreases below 0.01

beginning with the sample item nfrh

0.01 = 2784 and the er-

Fig. 13. Diagram of the average, absolute error Δfrh
(n) of the

frequency estimator frh and of the error ΔEp
h
√

2
(n)

of the completeness estimator Eph
√

2 for full experi-
ment series n ∈ [1, 10000] sample items. The result is
averaged for 1000 experiments.

ror ΔEph
√

2
beginning with the sample item

n
Eph

√
2

0.05 = 2778.

The above results of estimation experiments were
presented for the probability ph = 0.5. Further on,
shortly, estimation results for the following probabilities
will be shown: 0.01, 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9,
0.99.

The experiments, as expected, showed that the re-
sults for antonym probabilities, e.g., {ph, 1 − ph} are al-
most identical and minimal differences between them are
caused only by the limited number of 1000 experiments.
For larger numbers of experiments, the differences would
be even smaller. Figure 14 demonstrates estimation re-
sults for antonym probabilities ph = 0.4 and ph = 0.6.

Fig. 14. Diagram of the average, absolute errors Δfrh
(n) and

ΔEp
h
√

2
(n) of the frequency estimator frh and of the

completeness estimator Eph
√

2 for estimation of the
antonym probabilities ph = 0.4 and ph = 0.6 for sam-
ple item numbers n ∈ [1, 25]. The diagram shows the
results averaged for 1000 experiments.

Figure 14, similarly to Fig. 12, demonstrates consid-
erable superiority of the completeness estimator Eph

√
2

over the frequency one frh in respect of accuracy. Fig-
ure 15 presents experimental results for probabilities 0.3
and 0.7.

Figure 15 also confirms the superiority of the com-
pleteness estimator Eph

√
2 over the frequency one frh.
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Fig. 15. Diagram of the average, absolute errors Δfrh
(n)

and ΔEp
h
√

2
(n) of the frequency estimator frh and

the completeness estimator Eph
√

2 for estimation of
antonym probabilities ph = 0.3 and ph = 0.7 for sam-
ple item numbers n ∈ [1, 25]. The results are averaged
for 1000 experiments.

In comparison to the probability ph = 0.5 (Fig. 12), a
considerable decrease in the average estimation error for
n = 1 to the value ΔEph

√
2
(1) = 0.1211 can be noticed

(single case problem). Figure 16 shows results for proba-
bilities 0.2 and 0.8.

Fig. 16. Diagram of average, absolute errors Δfrh
(n) and

ΔEp
h
√

2
(n) of the frequency estimator frh and of

the completeness estimator Eph
√

2 for estimation of
antonym probabilities ph = 0.2 and ph = 0.8 for sam-
ple item numbers n ∈ [1, 25]. The results are averaged
for 1000 experiments.

Estimation results of probabilities 0.2 and 0.8
in Fig. 16 also show considerable superiority of the
completeness estimator over the frequency one. Fig-
ure 17 presents experimental results for probabilities 0.1
and 0.9.

Figure 17 still shows certain, but not great, general
superiority of the completeness estimator over the fre-
quency one. However, for n = 1, the frequency estima-
tor has a smaller error than the completeness one. The
probabilities 0.1 and 0.9 can be called “almost certainty”.
Figure 18 presents experimental results for probabilities
0.01 and 0.99. Such probabilities can be called “practi-
cal certainty” because ph = 0.99 means that in 99 of 100
cases the hypothesis is confirmed in practice. Appropri-
ately, the probability 0.01 means that the hypothesis in 99
of 100 cases is not confirmed in practice.

This time Fig. 18 shows the superiority of the fre-
quency estimator frh over the completeness estimator

Fig. 17. Diagram of average, absolute errors Δfrh
(n) and

ΔEp
h
√

2
(n) of the frequency estimator frh and of the

completeness estimator Eph
√

2 for estimation of prob-
abilities ph = 0.1 and ph = 0.9 for sample item num-
bers n ∈ [1, 25]. The results are averaged for 1000
experiments.

