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In this paper, stabilizing problems in control design are addressed for linear discrete-time systems, reflecting equality con-
straints tying together some state variables. Based on an enhanced representation of the bounded real lemma for discrete-
time systems, the existence of a state feedback control for such conditioned stabilization is proven, and an LMI-based design
procedure is provided. The control law gain computation method used circumvents generally an ill-conditioned singular
design task. The principle, when compared with previously published results, indicates that the proposed method outper-
forms the existing approaches, guarantees feasibility, and improves the steady-state accuracy of the control. Furthermore,
better performance is achieved with essentially reduced design effort. The approach is illustrated on simulation examples,
where the validity of the proposed method is demonstrated using one state equality constraint.
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1. Introduction

In the last years many results have spurred interest in
the problem of control determination for systems with
constraints. In the typical case (Benzaouia and Gur-
gat, 1988; Castelan and Hennet, 1992), where a system
state reflects certain physical entities, this class of con-
straints often appears because of physical limits, and these
constraints usually keep the system state in the region
of technological conditions. Subsequently, this problem
can be formulated using a technique dealing with sys-
tem state constraints directly, where it can be coped ef-
ficiently using modified linear system techniques (Ko and
Bitmead, 2007b). Notably, a special form of constrained
problems was defined where the system state variables
satisfy constraints (Hahn, 1992; Kaczorek, 2002; Tar-
bouriech and Castelan, 1995), interpreted as descriptor
systems. Because, generally, a system with state equal-
ity constraints does not satisfy the conditions under which
the results of descriptor systems can be applicable, this ap-
proach is very limited. If the design task is interpreted as
a singular problem (Krokavec and Filasová, 2008a), con-
strained methods can be developed to design the controller
parameters.

In principle, it is possible and ever easy to design a

controller that stabilizes the systems and simultaneously
forces closed-loop systems to satisfy constraints (Oloomi
and Shafai, 1997; Yu et al., 1996). Following the ideas of
Linear Quadratic (LQ) control (Dórea and Milani, 1995;
Petersen, 2006; Xue et al., 2006), one direct connected
technique, using the equality constraint formulation for
discrete-time Multi-Input/Multi-Output (MIMO) systems,
was introduced by Ko and Bitmead (2007a) and exten-
sively used in reconfigurable control design (Krokavec
and Filasová, 2008b; 2009). Based on the eigenstructure
assignment principle, a slight modification of this tech-
nique, with application in state constrained control system
design, was presented by Filasová and Krokavec (2010).

A number of problems that arise in state feedback
control can be reduced to a handful of standard con-
vex and quasi-convex problems that involve matrix in-
equalities. It is known that optimal solutions can be
computed by using the interior point method (Nesterov
and Nemirovsky, 1994), which converges in polynomial
time with respect to the problem size, and efficient inte-
rior point algorithms have recently been developed, while
a further development of algorithms for these standard
problems is an area of active research. In such an ap-
proach, stability conditions may be expressed in terms of
Linear Matrix Inequalities (LMIs), which have attracted a
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notable practical interest due to the existence of numeri-
cal solvers (Gahinet et al., 1995; Peaucelle et al., 2002).
Some progress review in this field can be found in the
works of Boyd et al. (1994), Herrmann et al. (2007), Skel-
ton et al. (1998), and the references therein.

This paper aims at providing controller design con-
ditions for discrete-time systems where the closed-loop
state variables are allowed to satisfy the prescribed ra-
tions. Based on a Lyapunov function being quadratic in
the state and linear in the parameters, and extended to a
given quadratic performance using an enhanced LMI rep-
resentation of the Bounded Real Lemma (BRL), a state
control is established in the presence of state equality con-
straints. Such a restriction does not lead to more conser-
vative results, and design conditions are simple to be es-
tablished as a set of LMIs which can be solved numeri-
cally with the help of an LMI solver. Motivated by the un-
derlying ideas (Filasová and Krokavec, 2010; Krokavec
and Filasová, 2008; de Oliveira et al., 1999; Wu and
Duan, 2006; Xie, 2010), a simple technique for the en-
hanced BRL representation is obtained, and new criteria
to circumvent an ill-conditioned singular task concerning
discrete-time systems control design with state equality
constraints are given. Due to the introduction of an en-
hanced LMI representation of the BRL, which exhibits
a kind of decoupling between the Lyapunov matrix and
the system matrices, the design task is now well condi-
tioned. These conditions still impose some common ma-
trices to obtain control that assures quadratic stability for
time-invariant discrete control under defined state equality
constraints.

