Int. J. Appl. Math. Comput. Sci., 2010, Vol. 20, No. 3, 581-589

DOI: 10.2478/v10006-010-0043-1

LOOP PROFILING TOOL FOR HPC CODE INSPECTION AS AN EFFICIENT
METHOD OF FPGA BASED ACCELERATION

MARCIN PIETRON *, PAWEE. RUSSEK ***, KAZIMIERZ WIATR ***

* Department of Electrical Engineering and Computer Science
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
e-mail: {pietron, russek, wiatr}@agh.edu.pl

** Academic Computer Centre Cyfronet AGH
ul. Nawojki 11, 30-590 Cracow, Poland

This paper presents research on FPGA based acceleration of HPC applications. The most important goal is to extract a code
that can be sped up. A major drawback is the lack of a tool which could do it. HPC applications usually consist of a huge
amount of a complex source code. This is one of the reasons why the process of acceleration should be as automated as
possible. Another reason is to make use of HLLs (High Level Languages) such as Mitrion-C (Mohl, 2006). HLLs were
invented to make the development of HPRC applications faster. Loop profiling is one of the steps to check if the insertion
of an HLL to an existing HPC source code is possible to gain acceleration of these applications. Hence the most important
step to achieve acceleration is to extract the most time consuming code and data dependency, which makes the code easier
to be pipelined and parallelized. Data dependency also gives information on how to implement algorithms in an FPGA
circuit with minimal initialization of it during the execution of algorithms.

Keywords: HPC, HPRC (High Performance Reconfigurable Computing), loop profiling, Mitrion-C, DFG (Data Flow

Graph).

1. Introduction

Our main goal is to accelerate HPC scientific applications
(Russek and Wiatr, 2005; 2006). In this paper we concen-
trate on our approach to accelerating HPC applications to
FPGA platforms. We try to check the possibilities of au-
tomated porting of HPC source codes to HPRC platforms.
Our main objective is to build a universal tool that could
be used in any scientific application and would enable it
transform this source code to a chosen HPRC platform.

The main application on which we started developing
and testing our system is Gaussian quantum-chemistry so-
ftware. Gaussian is a Fortran application which simulates
chemical molecules. Our working environment is SGI Al-
tix 4700: an SMP system with the RASC (Reconfigurable
Application Specific Computing) platform.

There is a gap between the existing HPC applications
and the new HPC or HPRC hardware platforms which ha-
ve been built. The new hardware platforms very often co-
uld not be used in an optimal way by HPC applications.
The main reason for this is that there is a lack of auto-
mated tools able to port HPC applications to new HPC or

HPRC hardware platforms (Gasper et al., 2003). Since se-
veral HPC platforms with the FPGA were created, some
publications were written which show results of imple-
menting scientific algorithms on such platforms (Kindra-
tenko et al., 2007; Liu et al., 2008). This shows that the
implementation of some scientific algorithms on HPRC
platforms can be faster than on CPUs. The methodology
of speeding up HPC application in implementing single
algorithms is quite inefficient. The huge amount of code
needs automated analysis, transformation and implemen-
tation (Deng et al., 2009). What has to be done first to spe-
ed up HPC application is the extraction of a code suitable
for the FPGA acceleration. Therefore several mechanisms
must be implemented to achieve this goal. These are Loop
Profiler and DFG (Data Flow Graph) Builder. The for-
mer is necessary because research and practical software
knowledge state that 90 percent of the execution time of
programs is spent in loops. The latter is required to extract
the dependency between data.

The paper is organized as follows: Section 2 provides
a description of the hardware platform which our research

@

{pietron,russek,wiatr}@agh.edu.pl

amcs@

M. Pietron et al.

is focused on, Section 3 presents the architecture of our
tool—depicts the functionality and key software module
of the system. Section 4 illustrates DFG Builder. Section
5 elaborates on the main part of our system—Loop Profi-
ler. Section 6 provides a description of how data gathered
by Loop Profiler can be used in the process of further spe-
eding up of software applications. Section 7 and 8 present
conclusions and directions further research, which will be
performed in the near future.