Fig. 18. Diagram of the average, absolute estimation errors
Δfrh

(n) and ΔEp
h
√

2
(n) of probabilities ph = 0.01

and ph = 0.99 (practical certainty) made by the fre-
quency estimator frh and the completeness estimator
Eph

√
2. The results are averaged for 1000 experiments.

Eph
√

2. For all other probabilities, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, the completeness estimator was superior.
Thus, it can be said that the frequency estimator is ap-
propriate only for estimation of “easy” probabilities, i.e.,
such probabilities that can easily be guessed because they
mean “almost certainty”. Figure 19 presents the collected
results of estimation errors for all 11 estimated probabili-
ties.

The results demonstrated in Fig. 19 are especially
surprising. According to many scientists, probability es-
timation from one sample item makes no sense. Such an
opinion has been expressed by, e.g., De Finetti (Burdzy,
2009; De Finetti, 1975). The results presented in Fig. 19
show that the completeness estimator Eph

√
2 allows con-

siderable decreasing of average errors of one-sample item
estimation in comparison to the frequency estimator. It
should be repeated here once more that it is about aver-
age errors and not about single-case errors. In a single
case the maximal error of the completeness estimator can
take values in the interval [0, 0.707]. De Finetti was right
claiming that concluding about probability from a single
fact is very dangerous and should not be practised because
of a great-error commitment possibility. However, some-
times (perhaps even not rarely) we are forced to derive
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Fig. 19. Diagram of the average, absolute, one-sample item er-
ror Δfrh

(1) and ΔEp
h
√

2
(1) of the frequency estima-

tor frh and of the completeness estimator Eph
√

2 from
estimation of different 11 probabilities ph for n = 1
(single case problem). The results are averaged for
1000 experiments.

a conclusion from one fact or from one piece of data in
everyday life and in professional practice. In such situa-
tions let us use the philosophy of the completeness estima-
tor for which the maximal possible error can be equal to
0.707 whereas in the case of the frequency estimator this
error can be equal to 1, which means the 100% error. In-
stead, the completeness estimator Eph

√
2 ensures a twice

as small average error of concluding from one sample item
than the frequency estimator frh does (see Fig. 19). Fig-
ure 20 presents the collected errors of probability estima-
tion from a very small number of sample items n ∈ [1, 5].

Fig. 20. Diagram of the average, absolute error Δaver
frh

(n) and
Δaver

Ep
h
√

2
(n) of the frequency estimator frh and the

completeness estimator Eph
√

2 for estimation of 11
different probabilities ph on the basis of sample item
numbers n ∈ [1, 5]. The results are averaged for 1000
experiments for each ph-value.

The results presented in Fig. 20 unambiguously
prove that for most estimated probabilities the complete-
ness estimator Eph

√
2 is considerably superior over the

frequency estimator frh. The last estimator has better

accuracy only for “easy” probabilities that are near 0 or
1. Instead, it makes the greatest errors in the case of the
most difficult identifiable probability ph = 0.5. Fig. 21
presents collected results concerning the average errors of
probability estimation from a small sample item number
n ∈ [6, 10].

Fig. 21. Diagram of the average, absolute error Δaver
frh

(n) and
Δaver

Ep
h
√

2
(n) of the frequency estimator frh and the

completeness estimator Eph
√

2 for estimation of 11
different probabilities ph from sample item numbers
n ∈ [6, 10]. The results are averaged for 1000 experi-
ments for each ph-value.

As Fig. 21 demonstrates, also for the sample item
numbers [6, 10] the completeness estimator was superior
over the frequency one, apart from the probabilities that
are near 0 or near 1. Figure 22 presents the collected re-
sults for sample item numbers n ∈ [11, 15].

As Fig. 22 demonstrates, the completeness estimator
also here is superior over the frequency one though error
differences for this interval of sample item numbers are
small. Figure 23 presents the collected results for sample
item numbers n ∈ [16, 25].

The differences between both competitive estimators
are for this interval of sample item numbers very small
because both estimators converge for larger sample item
numbers.

Summing up the collected results of investigations
demonstrated in Figs. 19–23, one can say without any
doubt that the new completeness estimator Eph

√
2 is for

most probabilities superior in respect of accuracy to the
frequency estimator frh. In particular, it can well do
things that the frequency estimator does not, i.e., it can
more easily identify “difficult” probabilities that are near
0.5.