The paper is organized as follows. Starting with
problem formulation presented in Section 2, in Section 3
basic preliminaries are given, and an adapted version of
a discrete BRL, referred to as the enhanced BRL form, is
introduced. These results are used in Section 4 to derive a
new convex formulation of stability conditions consider-
ing closed-loop state equality constraints. The proposed
approach gives a well-conditioned LMI, and leads to a
feasible solution on given singular task. Subsequently, in
Section 5 one numerical example is presented to illustrate
basic properties of the presented method. Section 6 is fi-
nally devoted to a brief overview of the properties of the
method and to demonstrating the accepted conservatism.

Throughout the paper, the following notation is used:
xT and XT denote the transpose of the vector x and ma-
trix X , respectively, for a square matrix X > 0 (respec-
tively X < 0) means that X is a symmetric positive def-
inite matrix (respectively a negative definite matrix), the
symbol In represents the n-th order unit matrix, X�1 de-
notes the Moore–Penrose pseudoinverse of X , R denotes
the set of real numbers and R

n×r the set of all n × r real
matrices, and ‖·‖ represents the Euclidean norm for vec-
tors and the spectral norm for matrices.

2. Problem formulation

Through this paper the task is concerned with design of a
state feedback constrained in state variables, and control-
ling discrete-time linear dynamic systems given by the set
of state equations

q(i + 1) = Fq(i) + Gu(i), (1)

y(i) = Cq(i) + Du(i), (2)

where q(i) ∈ R
n, u(i) ∈ R

r, and y(i) ∈ R
m are vectors

of the state, input and output variables, respectively, nom-
inal system matrices F ∈ R

n×n, G ∈ R
n×r, C ∈ R

m×n,
and D ∈ R

m×r are real matrices, and i ∈ Z+.
In practice (Cakmakci and Ulsoy, 2009; Debiane et

al., 2004), ratio control can be used to maintain the rela-
tionship between two state variables, defined as

qh(i + 1)
qk(i + 1)

= ah ⇒ qh(i + 1)− ahqk(i + 1) = 0 (3)

for all i ∈ Z, or more compactly as

eT
h q(i+1) = 0, (4)

where

eT
h =

[
01 · · · 1h · · · −ah · · · 0n

]
. (5)

The task formulation above means that the problem
of interest can be generally defined as a stable closed-loop
system design using the linear memoryless state feedback
controller of the form

u(i) = −Kq(i), (6)

where K ∈ R
r×n is the controller feedback gain matrix,

and the design constraint is considered in the general ma-
trix equality form,

Eq(i + 1) = 0, (7)

with E ∈ R
k×n, rankE = k ≤ r. In general, E reflects

the prescribed fixed ratio of two or more state variables.
Next, it is considered that the system is control-

lable and observable (rank(zI − F , G) = n, ∀z ∈ C,
rank(zI−F , C) = n, ∀z ∈ C, respectively), and (except
for Section 5.4) that all state variables are measurable.

3. Preliminaries

Proposition 1. Let Γ ∈ R
n×n be a real square ma-

trix with non-repeated eigenvalues, satisfying the equality
constraint

eT Γ = 0. (8)

Then one from its eigenvalues is zero, and (normalized)
eT is the left raw eigenvector of Γ associated with the
zero eigenvalue.
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Proof. If Γ ∈ R
n×n is a real square matrix satisfying the

above eigenvalue properties, then the eigenvalue decom-
position of Γ takes the form

Γ = NZMT , MTN = I, (9)

N =
[

n1 · · · nn

]
, M =

[
m1 · · · mn

]
,
(10)

Z = diag
[

z1 · · · zn

]
, (11)

where nl is the right eigenvector and mT
l is the left

eigenvector associated with the eigenvalue zl of Γ, and
{zl, l = 1, 2, . . . , n} is the set of the eigenvalues of Γ.
Then (8) can be rewritten as

0 = dT
[
n1 · · · nh · · · nn

]

· diag
[
z1 · · · zh · · · zn

]
MT . (12)

If eT = mT
h , then orthogonal property (9) implies

0

=
[
01 · · · 1h · · · 0n

]
diag

[
z1 · · · zh · · · zn

]
MT ,

(13)

and it is evident that (13) can be satisfied only if zh = 0.
This concludes the proof. �

Proposition 2. (Matrix pseudoinverse) Let Θ be a ma-
trix variable and A, B, Λ known non-square matrices of
appropriate dimensions such that the equality

AΘB = Λ (14)

is set. Then all solutions to Θ mean that

Θ = A�1ΛB�1 + Θ◦ −A�1AΘ◦BB�1, (15)

where

A�1 = AT (AAT )−1, B�1 = (BTB)−1BT (16)

is a Moore–Penrose pseudoinverse of A, B, respectively,
and Θ◦ is an arbitrary matrix of appropriate dimensions.