2. Hardware platform

High-performance computing companies such as SGI®R)
and Cray Inc. have produced several HPRC platforms.
There are also new vendors on the HPC market including
SRC Computers Inc. and Nallatech Ltd. with their own
HPRC solutions. The SGI solution is in the SGI Altix fa-
mily.

The Altix 4700 series is a family of multiprocessor
distributed shared memory computer systems, and it cur-
rently ranges from 8 to 512 CPU sockets (see Fig.[I). Each
processor has its own local memory as well as the ability
to access very fast memories of other processors by a NU-
MALink connection. NUMALink allows dataflow of 6,4
GB/s. SGI RASC RC100 Blade consists of two Virtex-4
LX 200 FPGAs, with 40 MB of SRAM logically organi-
zed as two 16 MB blocks and an 8 MB block.

Each QDR SRAM block transfers 128-bit data every
clock cycle (at 200 MHz), both for reads and writes. The
RASC communication module is based on an application-
specific integrated circuit (ASIC) TIO, which attaches to
the Altix system NUMALIlink interconnect directly. TIO
supports the Scalable System Port (SSP) that is used to
connect the Field Programmable Gate Array (FPGA) with
the rest of the Altix system. The RC100 Blade is connec-
ted using the low latency NUMALink interconnect to the
SGI Altix 4700 Host System. NUMALink enables a ban-
dwidth of 3.2 GB per second in each direction.

Altix 4700 has its own built-in development platform
which gives RASC API the ability to write programs on a
host processor that invoke compiled VHDL source codes
on FPGA circuits. The second possibility of the develop-
ment of HPC application is to use the RC100 Blade to wri-
te the source code in an HLL (see Fig.[2). Mitrion-C is an
HLL which facilitates this process. The Mitrion-C com-
piler generates a VHDL code from the Mitrion-C source.
Then Mitrion sets up the instance hierarchy of the RASC
FPGA design that includes the user algorithm implemen-
tation, the RASC Core Services, and the configuration fi-
les. The design is then synthesized using the Xilinx su-
ite of synthesis and implementation tools. Apart from the
bitstream generated, two configuration files are created:
one describes the algorithm‘s data layout and the stre-
aming capabilities to the RASC Abstraction Layer (bit-
stream configuration file), and the other covers various pa-

rameters used by the RASC Core Services. These files are
required by the device manager to communicate with the
algorithm implemented on the FPGA.

Implementing and invoking the algorithm on RASC
consist of several functions which reserve resources from
the host processor, queue commands and other preparation
steps. The reason behind this is that the optimal structure
of the hardware-accelerated application should contain as
few initializations of the FPGA circuits as possible.

3. Architecture of the system

This section presents modules which are parts of the sys-
tem. The system works on Fortran 77 and Fortran 95 ap-
plications. The source code is written in the Java language.
Figures [3] and @ describe the main modules and system
classes, respectively.

The design of our system can be divided into three
main parts of functionality. These include:

e Front-end: parses the source code and makes instru-
mentation, takes platform parameters;

e FEngine: computes data dependency, analyzes loops,
etc.;

e Back-end: generates the HPC source code with an
HLL.

The input to our system is the source code of the ap-
plication and data about the platform on which the spe-
edup should be done. This is the input to the front-end part
of our system. This part is responsible for parsing the sour-
ce code and the instrumentation code for further profiling.
The automated instrumentation is needed for time measu-
ring of loops execution, the number of iterations counted
and measuring the amount of data used during loop com-
putation. While parsing the source code, the Parser class
creates Loop, Instruction and Variable classes when a lo-
op is recognized. During the creation of these classes the
parsing module invokes the Instrumentator class, which
is responsible for the whole instrumentation of the source
code. The functionality of all these classes is described at
the end of this section. Parsing gives the following infor-
mation:

e extracts loops,

e loop iteration variables,

e list of instructions in a loop,

e sets of data used in loop computation.

After that, the data gathered during parsing are sent
to DFG Builder and Recompiling Module. The latter is
now able to compile the instrumented source code and run
it to gather profiling data.