Figures 24 and 25 present diagrams of the average
minimal number of sample items n...

0.05 and n...
0.01 which

are necessary for estimation of various probabilities with
the absolute error below 0.05 and 0.01.

The important knowledge they give is that the num-
ber of sample items necessary for achievement of the re-
quired accuracy of estimation strongly increases with this
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Fig. 22. Diagram of the average, absolute error Δaver
frh

(n) and
Δaver

Ep
h
√

2
(n) of the frequency estimator frh and the

completeness estimator Eph
√

2 from estimation of 11
different ph-probabilities for sample item numbers n ∈
[11, 15]. The results are averaged for 1000 experiments
for each ph-value.

Fig. 23. Diagram of the average, absolute error Δaver
frh

(n) and
Δaver

Ep
h
√

2
(n) of the frequency estimator frh and the

completeness estimator Eph
√

2 from estimation of 11
different ph-probabilities for sample item numbers n ∈
[16, 25]. The results are averaged for 1000 experiments
for each ph-value.
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Fig. 24. Approximate, minimal sample item numbers nfrh
0.05 and

n
Ep

h
√

2
0.05 necessary for identification of various proba-

bilities ph with the use of the frequency estimator frh

and the completeness estimator Eph
√

2 with the abso-
lute error less than 0.05. The results are averaged for
1000 experiments for each ph-value.
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Fig. 25. Approximate, minimal sample item numbers nfrh
0.01 and

n
Ep

h
√

2
0.01 necessary for identification of various proba-

bilities ph with the use of the frequency estimator frh

and the completeness estimator Eph
√

2 with the abso-
lute error less than 0.01. The results are averaged for
1000 experiments for each ph-value.

accuracy. If, e.g., the absolute error should be smaller than
0.05, then for ph = 0.5 the minimal number of sample
items is 165. But if the minimal error should be less than
0.01, then this number equals 2778 (for the completeness
estimator).

It should be mentioned that the numbers nfrh

0.05 and
nfrh

0.01, which are mean numbers identified on the basis of
1000 experiments, differ from numbers that can be cal-
culated from the Chernoff bound (Chernoff, 1952). The
Chernoff bound does not take into account calculation ac-
curacy of probabilities estimated on the basis of a small
number of sample items. And 1000 experiments are not
sufficient for probability values near 0.5. Therefore , the
results presented in Figs. 24 and 25 should be treated as
mean values of these particular experiments which are of
only approximate character.

5. Comparison of the Eph
√

2 completeness
estimator with the Cestnik–Laplace
estimator

Apart from the frequency estimator also other estimators
were proposed for probability estimation. It seems that the
best known among them are the Cestnik and the Laplace
estimator (Cestnik, 1990; 1991; Sulzmann and Furnkranz,
2009; 2010; Furnkranz and Flach, 2005). The Cestnik
estimator is given by

ph(nh, n) =
nh + a

n + a + b
. (40)

The parameters a and b are degrees of freedom of
the estimator and should be chosen on the basis of his/her
knowledge about the investigated problem. The value
a/(a + b) = ph(0, 0) means the a priori probability. The
value a + b = m is also problem-dependent. If little noise
in the problem-data is expected, the value of m should be
small, if a large noise is expected, then m should grow.
However, in many problems, knowledge about the noise
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Fig. 26. Comparison of the mean absolute errors made by the
two compared estimators, the Eph

√
2 estimator (bold

line) and the Cestnik–Laplace estimator Eph2 (thin
line) in estimation of probabilities ph ∈ [0, 1] on the
basis of only one sample item (simple case problem).

and the a priori probability is small or even zero. Which
values of ph(0, 0) and of m should then be chosen? In
such a situation Cichosz (2000) proposes m = k and
ph(0, 0) = 1/k, where k is number of hypotheses in the
rule conclusion. In the binary case k = 2, m = a+ b = 2,
ph = 1/2. For these values the Cestnik estimator takes
the following form:

ph(nh, n) =
nh + 1
n + 2

. (41)