Proof. See, e.g., the work of Skelton et al. (1998, p. 13).
�

4. Enhanced representation of the BRL

The following further assumptions are imposed to ob-
tain an enhanced LMI representation of the bounded real
lemma.

Proposition 3. (Quadratic performance) Given the stable
system (1), (2), we have

∞∑

l=0

(yT(l)y(l)− γuT(l)u(l)) > 0, (17)

where γ > 0 is the squared H∞ norm of the transfer func-
tion matrix of the system.

Proof. It is evident that

ỹ(z) = G(z)ũ(z), (18)

where
G(z) = C(zI − F )−1G + D (19)

is the discrete m×r transfer function matrix of the system
(1) and (2), ỹ(z) and ũ(z) stand for the Z transform of
the m dimensional objective vector and the r dimensional
input vector, respectively. Then (18) implies that

‖ỹ(z)‖ ≤ ‖G(z)‖‖ũ(z)‖, (20)

where ‖G(z)‖ is the H2 norm of the discrete transfer
function matrix G(z). Since the H∞ norm satisfies

1√
m
‖G(z)‖∞ ≤ ‖G(z)‖ ≤ √r‖G(z)‖∞, (21)

using the notation ‖G(z)‖∞ =
√

γ, the inequality (21)
can be rewritten as

0 <
1√
m

<
‖ỹ(z)‖√
γ‖ũ(z)‖ ≤

1√
γ
‖G(z)‖ ≤ √r. (22)

Thus, based on Parseval’s theorem, (22) yields

0 <
‖ỹ(z)‖√
γ‖ũ(z)‖ =

( ∞∑

i=0

yT (i)y(i)
) 1

2

√
γ
( ∞∑

i=0

uT (i)u(i)
) 1

2
, (23)

and subsequently

∞∑

i=0

yT (i)y(i)− γ
∞∑

i=0

uT (i)u(i) > 0. (24)

Thus (24) implies (17). This concludes the proof. �

Generally speaking, if it is not in contradiction with
design requirements, (17) can be used to extend a Lya-
punov function candidate for linear discrete-time systems.

To simplify proofs of theorems in further parts of the
paper, a sketch of the proof of the BRL is presented first.

Proposition 4. (Bounded real lemma) The autonomous
system (1), (2) is stable with the quadratic performance
‖C(zI−F )−1G+D‖∞ ≤ √γ if there exist a symmetric
positive definite matrix P > 0, P ∈ R

n×n and a positive
scalar γ > 0, γ ∈ R such that

Ψ=

⎡

⎣
F TPF−P F TP G CT

∗ GTP G−γIr DT

∗ ∗ −Im

⎤

⎦ < 0, (25)

P = P T > 0, γ > 0, (26)

where Ir ∈ R
r×r, Im ∈ R

m×m are identity matrices,
respectively.
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In what follows, ‘∗′ denotes the symmetric item in a
symmetric matrix.

Proof. (See, e.g., Krokavec and Filasová, 2008a; Skelton
et al., 1998) Defining the Lyapunov function candidate as
follows:

v(q(i)) = qT(i)P q(i)

+
i−1∑

l=0

(yT(l)y(l)− γuT(l)u(l)) > 0, (27)

(17) implies that for such γ > 0 (27) is positive. The
forward difference along a solution of the system is

Δv(q(i)) = qT (i+1)Pq(i+1)− qT(i)P q(i)

+ yT(i)y(i)− γuT(i)u(i) < 0, (28)

and using the expression of the state system (1), (2), the
inequality (28) becomes

Δv(q(i))

= qT(i)(CTC − P + F TP F )q(i)

+ uT(i)(GTPF + DTC)q(i)

+ qT(i)(F TP G + CTD)u(i)

+ uT(i)(GTPG + DTD − γIr)u(i) < 0.

(29)

Thus, introducing the notation

qT
c (i) =

[
qT (i) uT (i)

]
, (30)

we obtain

Δv(qc(i)) = qT
c (i)Pc qc(i) < 0, (31)

where

Pc =
[

P c11 P c12

∗ P c22

]
< 0, (32)

P c11 = F TPF + CTC − P , (33)

P c12 = F TPG + CTD, (34)

P c22 = GTPG + DTD − γIr. (35)

From (32)–(35) the following composite form can be
deduced

[
F TPF−P F TPG

∗ GTPG−γIr

]
+

[
CTC CTD

∗ DTD

]
<0.