Loop profiling tool for HPC code inspection as an efficient method of FPGA based acceleration

1,6 Gb/s
each direction

3,2 Gb/s 3.2 Gb/s ,__J} 8MB QDR SRAM DIMM 4 }
each direction each direction
v/ ,__A‘ 8MB QDR SRAM DIMM 3 }
T10 Algorithm " sMBQDRSRAMDIMM 2 |
ASIC FPGA
“} 8MB QDR SRAM DIMM 1 }
* j 8MB QDR SRAM DIMM 0 }
FPGA
PROM G
Loader
,__;} 8MB QDR SRAM DIMM 4 }
,__J 8MB QDR SRAM DIMM 3 }
TIO Algorithm
4:’1 8MB QDR SRAM DIMM 2 }7
ASIC FPGA
/‘ / “} 8MB QDR SRAM DIMM 1 }
3,2 Gb/s 3,2 Gb/s «
each direction each direction j 8MB QDR SRAM DIMM O }
1,6 Gb/s

each direction

Fig. 1. SGI Altix 4700 Host System (SGI Altix 4700 documentation).

Loop DFG Builder, Loop Execution Time Profiler,
Loop Analyzer and Time Estimator are the engines of our
system. These modules gather all the essential data from
which the system can extract parts of code that can be im-
plemented in HLL.

DFG Builder creates graphs with data dependency
inside each loop and data dependency between loops and
loop nesting. Section 4 describes this module. Loop Ana-
lyzer is a system class responsible for analyzing data ga-
thered by DFG Builder, Loop Time and Data Profiler.
This analyzes parallelism in loops and helps loop optimi-
zation (Subsection 6.1). Time Estimator estimates execu-
tion time of loops in FPGA. It measures time as a sum
of

e sending and loading the bitstream to an FPGA (cre-
ated by an HLL),

e sending input data from the host to the FPGA,

e cxecution time of the algorithm in FPGA (time obta-
ined from the HLL simulator),

e sending output data to the host program.

The chosen parts of the code are input data for the
HLL generator, the last functional block—the back-end
(HLLGenerator). This element generates parts of the HPC
source code chosen by Loop Analyzer. In our case, this is

the Mitrion-C generator. The methodology of generating
Mitrion-C is described in Subsection 6.3.

Our goal was to build a system that can easily be ad-
apted to different HPC platforms. Partitioning the archi-
tecture into the three described parts enables it to adapt
to various HPC applications (replacing the front-end) or
various HPRC platforms (replacing the HLL generator or
the platform parameters).

The main classes of the system are (see Fig. [):

e Parser: parses the source code of the HPC source co-
de application;

e DFG Builder: builds data flow graphs of loops of the
parsed code;

e [nstrumentator: class instrumenting parts of the co-
de, e.g., the execution time of loops, the size of ta-
bles;

e Loop: computes data dependency in a loop;

e [nstruction: gives information about each instruction
in a loop, e.g., the types of operation, the input data,
the type of data;

e Analyzer: takes and analyzes the results of Loop Ti-
me Profiler, data dependency from DFG Builder, the
loops data, etc.;

amcs@

M. Pietron et al.

Development platform

Mitiron-C source
RTL generation and] Mitrion-C
integration with RASC Core Services simulator
l :
Synthesis \ thavpral
XST) Simulation
((VCS)
Metadata ! —
Processing | | Implementation(ISE) | | | Statlc_tlmmg
(script) Analysis (ISE)
] ; Real-time
Device programming Verffication
(RASC abstraction layer, etc.) (gdb)

Fig. 2. RASC FPGA platform design flow (Mohl 2006).

Estimator: estimates the time and area of chosen
parts of the code implemented in the FPGA;

Visualizer: visualizes the data flow graph;

Parameter: class with parameters about the platform
set by the user (e.g., data bandwidth of the link be-
tween the host and the FPGA circuits, SRAM memo-
ry size);

e HLL Generator: inserts an HLL to the chosen spots
of the HPC source code.

4. DFG Builder

As shown in Fig. B the hyper profiling module consists
of DFG Builder, which gives necessary information about
data dependency inside the loops and dependency betwe-
en loops. The main purpose of the DFG Builder tool is
to extract data and loop dependency. An example of the
DFG is presented in Fig. [5l In our data flow, graph no-
des are a single operation and edges are input variables.
DFG Builder receives data from the parsing module and
creates from a graph of dependency. It receives a set of
loops identified during the parsing process. Each received
loop has its own list of instructions. The instructions are
delivered with all the operations and variables used.