The so-achieved Cestnik estimator is identical with
the classic Laplace estimator (41). This means that the
Laplace estimator is a special case of the Cestnik estima-
tor. Thus, the estimator (41) can be called the Cestnik–
Laplace estimator (C–L estimator). Because the proposed
Eph

√
2 estimator was derived with no knowledge about

the a priori probability ph(0, 0) and the noise expected
in the problem data, it can be compared only with the
Cestnik–Laplace estimator (41) derived also with the as-
sumption of zero knowledge concerning these parameters.
Comparisons with other estimators derived under assump-
tions of any knowledge about the problem would be unjust
and unfair. Let us notice, that the classic, frequency esti-
mator frh also uses no start-knowledge about the investi-
gated problem.

Figure 26 shows a diagram of the Mean-Absolute-
Errors (MAEs) of the two compared estimators at proba-
bility estimation from one sample item (single case prob-
lem).

Comparison of the Eph
√

2 and the C–L estimator
gives the following precise values of the mean abso-
lute error for the full probability interval ph ∈ [0, 1]:
MAEaver(1) = 0.19526 for the Eph

√
2 estimator,

MAEaver(1) = 0.19753 for the C–L estimator Eph2.
The above results shows that the Eph

√
2 estima-

tor has the general absolute MAEaver(1) error a little
smaller than the C–L estimator in the full probability in-
terval. However, the C–L estimator is little better for es-
timation of central probabilities ph ∈ [0.3, 0.7] and the

Fig. 27. Percentage of correct classifications of examples from
the testing data set, depending on the number of ele-
ments in the learning data set, using naive Bayes clas-
sifiers with the Laplace estimator and with the Eph

√
2

estimator.

Eph
√

2 estimator is a little better for estimating probabil-
ities ph ∈ [0, 0.3] and ph ∈ [0.7, 1]. Thus, the optimality
interval of Eph

√
2 is wider. Generally, taking into account

the MAEaver(1) criterion, the Eph
√

2 estimator is a lit-
tle better than the Cestnik–Laplace estimator because the
Eph

√
2 estimator was optimized on the basis of the MAE

criterion.
If we compare both estimators on the basis of the

MSE criterion (Mean-Square-Error), then the situation is
inverse. The average MSE for the full probability interval
ph ∈ [0, 1] equals MSEaver(1) = 0.05719 for the Eph

√
2

estimator, MSEaver(1) = 0.05556 for the C–L estima-
tor. Thus, under the MSE criterion, the C–L estimator is a
little better than the Eph

√
2 estimator.

The performance of both estimators was also com-
pared on two real data sets. The comparison criterion was
the percentage of correct classification.

Example 1. The SPECT heart data set comes from UC
Irvine Machine Learning Repository and describes diag-
nosing cardiac Single Proton Emission Computed Tomog-
raphy (SPECT) images (Cios and Kurgan, 2001).

The SPECT data set has 267 instances with 23 binary
attributes. Random data for the learning data set come
from the SPECT.train file (80 instances) and testing data
comes from the SPECT.test file (187 instances). Using
two types of naive Bayes classifiers with different proba-
bility estimators (Laplace and Eph

√
2), the examples from

data set were classified into two categories: normal and
abnormal.

Figure 27 shows the results of correct classifications
by naive Bayes classifiers using two estimators and dif-
ferent numbers of elements in the learning data set. The
results are the mean of 100 experiments in each case, ex-
pressed as a percentage of correct classifications of ele-
ments from the testing data set. �
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Fig. 28. Percentage of correct classifications of examples from
testing data set, depending on the number of elements
in the learning data set, using naive Bayes classifiers
with Laplace estimator and with the Eph

√
2 estimator.

Example 2. The Balance Scale data set comes from the
UC Irvine Machine Learning Repository (Siegler, 1994)
and was generated to model the results of psychological
experiments carried out by Siegler (1976). Using two
types of naive Bayes classifiers with different probability
estimators (Cestnik–Laplace and Eph

√
2), the examples

from the data set were classified to the one of the three
classes: tip of the balance scale to the right, tip to the
left, or the balance scale balanced. The model consists of
625 instances and 5 attributes: class name (left, balance,
right), left weight (1, 2, 3, 4, 5), left distance (1, 2, 3, 4,
5), right weight (1, 2, 3, 4, 5), and right distance (1, 2, 3,
4, 5). For example, the element of the data set “2, 5, 2, 1”
(left weight = 2, left distance = 5, right weight = 2, right
distance = 1) should be classified to the class “left”.