(36)
Writing

[
CTC CTD

∗ DTD

]
=

[
CT

DT

]
[

C D
] ≥ 0 (37)

and comparing this with the matrix

Ξ =

⎡

⎣
0 0 CT

∗ 0 DT

∗ ∗ −Im

⎤

⎦ , (38)

it is evident that (37) is a Schur complement to (38). Thus,
using (38), the LMI condition (36) can be written com-
pactly as (25).

Note that, since the matrix in the upper-left-hand cor-
ner of the block matrix Ξ is a zero matrix, and C, D are
in general non-square matrices, Ξ is an indefinite matrix.
This concludes the proof. �

Direct application of the second Lyapunov method
(Gajic and Qureshi, 1989; Mason and Shorten, 2004) and
the BRL in the structure given by (26), (25) for affine un-
certain systems as well as in constrained control design is
in general ill conditioned owing to singular design con-
ditions (Filasová and Krokavec, 2010; Veselý and Rosi-
nová, 2009). To circumvent this problem, an enhanced
LMI representation of the BRL is proposed, where the de-
sign condition proof is based on such a form of the BRL.

Theorem 1. (Enhanced LMI representation of the
BRL) The autonomous system (1), (2) is stable with the
quadratic performance ‖C(zI − F )−1G + D‖∞ ≤ √γ
if there exist a symmetric positive definite matrix P > 0,
P ∈ R

n×n, a square matrix W ∈ R
n×n, and a positive

scalar γ > 0, γ ∈ R such that

P = P T > 0, γ > 0, (39)

Υ=

⎡

⎢
⎢
⎣

−P 0 F TW T CT

∗ −γIr GTW T DT

∗ ∗ P−W−W T 0
∗ ∗ ∗ −Im

⎤

⎥
⎥
⎦ < 0,

(40)
where Ir ∈ R

r×r, Im ∈ R
m×m are identity matrices.

Proof. Since (1) can be rewritten as

q(i+1)− Fq(i)−Gu(i) = 0 (41)

with an arbitrary square matrix X ∈ R
n×n, we get

qT (i+1)X
(
q(i+1)− Fq(i)−Gu(i)

)
= 0. (42)

Now, not substituting (1) into (28) but adding (42) and
transposing (42) to (28) gives

Δv(q(i))

= qT (i+1)Pq(i+1)

− qT(i)Pq(i) + yT(i)y(i)− γuT(i)u(i)

+
(
q(i+1)− Fq(i)−Gu(i)

)T
XTq(i+1)

+ qT(i+1)X
(
q(i+1)− Fq(i)−Gu(i)

)
< 0.

(43)
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Thus, with respect to (2), (43) can be rewritten as

q◦T (i)J ◦q◦(i) < 0, (44)

where

q◦T (i) =
[

qT (i) uT (i) qT (i+1)
]
, (45)

J ◦=

⎡

⎣
CTC−P CTD −F TXT

∗ DTD − γIr −GTXT

∗ ∗ P +X+XT

⎤

⎦< 0, (46)

or, exploiting the composite form,
⎡

⎣
−P 0 −F TXT

∗ −γIr −GTXT

∗ ∗ P +X+XT

⎤

⎦+

⎡

⎣
CTC CTD 0

∗ DTD 0
∗ ∗ 0

⎤

⎦<0.

(47)
Thus, equivalently, using (37), (38), and with X = −W ,
(47) implies (40). This concludes the proof. �

It is evident that the Lyapunov matrix P is separated
from the matrix parameters of the system F , G, C and D,
i.e., there are no terms containing the product of P and
any of them. By introducing a new variable W , original
product forms are relaxed to new products WF and WG,
where W need not be symmetric and positive definite.
Consequently, a robust BRL can be obtained to deal with
linear systems with parametric uncertainties, as well as
with singular system matrices.

Lemma 1. (Causal equivalence) If there exists a positive
definite symmetric matrix P > 0, P ∈ R

n×n, a matrix
W ∈ R

n×n, and a positive scalar γ > 0, γ ∈ R satisfy-
ing (40), then such P > 0 and γ > 0 satisfy (25).