The dependencies between loops are the most impor-
tant data extractions in the case of HLL (Mitrion-C) map-
ping. As shown in Subsection 6.1, it depends on which

| Source code Hardware platform

parameters

Parser

Hardware platform
specific data

l—l

Loop analyzer and
time estimator

N

|,/ Loop time and data
profiling module

Loop instrumentator | | DFGBuilder

—HLL insertion module 1

Compilation and benchmark
execution module

Fig. 3. Hyper profiling tool architecture.

type of Mitrion-C loop will be inserted. Figure [S|shows
only some of the data during the analyzing of the sour-
ce code (performed by Visualizer). The rest of the infor-
mation on data dependency is saved in the log file. DFG
Builder creates a loop call graph. From this graph we can
obtain information about the loop’s nesting, which makes
it possible to ascertain which groups of loops can be im-
plemented at once. Figure[@lshows the results of analyzing
one of the main Gaussian libraries by DFG Builder. ’Sets
of nested loops’ on the X-axis means the type of set found
by DFG Builder, e.g., ‘1’ describes the set with a single
loop, ‘2’ means that set contains two loops that can be im-
plemented at once, etc. The Y-axis describes how sets of
loops are data dependent (wide parallel, partially parallel
or sequential).

5. Loop Profiler

The first step we tried was to extract the code, which co-
uld be hardware implemented, on the FPGA platform was
standard profiling. It reports the percentage of executed
time in each function and subroutine. One of the best pro-
filers used by us to achieve this goal was oprofile. It is
mentioned by Pietron ef al. (2007a; 2007b) that oprofile
gives the best results while profiling the Gaussian appli-
cation. Oprofile, like other standard profilers, gives only
limited results to functions and subroutines. This infor-
mation is insufficient to find the most suitable code that
could be sped up on the FPGA platform. Hence the next
step is necessary. A special tool for hyper-profiling was
built to extract the code for the speedup. The main part of
the hyper-profiling tool is Loop Profiler (see Fig.[Z). Loop

Loop profiling tool for HPC code inspection as an efficient method of FPGA based acceleration

@amcs

Loop2

F(J,IM)

F(J,IM)

—

DO 30 IM=1,NMat
DO 10 J=1,I
10 F(J,IM)=F(J,IM)-Al1+J)
DO 20 J=(1+1),NDBF
1J=(J*(J-1))/2 +!
20 F(J,IM)=F(J,IM)-A(1J)
Continue

Q/Q\

AU1+J)

J
J-1

I (J-1)
F(J,IM)

J*(J-1)/2

AUJ

/ J)
F(J,IM)

Fig. 5. Generating a DFG graph from the F77 source code.

‘ Function ‘ ‘ Loop

Visualizer

DFGBuilder

Analyzer H Properties ‘

Instrumentator

Estimator
Fortraninstrumentator | | HLLGenerator
RecompilingModule Mitrion-C Generator

Fig. 4. Simple UML diagram.

profiling is a process which gives information about the
execution time of loops. Apart from the execution time, a
lot of various data can be collected during profiling. Some
other information which can be gathered and used for pa-
rallelizing the code is, e.g., the number of loop iterations
and the number of loop entries. There are two types of lo-
op profiling: static and dynamic. Dynamic loop profiling
(Moseley et al., 2006) is done by dynamic instrumenta-
tion in the executed code, whereas in the case of static
loop profiling instrumentation is done on the source code
of the application. Dynamic loop profiling is compiler in-

dependent and is designed to work with a chosen family
of processors (Moseley et al., 2006). Static profiling, as
presented in this paper, is language dependent.

In the present version of our hyper-profiling tool, lo-
op profiling can be done on Fortran (F77 and F95). Langu-
age loops are instrumented as follows: do, do while. The
module in the case of the Gaussian (f77 source code) ap-
plication implements algorithms which analyze the For-
tran 77 code and instrument the code (see Fig. [7). The
instrumentation of the source code is done to obtain infor-
mation about the execution time of loops. The results of
profiling are saved in formatted files (as shown in Fig. [7)).
Apart from this, Loop Profiler gathers information about
data used in the loop’s computations. As Fig.[8lshows, Lo-
op Profiler makes instrumentation for collecting the size
of the input loop’s data. This process is done by monito-
ring (instrumentation) the boundaries of a loop’s iterations
(Subsection 6.2).

