
Int. J. Appl. Math. Comput. Sci., 2009, Vol. 19, No. 4, 647–659
DOI: 10.2478/v10006-009-0052-0

SYNTHESIS OF FINITE STATE MACHINES FOR CPLDS

ROBERT CZERWIŃSKI, DARIUSZ KANIA

Institute of Electronics
Silesian University of Technology, ul. Akademicka 16, 44–100 Gliwice, Poland

e-mail: {robert.czerwinski,dariusz.kania}@polsl.pl

The paper presents a new two-step approach to FSM synthesis for PAL-based CPLDs that strives to find an optimum fit
of an FSM to the structure of the CPLD. The first step, the original state assignment method, includes techniques of two-
level minimization and aims at area minimization. The second step, PAL-oriented multi-level optimization, is a search for
implicants that can be shared by several functions. It is based on the graph of outputs. Results of experiments prove that
the presented approach is especially effective for PAL-based CPLD structures containing a low number of product terms.

Keywords: logic synthesis, FSM, state assignment, logic optimization, CPLD.

1. Introduction

Most CPLDs (Complex Programmable Logic Devices)
have architectures consisting of a PAL-like AND-OR
structure and multi-level logic capability combined with
an integrated array of logic and I/O macrocells. Whereas
each CPLD has an original internal structure, its ker-
nel is in most cases formed by a PAL-based structure
(Sharma, 1998). PAL-based logic blocks usually have a
strictly defined number of terms connected to the indi-
vidual output macrocells. This feature of a PAL based
block significantly affects the synthesis process of digital
circuits based on such devices. The essence of CPLD-
oriented synthesis of FSMs (Finite State Machines) us-
ing PAL-based devices is the implementation of the logic
function using logic blocks including k terms (Fig. 1).

One of the most important stages of the FSM de-
sign flow is state assignment. There are many methods of
state assignment. Some are considered optimal (Sentovich
et al., 1992; Villa and Sangiovanni-Vincentelli, 1990).
The state assignment problem is often solved together
with input and output encoding (Yang and Ciesielski,
1991). Some methods are based on dichotomies (Villa
and Sangiovanni-Vincentelli, 1990) or dominance graphs
(Devadas and Newton, 1991). Sometimes the problem
is solved using genetic algorithms (Chyży and Kłosiński,
2002). There are also many aims of finite state machine
synthesis, like reducing power consumption of automata
(Mengibar et al., 2005; Chattopadhyay, 2001) or synthe-
sis for testability (Park et al., 2000). Sometimes, the main

k

PAL

k-AND

Fig. 1. Structure and symbol of a PAL-based logic cell.

idea of logic synthesis is based on functional (Jóźwiak
and Volf, 1995) or structural decomposition of FSMs
(Barkalov et al., 2007). These methods are composed
for different structures of Mealy and Moore automata
(Salauyou et al., 2006). A vast majority of methods are
dedicated for automata which are to be implemented in
PLA-based devices (Baranov, 1994; Villa et al., 1997).
Some well-known methods like “one-hot” coding or bi-
nary coding, are still part of vendor tools, even though
they give results far from optimum.

The aim of the proposed state assignment method
is to minimize the number of PAL-based macrocells by
fitting the FSM to the structure of the CPLD in the
best possible way (Czerwiński and Kania, 2005; Czer-
wiński, 2006; Czerwiński et al., 2006). The elements of
two-level minimization are included in the state assign-
ment process. Primary and secondary merging condi-
tions, and the implicants distribution table are introduced

{robert.czerwinski, dariusz.kania}@polsl.pl

648 R. Czerwiński and D. Kania

in the paper. In the final stage, the procedure of code ex-
change is carried out in order to aid multi-level optimiza-
tion (Kania, 2003).

This paper is structured as follows: Section 2 intro-
duces some basic information about state assignment and
multi-level optimization. Section 3 focuses on the synthe-
sis of FSMs for PAL-based CPLDs. Experimental results
are reported in Section 4. The paper closes with conclu-
sions in Section 5.