Figure 28 shows the results of correct classifications
by naive Bayes classifiers using two estimators and dif-
ferent numbers of elements in the learning data set. The
results are the mean of 100 experiments in each case, ex-
pressed as a percentage of correct classifications of ele-
ments from the testing data set.

As Fig. 28 shows, both compared estimators exhibit
in the case of this data set very similar performance.
As can be seen in Fig. 26, the Eph

√
2 estimator is a

little better at estimation of probabilities ph ∈ [0, 0.3]
and ph ∈ [0.7, 1] and the C–L estimator at probabilities
ph ∈ [0.3, 0.7]. Thus, if approximate knowledge about the
estimate probability exists, then it can be use for choosing
one of the two estimators. �

6. Eph
√

2 completeness estimator of
probability for the n-ary case

The number k of possible hypotheses in problems is usu-
ally larger than 2 (k > 2). In this case the k-ary problem
can be decomposed in k binary sub-problems of the hy-
potheses hi and the anti-hypothesis h̄i type. For each of

the k binary sub-problems, the binary estimate Ep∗
hi

√
2

can be determined

Ep∗
hi

√
2

=
1
2

+
nhi − nh̄i

2
(
n +

√
2
)

=
n +

√
2 + nhi − nh̄i

2(n +
√

2)

=
nhi + nh̄i

+
√

2 + nhi − nh̄i

2(n +
√

2)

=
2nhi +

√
2

2(n +
√

2)
,

(42)

where

n =
k∑

j=1

nhj .

The sum
∑k

j=1 Ep∗
hj

√
2

of the binary estimates cal-

culated with (42) is not normalized in the sense of
Kolmogorov’s axioms (Khrennikov, 1999) and is larger
than 1. Therefore, normalization is to be made. As its
result the normalized k-nary estimate Ephi

√
2 is achieved,

Ephi

√
2 =

Ep∗
hi

√
2

k∑
j=1

Ep∗
hj

√
2

=

2nhi
+
√

2

2(n+
√

2)

k∑
j=1

2nhj
+
√

2

2(n+
√

2)

=
2nhi +

√
2

k∑
j=1

(2nhj +
√

2)
=

2nhi +
√

2
2knhj + k

√
2

=
2nhi +

√
2

2n + k
√

2
=

nhi

√
2 + 1

n
√

2 + k
.

(43)

Attention should be paid to the fact that the optimal
estimator Ephi

√
2 is able to assign probability estimate

also for such hypotheses that are not confirmed by any
sample item (nhi = 0). In this case the assigned esti-
mate equals 1/(n

√
2 + k) �= 0. If there are no sam-

ple items at all (n = 0), then the estimator assigns the
same probability estimate equal to 1/k to each hypothe-
sis hi. If there is only one sample item (n = 1) which
confirms only one hypothesis hi (other hypotheses have
no confirmations), then the estimator Ephi

√
2 assigns the

estimate (
√

2 + 1)/(
√

2 + k) to the hypothesis hi and to
all other single hypotheses which have no confirmations
the smaller estimate 1/(

√
2 + k). In the same situation,

the frequency estimator assigns the estimate 1 to the hy-
pothesis confirmed by one sample item and 0 probability
estimate to all other hypotheses without confirmation. Ta-
ble 1 shows estimate values assigned to the hypothesis hi

confirmed by only one sample item (single case problem,
n = 1 and nhi = 1) for various number k of possible hy-
potheses (k = 2: binary problem, k = 3: trinary problem,
etc.).
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Table 1. Values of the completeness probability estimate Ephi

√
2 and of the frequency estimate frhi(1) assigned by both estimators

to the confirmed hypothesis hi for varying number k of possible hypotheses (single case problem).