The most important data gathered by the loop profi-
ling data module are the following

e number of iterations of each loop,

e number of entries of each loop,

e execution time of each loop,

e size of data used in a loop’s computations.

The Loop Profiler data can be used to speed up the
HPC code in two ways. The first is implementing chosen
loops in the HPRC platform libraries (in the case of SGI
RASC it is the RASCIib library), and the second is im-
plementing the loops in an HLL (such as Mitrion-C). This

:
g

M. Pietron et al.

Analysis by DFG Builder

6 Owide parallel
W partially wide parallel
Osequential

Number of sets of nested
loops
S o
]

1 2 3 4 5 6

Sets of nested loops

jllk:1 BN 'R
7

Fig. 6. Example data gathered during analyzing part of the main
Gaussian libraries.

Table 1. Mitrion-C loops (Mohl 2006).

| | Vector | List |
foreach | wide parallel | pipelined
for unrolled sequential

process is presented in Section 6. Before using both me-
thods, the data flow graph should be generated as well as
data profiling to find out about the dependency between
loops iterations and data used in loops computing (DFG
Builder and Loop Analyzer), see Fig.

6. Loop profiling for speeding up the HPC
code

As shown in the previous sections, loop profiling is a ne-
cessary step in the process of speeding up HPRC appli-
cations. This section describes further algorithms on loop
and data optimization. It shows how data gathered from
previous modules can be analyzed and used in the process
of speeding up HPC applications. Subsection 6.1 elabo-
rates on loops optimization using (DFG Builder and Lo-
op Analyzer), Subsection 6.2 presents loop data profiling.
Subsection 6.3 describes the process of incorporating the
Mitrion-C language into the HPC source code.

6.1. Loop optimization. There are several methodolo-
gies to optimize loops. The most important are presented
in this section. All of them are included in our system in
DFG Builder and Loop Analyzer. The latter is able to find
such loops and refactor them. Below we show each type
of optimization and provide a short description of the al-
gorithm:

F77 after instrumentation:

loopStartl = dtime(t)

DO 30 IM =1, Nmat
loopStart2 = dtime(t)
DO10J=1,1

10 FJ,IM) = F(J,IM) - A(dI+J)
loopEnd2 = dtime(t)
loopStart3 = dtime(t)

Do 20 J = (I+1), NDBF
1J={J*J-1D))y2 +1

20 FJL,IM) = F(J,IM) - A(1J)
loopEnd3 = dtime(t)

30 Continue

loopEnd3 = dtime(t)
saveData(loopStartl, ...)

Data gathered:

Function function_name
List of loops:

time no_entries no_iter nesting

loopl 1.654 28 5023 -
loop2 0. 896 5023 6178 loop1
loop3 0.757 5023 5559 loop1

Fig. 7. Writing results of loop time profiling.

e loop unrolling: increases parallelism within the loop
body, reduces loop overhead per iteration, modifies
the loop step, and appends as many copies to the loop
body as needed;

e loop fusion: reduces redundancy, eliminates loop
overhead and redundant computations by combining
the loops bodies into single loop;

e loop unswitching: removes if statements from within
a loop when the test of the conditional is independent
of the loop;

e loop peeling: enables loop fusion whenever the itera-
tion counts of the candidate loops do not match;

e loop tiling: processes the data of the loop in tiles,
optimization is used to improve data locality.

6.2. Loop data profiling. As mentioned in earlier sec-
tions, the frequency of data transfer from the host proces-
sor to the FPGA circuits and the amount of these data are
critical issues in HPRC platforms. Consequently, it is ne-
cessary to measure and collect information about it while
analyzing the source code. For each loop, data profiling
is performed. This informs us about the amount of data
which must be sent to the FPGA circuit while implemen-
ting the loops. An example of loop data profiling is shown
in Fig.[8l Data reports from loop profiling are necessary to
estimate the execution time of the implemented algorithm
(Time Estimator, Section 3), see Fig.