2. Basic definitions

The mathematical model of a sequential circuit is a fi-
nite state machine, which is represented by a quintuple,
{X, Y, S, δ, λ}, where X is a finite input alphabet, Y is a
finite output alphabet, S is a finite set of states, δ is the
transition function, λ is the output function. The transi-
tion function of an FSM determines the next state of the
automata (S+).

Let the state weight ηsi be the number of transits to
the state si of the machine—the number of occurrences
as a next state in State Transition Table (STT). Let the μ-
range be the number of bits 1 in the code. The distance
ν(A, B) between two minterms A and B is the number of
bits they differ in. Let ν(Si, Sj) be the distance between
codes of the states Si and Sj .

Let f be a multi-output logic function f : Bn → Bm,
where B = {0, 1}. The classical method of implemen-
tation of the function f : Bn → Bm within PAL-based
structures is related to the implementation of the min-
imised functions f : Bn → B1 (i = 1, 2, . . . , m) by
means of PAL-based logic blocks consisting of k-terms.
Let the discriminant Δfi be the number of those impli-
cants, provided the function f : Bn → B1 constitutes
true values (e.g., Δδi is the number of implicants of the
δi function).

Let σfi denote the number of logic blocks necessary
for the implementation of the i-th function. In the case
when fi > k, the implementation of the fi function by
means of PAL-based logic blocks consisting of k-terms
needs the realization of feedback loops. Therefore, the
number of σfi = �(Δfi − k)/(k − 1)� + 1 PAL-based
logic blocks consisting of k-terms will be used, where �x�
denotes the lowest integer number, not less than x. For
classical implementation of m-functions (every function
has been minimized separately), the implementation of σ1

f

PAL-based logic blocks is necessary, where

σ1
f =

m∑

i=1

(⌈
Δfi − k

k − 1

⌉
+ 1

)
. (1)

Example 1. Let f1 = bc̄d̄ + ābc̄ + āb̄c + b̄cd and
f0 = āb̄d + abd̄ + bcd̄ + b̄cd. Separate implementation
of the f1 and f2 function requires four logic PAL-based

PAL

3-AND

z=ab +a cdcd b

PAL

3-AND

PAL

3-AND

f
0

f
1

f =z+ d+bc

f =z+ b + c

0

1

ab d

a c ab

z

Fig. 2. Implementation of the example two-output function.

blocks, which include three terms. However, another im-
plementation is also possible. The implementation pre-
sented in Fig. 2 requires only three blocks. �

The proposed PAL-based multi-level optimization al-
lows a considerable reduction of the number of required
logic blocks. The main idea of the method is based on
searching for shared mutli-output implicants.

3. Synthesis of FSMs for PAL-based devices

The proposed logic synthesis process consists of two main
procedures:

• PAL-oriented state assignment,

• PAL-oriented multi-level optimization.

An overview of the logic synthesis system is shown in
Fig. 3.

3.1. PAL-oriented state assignment. A coded STT is
a collection of multi-output implicants. The total number
of implicants of the single function δi or λi equals the
weight of states for which there is a 1 on i-th position.
This brings to mind that codes with a minimal μ-range

Functional description

PAL-oriented state assignment

PAL-oriented multi-level optimization

E odesxchange of c

Optimization

based on the outputsgraph of

Result description

(HDL description)

Fig. 3. Design flow of the proposed logic synthesis of FSMs for
PAL-based devices.

Synthesis of finite state machines for CPLDs 649

should be used to encode states. Moreover, states sj with
greater weights ηsj should be coded first of all, because
those states occur more frequently as next. In that way,
codes with the smallest number of a logic high occur more
frequently. Of course, the state with the greatest weight
is assigned the code with all bits logic low (μ = 0), so
none of the single transition functions includes implicants
corresponding to the state.

The number of terms may be reduced after two-level
minimization. The main goal of state assignment should
be to assign states to codes situated suitably to each other
in the Boolean space, so some implicants could be merged
after two-level minimization. This gets complicated in
FSMs because the input parts of multi-output implicants
are connected with the output part. The next state of one
transition is the present state of another. Changing one bit
of the state code involves changes in both the input and
output part of the implicants.