Proof. Defining the congruence transform matrix

T 1 =

⎡

⎢
⎢
⎣

In 0 0 0
0 Ir 0 0
F G In 0
0 0 0 Im

⎤

⎥
⎥
⎦ (48)

and pre-multiplying the right-hand side of (40) by (48)
and the left-hand side of (40) by the transpose of (48) give

ΥT 1

=

⎡

⎢
⎢
⎣

F TW TF−P F TW TG F TW T CT

GTW F GTW TG−γIr GTW T DT

P F−W TF PG−W TG P−W−W T 0
C D 0 Im

⎤

⎥
⎥
⎦ ,

(49)

Π = T T
1ΥT 1

=

⎡

⎢
⎢
⎣

F TP F−P F TP G F T (P−W ) CT

GTPF GTPG−γIr GT (P−W ) DT

(P−W T )F (P−W T )G P−W−W T 0
C D 0 Im

⎤

⎥
⎥
⎦ .

(50)

Using the Schur complement property, (50) can be rewrit-
ten as

Π = Ψ + Φ < 0, (51)

where Ψ < 0 is given in (25), while Φ ≥ 0,

Φ =
[

F T(P−W )
GT(P−W )

]

·Δ−1
[
(P−W T )F (P−W T )G

]
(52)

since (40) is feasible if

Δ = −(P−W−W T ) > 0. (53)

Hence the conclusion (51)–(53) implies the proof. �

Remark 1. It is easily verified, e.g., using (51)–(53), that
(25) is equivalent to (40) if W = W T , P = W > 0.

The state-feedback control problem is to find for an
optimized (or prescribed) scalar γ > 0 the state-feedback
gain K such that the control law guarantees an upper
bound of

√
γ to the H∞ norm of the closed-loop trans-

fer function.

Lemma 2. The system (1), (2) under the control
(6) is stable with the quadratic performance ‖Cc(zI −
F c)−1G‖∞ ≤ √γ and F c = F−GK , Cc = C−DK
if there exist a positive definite symmetric matrix S ∈
R

n×n, a regular square matrix V ∈ R
n×n, a matrix

U ∈ R
r×n, and a scalar γ > 0, γ ∈ R, such that

S = ST > 0, γ > 0, (54)

⎡

⎢⎢
⎣

−S 0 VF T−UGT VCT−UDT

∗ −γIr GT DT

∗ ∗ S−V −V T 0
∗ ∗ ∗ −Im

⎤

⎥⎥
⎦ < 0. (55)

The control law gain matrix is now given as

K = UT V −T . (56)

Proof. Since W is an arbitrary square matrix, W can be
chosen to be regular, i.e., det W 
= 0, and the congruence
transform matrix T 2 can be defined as follows:

T 2 = diag
[

W−1 Ir W−1 Im

]
. (57)

Multiplying the left-hand side of (40) by T 2 and the right-
hand side of (40) by T T

2 gives

⎡

⎢⎢
⎣

−S 0 V F T V CT

∗ −γIr GT DT

∗ ∗ S−V −V T 0
∗ ∗ ∗ −Im

⎤

⎥⎥
⎦ < 0, (58)

S = W−1PW−T , W−1 = V . (59)
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Inserting F ← F c =F−GK , C ← Cc =C−DK into
(58) gives

⎡

⎢
⎢
⎣

−S 0 V (F−GK)T V (C−DK)T

∗ −γIr GT DT

∗ ∗ S−V −V T 0
∗ ∗ ∗ −Im

⎤

⎥
⎥
⎦ < 0,

(60)
and with

U = V KT (61)

(60) implies (55). This concludes the proof. �

Note that S is a symmetric Lyapunov matrix owing
to the fact that W is a regular square matrix as well as that
S is separated from the matrix parameters of the system.

5. Constrained control design

5.1. Constrained control. Using the control law (6),
the closed-loop control equations take the form

q(i + 1) = (F −GK)q(i), (62)

y(i) = (C −DK)q(i). (63)

Given a matrix E ∈ R
k×n, rankE = k ≤ r, we now

consider the design constraint (7) for all nonzero natural
numbers i. From Proposition 1 it is clear that such a de-
sign task is singular.

Therefore, it is supposed that E should be prescribed
in such a way that the equalities

E(F −GK) = 0, (64)

EF = EGK (65)

can be set, as well as that the closed-loop system matrix
(F−GK) be stable (all its eigenvalues lie in the unit circle
in the complex plane Z).