Loop profiling tool for HPC code inspection as an efficient method of FPGA based acceleration

Data inside loops:

DO 30 IM=1,NMat Size of data used in loop:
DO 10 J=1,1 - table F - NMat*I+(NDBF-I)*NMat
10 F(J,IM)=F(J,IM)-A(ll+J) | -table A- I+NDBF
DO 20 J=(I+1),NDBF
1J=(J*(J-1))/2 +! -
20 F(J,IM)=F(J,IM)-A(IJ)
Continue

Data outside loops:

Loop1
J Loop data profiler gathers
Sequential code between two loops common data used by the
loops to minimize data
l transfers to FPGA
Loop2

Fig. 8. Loop data profiling.

6.3. Automated framework for the insertion of the
Mitiron-C language in HPC applications. FPGA cir-
cuits are programmed using hardware description langu-
ages (the VHDL or Verilog). Apart from the HDL, the-
re are several other tools that enable the compilation of
a code written in a high-level language directly to the
FPGA. These languages include Handel-C, Impulse C
and Mitrion-C. In our system, the HLL is Mitrion-C. The
Mitrion-C source code is compiled by the Mitrion-C com-
piler into a code for the Mitrion processor, followed by
an automatic adaptation and the implementation of the
processor in the FPGA, which targets a specific hardware
platform, such as SGI RASC. This method eliminates the
need for low-level hardware design.

Mitrion SDK consists of a Mitrion-C language com-
piler, an integrated development environment, a data de-
pendency graph visualization and simulation tool, a Mi-
trion Host Abstraction Layer (MITHAL) library, and
the target platform-specific processor configurator (see
Fig. [I0). The Mitrion-C source code is compiled into an
intermediate virtual processor machine code. This machi-
ne code can be used by the simulator, the debugger or pro-
cessed by a processor configurator to produce a VHDL
design for the hardware platform. The Mitrion-C pro-
gramming language is an intrinsically parallel language.
Mitrion-C data types, such as vectors, lists, and language
constructs, such as loops, are designed to support the pa-
rallel execution driven by the data dependencies.

The main mechanisms of parallelism are foreach and
for loop constructs. By using them we can achieve paral-
leled or pipelined code execution in FPGA. The type of
Mitrion-C loops and the type of parallelization are shown
in Table[Tl Additionally, Mitrion-C has a special API that
can be used to invoke a Mitrion-C bitstream from the C
or the Fortran language (Mitrion-C Host Application Lay-
er). It enables the insertion of the Mitrion-C bitstream into

Loop profiler

Loop time Loop data
profiler profiler

Execution time of loops data dependency inside and outside loops,
common data used by loops,
amount of data used in loop’s computations

Loop analyzer and Time Estimator

DFG Builder

- analyzing data deliverd by DFG Builder and Loop Profiler

- simulating chosen loops (this able to be parallelized and
reusing maximum of data) in HLL

- chosing parts of code to be implemented in HLL

|

HLL Generator

- generating delivered source code in HLL

Fig. 9. Functional diagram of Loop Profiler and DFG Builder.

existing C/C++ and Fortran codes, see Fig.[TT}

The rules of optimal loops mapping to Mitrion-C ne-
ed further research. One of the first approaches to using
Mitrion-C for implementing an algorithm on Altix SGI
RASC and comparing its execution time to the host pro-
cessor is presented by Kindratenko et al. (2007), but be-
cause of the amount of the code the algorithm was fully
implemented in Mitrion-C manually.

7. Summary

The results gathered from our current research show that
the process of speeding up HPC applications on the FPGA
platforms is quite complex and multi-leveled. Profiling
using standard profilers has shown that this method does
not give good results. Implementing elementary functions
Pietron et al. (2007), e.g., the exponential function, is also
quite an inefficient methodology to achieve speedup of the
whole HPC application. This is the reason why an auto-
mated loop profiler was created. The architecture of Loop
Profiler is divided into functional modules. This architec-
ture enables adapting the system to various HPC applica-
tions and HPRC platforms. The first module is dependent
on the HPC application language (parsing and instrumen-
tation), the next one is the system’s engine (data and loop
dependency, loop execution time profiling, etc.), the last
one is the HLL generator, which depends on the language
chosen to speed up HPC application.