k 2 3 4 5 6

frhi =
nhi
n

1 1 1 1 1

Ephi

√
2 =

nhi

√
2+1

n
√

2+k
0.707 0.547 0.446 0.376 0.326

k 7 8 9 10

frhi =
nhi
n

1 1 1 1

Ephi

√
2 =

nhi

√
2+1

n
√

2+k
0.287 0.258 0.232 0.211

Further on, we will present an example of applica-
tion of the completeness estimator Ephi

√
2 for probabil-

ity estimation of the travel time TAB with a car between
two places A and B in Szczecin (Poland), the distance be-
tween which equals 17 km. Let us assume that only 10
measurements of the travel time TAB [min] are at our dis-
posal (n = 10). There is no confirmation (nh1 = 0 of
the travel time 19 < TAB[min] and only one confirma-
tion (nh2 = 1) of the travel time 19 < TAB ≤ 20 [min].
There are three confirmations (nh3 = 3) of the travel time
20 < TAB ≤ 21 [min], four confirmations (nh4 = 4)
of the time 21 < TAB ≤ 22 [min], two confirmations
(nh5 = 2) of the time 22 < TAB ≤ 23 [min], and no
confirmations (nh6 = 0) of the time TAB > 23 [min].
The histogram of probability of the travel time calcu-
lated on the basis of the frequency estimator and of the
optimal completeness estimator Ephi

√
2 should be deter-

mined. Both histograms are for comparison presented in
Fig. 29.

As Fig. 29 shows, the optimal estimator Ephi

√
2 does

not assign probability estimates to particular hypothe-
ses hi concerning the travel time TAB in such a drastic
way as the frequency estimator frhi does. Probability is
distributed between particular hypotheses concerning the
travel time more evenly than in the case of the frequency
estimator. In particular, the frequency estimator does not
assign any, even minimal, probability to the hypotheses
which are not confirmed by sample items (h1 and h6).
Such assignment is not credible because next TAB: time
measurements (sample items) can be larger than 23 min
(traffic jams can occur) or smaller than 19 min. As the
theoretical proofs and experiments described in the paper
show, the completeness estimator Ephi

√
2 is optimal in

the sense of the absolute error-sum and the frequency es-
timator frhi is not. Therefore, probability estimates deliv-
ered by the estimator Ephi

√
2 are more precise and cred-

ible than estimates delivered by the frequency estimator
frhi . A very similar situation as in construction of proba-
bility histograms for one single variable exists in the case
of many variables when the probability of rules are eval-
uated for rules achieved with decision trees, rough sets
theory, fuzzy sets theory, data mining methods and other

Fig. 29. Distribution of measurement sample items of the travel
time TAB [min] between points A and B, histogram of
travel time probability determined with the frequency
estimator frhi = nhi/n (b), histogram determined
on the basis of the optimal completeness estimator
Ephi

√
2 (c).

methods of artificial intelligence.

7. Conclusions

The paper presents a new, optimal probability estimator
Eph

√
2 that minimizes the sum of absolute estimation er-

rors. The author of the estimator idea and of the theoret-
ical proof of its optimality is Andrzej Piegat. The theory
of the estimator needed experimental verification. Com-
puter programs towards this verification and the experi-
ments were realized by Marek Landowski. The experi-
ments were of comparative character. Their aim was to
determine the accuracy of the new completeness estima-
tor and to compare it with that of the universally used fre-
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quency estimator frh = nh/n and with the m-estimator
of Cestnik. The experiments, similarly to the theoretical
derivation, showed a considerably greater accuracy of the
completeness estimator than that of the frequency one in
the case of small sample item numbers n < 25 and the
same accuracy for larger sample item numbers n > 25.
Because in many real problems we have to deal with data
insufficiency, the new completeness estimator seems very
useful and practice-oriented. Comparison of the Eph

√
2

estimator with the Cestnik–Laplace estimator showed a
little better performance of the former. However, it de-
pends on the value of an estimated probability.

The Eph
√

2 estimator parameter a is not assumed by
anybody in the subjective, a priori way. It was derived on
the basis of the optimization criterion of the sum of abso-
lute estimation errors. The paper also presents a solution
for the single-case problem.
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