Solving (65) with respect to K , (15) implies all so-
lutions of K as follows:

K = (EG)�1EF + (I − (EG)�1EG)K◦, (66)

where K◦ is an arbitrary matrix with appropriate dimen-
sion and

(EG)�1 = (EG)T
(
EG(EG)T

)−1
, (67)

where (EG)�1 is a Moore–Penrose pseudo-inverse of
EG. Thus, it is possible to express (66) as

K = J + LK◦, (68)

where
J = (EG)�1EF (69)

and
L = Ir − (EG)T

(
EG(EG)T

)−1
EG (70)

is the projection matrix (the orthogonal projector onto
the null space NEG of EG (Krokavec and Filasová,
2008a)).

5.2. Control parameter design.

Theorem 2. The system (1), (2) under the control
(6) satisfying the constraint (7) is stable with ‖Cc(zI−
F c)−1G◦‖∞ ≤ √γ, and Fc = F−GK , Cc = C−DK
if there exist a positive definite symmetric matrix S ∈
R

n×n, a regular square matrix V ∈ R
n×n, a matrix

U ∈ R
r×n, and a scalar γ > 0, γ ∈ R, such that

⎡

⎢
⎢
⎣

−S 0 VF ◦T−UG◦T VC◦T−UD◦T

∗ −γIr G◦T D◦T

∗ ∗ S−V −V T 0
∗ ∗ ∗ −Im

⎤

⎥
⎥
⎦ < 0,

(71)
S = ST > 0, γ > 0, (72)

where
F ◦ = F−GJ , G◦ = GL, (73)

C◦ = C−DJ , D◦ = DL. (74)

Then

K◦=UTV −T, Fc =F ◦−G◦K◦ = F−GK, (75)

and the control law gain matrix K is given as in (68).

Proof. Substituting (6) and (68) into (1) and (2) gives

q(i + 1) = F ◦q(i) + G◦u◦(i), (76)

y(i) = C◦q(i) + D◦u◦(i). (77)

Since now (76) can be rewritten as

q(i+1)− F ◦q(i)−G◦u◦(i) = 0 (78)

with an arbitrary square matrix X ∈ R
n×n, this yields

qT (i+1)X
(
q(i+1)− F ◦q(i)−G◦u◦(i)

)
= 0. (79)

Defining the Lyapunov function as

v(q(i)) = qT(i)Pq(i)

+
i−1∑

l=0

(yT(l)y(l)− γu◦T(l)u◦(l)) > 0,
(80)

the forward difference along a solution of the system (78),
(79) is

Δv(q(i))

= qT (i+1)Pq(i+1)− qT(i)Pq(i)

+ yT(i)y(i)− γu◦T(i)u◦(i) < 0.

(81)

Adding (79) as well as the transpose of (79) to (81) results
in

Δv(q(i))

= qT (i+1)Pq(i+1)− qT(i)P q(i)

+ yT(i)y(i)− γu◦T(i)u◦(i)

+
(
q(i+1)− F ◦q(i)−G◦u◦(i)

)T
XTq(i+1)

+ qT(i+1)X
(
q(i+1)−F ◦q(i)−G◦u◦(i)

)
< 0.

(82)
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Since (82) can now be compactly written as

q•T (i)J •q•(i) < 0, (83)

where

q•T (i) =
[

qT (i) u◦T (i) qT (i+1)
]
, (84)

J •=

⎡

⎣
C◦TC◦−P C◦TD◦ −F ◦TXT

∗ D◦TD◦−γIr −G◦TXT

∗ ∗ P +X+XT

⎤

⎦<0,

(85)
it is evident that (85) takes the same structure as (46), and
so, due to (46), by replacing the matrices (F , G, C, D) in
(55) by (F ◦, G◦, C◦, D◦), the inequality (71) is obtained.
This concludes the proof. �

Remark 2. It is only in unforced mode that the state-
variable vectors belongs to the prescribed constraint sub-
spaceNE given as

q(i) ∈ NE = {q : Eq = 0}. (86)

Thus, the system states are constrained in this subspace
(the null space of E) for all nonzero natural numbers i,
and stay within the constraint subspace, i.e., F cq(i) ∈
NE (Ko and Bitmead, 2007a; Krokavec and Filasová,
2008b).

5.3. Constrained forced mode. The state control in a
forced mode is defined by the control policy

u(i) = −Kq(i) + Www(i), (87)

where w(i) ∈ R
r is a desired output vector signal, and

Ww ∈ R
r×r is the signal gain matrix. For the output

equation of the form (2) and if the next condition is satis-
fied,

rank
[

F G
C D

]
= n + r, (88)

based on the static decoupling principle, Ww can be de-
signed as (Wang, 2003)

Ww =
(
C

(
In−(F−GK)

)−1
G+D

)−1

. (89)

Note that the state equality constraint (64) has no direct
influence on y(i).