The loop profiler analyzing data dependency is one
of the most important processes in speeding up the HPC
source code on FPGA. The main reason is that loops are
potentially one of the easiest parts of the code to be pi-
pelined and parallelized. It should be mentioned that loop
profiling without any further analysis of the code is useless
in the case of HPRC applications. Loop profiling with ad-

aamcs

amcs

M. Pietron et al.

Source code (.mitc)

Mitrion SDK

Processor

Mitrion-C compiler
Architecture

|
Virtual processor machine code

Simulator/debugger Processor configurator

Hardware design

Fig. 10. Design flow.

character dev_name

integer fpga, proc

integer*1024 user_data_to_read
integer*1024 user_data_to_write

Ilwrite data in user_data_to_write which be get by FPGA
to compute

fpga=mitrion_fpga_allocate(dev_name)
proc=mitrion_processor_create('loop.mitc’)
mitrion_fpga_load_processor(fpga,proc)

mitrion_processor_reg_buffer(proc,param_name,
user_data_to_write,nr_bytes, WRITE_DATA)
mitrion_processor_reg_buffer(proc,param_name,
user_data_to_read,nr_bytes,READ_DATA)

mitrion_processor_run(proc)
mitrion_processor_wait(proc)

/Iwhen wait function ends then possible to read data
generated by Mitrion-C algorithm (loop.mitc)
/Ireading from user_data_to_read

Fig. 11. Mitrion-C executed from Fortran.

ditional data gathered, e.g., data dependency and the data
flow, can be used to find a code that can be sped up.

8. Future work

Further research will especially be focused on developing
and improving the automated framework and incorpora-
ting an HLL into existing HPC source codes. In particular,
we will concentrate on improving the methodology and al-
gorithms extracting the source code for the speedup. This
work will focus on improving the time and area estimation
of implementing HLL parts of the code in FPGA. The go-
al of our research is highly innovative because there have

not been any such research results published. The second
aspect of this is that, apart from the existing HLLs such
as Mitrion-C, which make the development of algorithms
dedicated to FPGA faster, there is no effective tool which
can make the insertion of an HLL to the existing HPC so-
urce code and speed it up. In the near future, a comparative
analysis of the automated insertion of an HLL to various
HPC applications will be carried out. The research will al-
so be focused on better estimation of the execution time of
parts of the code chosen to be implemented.

Future work will also be focused on the possibilities
of automated monitoring of the bit-width of data and the
values of variables used in computation. As mentioned
earlier, the amount of data and the bit-width needed for
it in computation are very important issues while imple-
menting algorithms on the FPGA platform.

The next challenge is to widen user interaction with
the system. The system should work in two modes. The
first one should be fully automated and the second one
should allow the user to interact with the system. The user
of the system should have the ability to choose the parts
of source code to be sped up.

Acknowledgment

This work was financed through research funds by the Po-
lish Ministry of Science and Higher Education as a rese-
arch project in 2009.

References

Bennett, D., Dellinger, E., Mason, J. and Sundarajan, P. (2006).
An FPGA-oriented target language for HLL compila-
tion, Reconfigurable Systems Summer Institute, RSSI 2006,
Urbana, IL, USA.

Deng, L., Kim, J.S., Mangalagiri, P., Irick, K., Sobti, K., Kan-
demir, M., Narayanan, V., Chakrabarti, Ch., Pitsianis, N.
and Sun, X. (2009). An automated framework for acce-
lerating numerical algorithms on reconfigurable platform
using algorithmic/architectural optimization, /EEE Trans-
actions on Computers 58(12): 1654—1667.

Gasper, P., Herbst, C., McCough, J., Rickett, C. and Stubben-
dieck, G. (2003). Automatic parallelization of sequential
C code, Midwest Instruction and Computing Symposium,
Duluth, MN, USA.

Gong, W.,Wang, G. and Kastner, R. (2004). A high performan-
ce application representation for reconfigurable systems,
Conference on Engineering of Reconfigurable Systems and
Algorithms, ERSA, Las Vegas, NV, USA.

Kindratenko, V., Brunner, R. and Myers, A. (2007). Mitrion-C
application development on SGI Altix 350/RC100, Inter-
national Symposium on Field Programmable Custom Com-
puting Machines, FCCM 2007, pp. 239-250.

Kindratenko, V., Myers, A. and Brunner, R. (2006). Exploring
coarse- and fine-grain parallelism on a high-performance
reconfigurable computer, 2nd Annual Reconfigurable Sys-
tems Summer Institute, RSSI 2006, Napa Valley, CA, USA.

Loop profiling tool for HPC code inspection as an efficient method of FPGA based acceleration

Liu, K., Cameron, Ch. and Sarkady, A. (2008). Using Mitrion-
C to implement floating-point arithmetic on a Cray XD1
supercomputer, DoD HPCMP Users Group Conference,
HPCMP-UGC, Urbana, IL, USA, pp. 391-395.

Memik, S.O., Bozorgzadeh, G., Kastner, R. and Sarrafzadeh, M.
(2005). A scheduling algorithm for optimization and plan-
ning in high-level synthesis, ACM Transactions on Design
Automation of Electronic Systems 10(1).

Messmer, P. and Bodenner R. (2006). Accelerating scentific ap-
plications using FPGAs, XCell Journal 10(1): 33-57.

Mohl, S. (2006). The Mitrion-C programming lan-
guage, Mitrionics Inc., Second Quarter, pp. 70-73,
http://www.mitrion.com.

Moseley, T., Grunwald, D., Connors, A., Ramanujam, R., To-
vinkere, V. and Peri R. (2006). LoopProf: Dynamic tech-
niques for loop detection and profiling, Proceedings of the
2006 Workshop on Binary Instrumentation and Applica-
tions, WBIA, Lund, Sweden.

Pietron, M., Wiatr, K. and Russek, P. (2007(a)). Methodology of
computing acceleration using reconfigurable logic techno-
logy in high performance computing, University of Scien-
ce and Technology in Cracow Automatica, 2007, pp. 149—
156.

Pietroni, M., Russek, P., Wiatr, K., Jamro, E. and Wielgosz, M.
(2007(b)). Two electron integrals calculation accelerated
with double precision exp() hardware module, Reconfigu-
rable Systems Summer Institute, RSSI, Urbana, IL, USA.

Russek, P. and Wiatr, K. (2006). The prospect of computing
acceleration using reconfigurable logic technology in hu-
ge computational power systems, Proceedings of the IFAC
Workshop on Programable Devices and Embedded Sys-
tems, PDeS 2006, Brno, Czech Republic, pp. 44-49.

Marcin Pietrofi holds the M.S. degree in electronics and telecommuni-
cations engineering (2003), and computer science (2005). Currently he
is working toward his doctoral degree in computer science at the De-
partment of Electrical Engineering and Computer Science at the AGH
University of Science and Technology in Cracow. His research interests
lie in hardware-software code-sign and high performance computing.

Pawel Russek received the M.S. degree in electronics engineering from
the AGH University of Science and Technology, Cracow (1994), and
the Ph.D. degree in electronics engineeering (2003). Currently he is an
assistant professor with the Department of Electrical Engineering and
Computer Science of the AGH University of Science and Technology
in Cracow. His research interests include application specific hardware
accelerators, hardware assisted image processing, and high performance
computing on FPGAs.

Kazimierz Wiatr received the M.S. degree in electronics engineering
from the AGH University of Science and Technology, Cracow (1980),
the Ph.D. degree in electronics engineeering (1987), and the professo-
rial title in electronics engineering (2002). Currently he is a professor
with the Department of Electrical Engineering and Computer Science
of the AGH University of Science and Technology in Cracow and the
director of the Academic Computer Centre Cyfronet AGH. His research
interests focus on image processing systems, multi-processor systems,
and FPGA-based accelerator design.

Received: 22 November 2009
Revised: 26 March 2010

@amcs

 http://www.mitrion.com

	Introduction
	Hardware platform
	Architecture of the system
	DFG Builder
	Loop Profiler
	Loop profiling for speeding up the HPC code
	Loop optimization
	Loop data profiling
	Automated framework for the insertion of the Mitiron-C language in HPC applications

	Summary
	Future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