Theorem 3. If the closed-loop system state variables
satisfy the state constraint (86), then the common state
variable vector qd(i) = Eq(i), qd(i) ∈ R

k attains the
steady-state value

qd = EWwws. (90)

Proof. Using the control policy (87), where K satisfies
(65), we get

Eq(i + 1) = E(F−GK)q(i) + EGWww(i). (91)

Since (91) implies

Eq(i + 1) = EGWww(i), (92)

owing to (64), it is evident that the common state variable
qd(i) of the closed-loop system in a steady state is pro-
portional to the steady state of the desired signal ws and
takes the value (90). This concludes the proof. �

Note that since K is optimized with respect (64), the
condition (86) is not fulfilled.

5.4. Observer state feedback. The observer state
feedback control law is now defined as

u(i) = −Kqe(i). (93)

where qe(i) ∈ R
n is a state vector variable estimate. Us-

ing the standard Luenberger observer of the form

qe(i+1) = Fqe(i) + Gu(i) + H(y(i)− ye(i)), (94)

ye(i) = Cqe(i)+Du(i) (95)

the error e(i) = q(i) − qe(i) between the actual state
and the estimated state at time instant i has to satisfy the
autonomous difference equation

e(i+1) = (A−HC)e(i), (96)

and the estimator gain matrix H ∈ R
n×m has to be

designed in such a way that the observer system matrix
F e = F−HC is a stable matrix.

Theorem 4. If an observer-based control structure of the
system (1), (2) is realized by the control law (93), where
K is satisfied (65) and the sequence of state estimates is
produced by (94), (95), then the state equality constraint
(64) is fulfilled in steady state.

Proof. Assembling the system state equation (1), (2) and
the observer error dynamics (96),

[
q(i+1)
e(i+1)

]
=

[
F−GK GK

0 F−HC

] [
q(i)
e(i)

]
(97)

((97) is implied by the separation principle). Defining the
matrix T 3 as

T3 =
[

E
I

]
(98)

and multiplying left-hand side of (97) by T3 gives
[

Eq(i+1)
e(i+1)

]
=

[
E(F−GK) EGK

0 F−HC

][
q(i)
e(i)

]
.

(99)
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Fig. 1. Step responses of an extended set of state variables.

Substituting from (64) states
[

Eq(i+1)
e(i+1)

]
=

[
0 EGK
0 F−HC

] [
q(i)
e(i)

]
, (100)

and it is evident that with stable Fe in steady state, i.e.,
when e(i+1) = e(i) = 0, such control satisfies (64).
This concludes the proof. �

Corollary 1. It can be easily verified by straightforward
calculation that, using the control law form

u(i) = −Kqe(i) + Www(i), (101)

Eq(i + 1) = EG
(
Ke(i) + Www(i)

)
, (102)

the common state variable qd(i) of the closed-loop system
in steady state is proportional to the steady state of the
desired signal ws.

6. Illustrative example

To demonstrate the properties of the proposed approach,
the system with two inputs and two outputs is used in the
example. The parameters of the system are

F =

⎡

⎣
0.9993 0.0987 0.0042
−0.0212 0.9612 0.0775
−0.3875 −0.7187 0.5737

⎤

⎦ , D=0,

G=

⎡

⎣
0.0010 0.0010
0.0206 0.0197
0.0077 −0.0078

⎤

⎦ , C =
[

1 2 −2
1 −1 0

]
,

respectively, for the sampling period Δt = 0.1 s. The
state constraint was specified as

q1(t)− 0.4 q3(t)
q2(t)

= 0.1,

which implies

E =
[

1 −0.1 −0.4
]
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Fig. 2. System output step response.

and subsequently yields

(EG)�1 =
[−38.2302

19.6977

]
,

L=
[

0.2098 0.4072
0.4072 0.7902

]
,

J =
[ −44.2102 −11.0891 8.9088

22.7789 5.7135 −4.5902

]
.

Solving (71) and (72) with respect to the LMI ma-
trix variables S, U , V and γ using the Self-Dual-
Minimization (SeDuMi) package for Matlab (Peaucelle et
al., 2002), the feedback gain matrix design problem in the
constrained control was solved as being feasible with the
results

U =

⎡

⎣
0.0147 0.0285
0.3985 0.7733
−0.0445 −0.0864

⎤

⎦ , γ = 0.7324

V =

⎡

⎣
0.0043 −0.0100 −0.0059
−0.0124 0.1389 0.1049
−0.0072 0.0868 0.2694

⎤

⎦ ,

S =

⎡

⎣
0.0049 −0.0121 −0.0087
−0.0121 0.1522 0.1035
−0.0087 0.1035 0.3180

⎤

⎦ .

Inserting U and V into (75), the feedback gain ma-
trices were computed as follows:

K◦ =
[

13.4769 5.1827 −1.4741
26.1567 10.0588 −2.8609

]
,

K =
[ −30.7333 −5.9064 7.4347

48.9355 15.7723 −7.4511

]
.

The control law so defined produces a stable control
with the closed-loop system matrix eigenvalue spectrum

ρ(F−GK) =
{

0.0000, 0.0934, 0.8271
}

.
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Note that one eigenvalue of F c = F −GK is zero
(rank(E) = 1)) as Proposition 1 implies that such a con-
strained design task is a singular problem .

Simulation results for the closed-loop system re-
sponse in the forced mode are presented in Fig. 1 for the
state variable response and Fig. 2 for the output variable
response. The initial state vector, the desired steady-state
values of the output variables, and the signal gain matrix
were set as q(0) = 0,

w(i) =
[ −0.1

0.1

]
,

W =
[ −6.2124 −19.5270

6.6807 37.3138

]
.

It is clear that the condition (92) is satisfied at all time
instants except zero in such a way that

qd = EWwws = 0.0601

(cf. the step responses of an extended set of state vari-
ables, including also qd(i), in Fig. 1).

7. Concluding remarks

In this paper we developed a new method based on a clas-
sical memoryless feedback H∞ control of discrete-time
systems if equality constraints tying together state vari-
ables were prescribed. The quadratic stability of the con-
trol scheme is established in the sense of an enhanced rep-
resentation of the BRL to circumvent an ill-conditioned
singular design task. Such a matrix inequality is lin-
ear with respect to the system variables and does not in-
volve any product of the Lyapunov matrix and the sys-
tem matrices. This provides one way for determination
of a parameter-independent Lyapunov function by solv-
ing singular LMI problems. The proposed method for-
mulates the problem as a stabilization one with a static
output feedback controller whose gain takes no special
structure. Compared with the author’s previous results,
the number of assumptions is reduced while a singular
solution is guaranteed and no iteration steps are needed.
This formulation allows us to find a solution to the con-
trol law without restrictive assumptions and additional
specifications on the design parameters implied, e.g., by
Finsler’s lemma. It is clear, however, that from Theorem
3 the control law just found solves the problem even in
the forced mode. The validity of the proposed method is
demonstrated by a numerical example with the equality
constraint tying together all state variables in a prescribed
way.
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Krokavec, D. and Filasová, A. (2009). Control reconfiguration
based on the constrained LQ control algorithms, Preprints
of the 7th IFAC Symposium on Fault Detection, Supervi-
sion and Safety of Technical Processes, SAFEPROCESS
2009, Barcelona, Spain, pp. 686–691.

Mason, O. and Shorten, R. (2004). On common quadratic Lya-
punov functions for stable discrete-time LTI systems, IMA
Journal of Applied Mathematics 69(3): 271–283.

Nesterov, Y. and Nemirovsky, A. (1994). Interior Point Polyno-
mial Methods in Convex Programming, Theory and Appli-
cations, SIAM, Philadelphia, PA.

Oliveira de, M.C., Bernussou, J. and Geromel, J.C. (1999). A
new discrete-time robust stability condition, Systems &
Control Letters 37(4): 261–265.

Oloomi, H. and Shafai, B. (1997). Constrained stabilization
problem and transient mismatch phenomenon in singular-
ity perturbed systems, International Journal of Control
67(2): 435–454.

Peaucelle, D., Henrion, D., Labit, Y. and Taitz, K. (2002).
User’s Guide for SeDuMi Interface 1.04, LAAS-CNRS,
Toulouse.

Petersen, I.R. (2006) Minimax LQG control, International Jour-
nal of Applied Mathematics and Computer Science 16(3):
309–323.

Skelton, R.E., Iwasaki, T. and Grigoriadis, K. (1998). A Unified
Algebraic Approach to Linear Control Design, Taylor &
Francis, London.

Tarbouriech, S. and Castelan, E.B. (1995). An eigenstructure as-
signment approach for constrained linear continuous-time
singular systems, Systems & Control Letters 24(5): 333–
343.
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