On the other hand, elements of two-level minimiza-
tion must be included in the state assignment process, in
order to take advantage of the number of PAL-cell terms.
Primary and secondary merging conditions enable to in-
clude elements of two-level minimization in the process
of state assignment (Czerwiński and Kania, 2005; Czer-
wiński, 2006; Czerwiński et al., 2006).

The Primary Merging Condition (PMC)
{Sp, Sr}Si

X for the transition function is a condition
formed by two transitions from the states Sp and Sr to
the state Si that corresponds to the same input X .

The primary merging condition {Sp, Sr}λi

X for the
output function is a condition formed by two transitions
from the states Sp and Sr, for which the output function
λi is 1, that corresponds to the same input X .

The idea of state assignment is based on assigning
to two states Sp and Sr of PMC binary codes that differ
only in one position, ν(Sp, Sr) = 1. A fragment of the
state transition table with the PMC and the idea of state
assignment is presented in Fig. 4.

A Secondary Merging Condition (SMC)
{Sp, Sr}Sa,Sb

δi,X
is a condition that is formed by two

present states Sp and Sr from which there are transitions
to next states Sa and Sb for the same input X . The
symbolic implicants, referring to the present states Sp and
Sr, belong to the same transition function δi.

To satisfy the secondary merging conditions
{Sp, Sr}Sa,Sb

δi,X
, the states Sp and Sr have to be assigned

binary codes with the distance between them equal to
one—(Sp, Sr) = 1.

The state transition table may include two transitions
from the present state Sp to the next states Sa and Sb

for the inputs Xu and Xw. The symbolic implicants, re-
ferring to the present state Sp, belong to the same tran-
sition function δi. Such a situation is interpreted as a
secondary merging condition {Sp}Sa,Sb

δi,Xu,Xw
. The SMC

{Sp}Sa,Sb

δi,Xu,Xw
is always fulfilled, and two implicants are

merged. The condition is written in order to eliminate
multiple merging of the same implicants.

SMCs emerge during the process of state assignment.
One step of the state encoding process with the mecha-
nism of SMC arising is shown in Fig. 5.

The basic difficulty in effective term use, when func-
tions are to be implemented in PAL-based devices, is two-
level minimization. As a rule, it is carried out after the
state assignment process, so the effects are unforeseen.
The elements of two-level minimization or methods of
counting the number of implicants (as the effect of the
minimization process) have to be included in the process
of state assignment. It is easy to search primary merging
conditions, but secondary merging conditions appear only
in the state assignment process and come from the distri-
bution of implicants among the single functions.

The Implicants Distribution Table (IDT) is a table
divided into columns, corresponding to the weights ηδi of
the single functions δi. Every row of the table corresponds
to the number of implicants which is equal to weights of
the states. The weights of the states are written into those
columns ηδi , for which there is 1 on the i-th position of
the code. When the PMC or the SMC is fulfilled, −1 is
written into column corresponding to the function δi, for

st. assign.

s1 - 01

s2 - 00

s3 - 11

...

0010- 111

...

two-level

minimization
...

00101 111

00100 111

...

...

001 s1 s3 1

001 s2 s3 1

...

{s1,s2}
s3

001

{s1,s2}
l0

001

In
p

u
ts

O
u

tp
u

ts

P
re

s
e

n
t

s
ta

te

N
e

x
t

s
ta

te

PMC for an output function

PMC for a transition function

Fig. 4. Fragment of the state transition table with the PMC and
the idea of state assignment.

...

01 s1 s1 0

01 s3 s2 0

...

s1

10

...

01 10 0

01 11 0

...

10

s3

...

01 10 10 0

01 s3 s2 0

...

s2

11

,01
{s1,s3}

s1,s2

d1

SMC for a transition function

Common ‘1’

�1

��

��

Fig. 5. Mechanism of SMC forming during the process of state
assignment.

650 R. Czerwiński and D. Kania

which two implicants are merged. An example of an IDT
is shown in Fig. 7.

The aim of the method of state assignment is min-
imizing the number of PAL-cells. The minimization is
limited to the transition function only.

Algorithm mb
(minimization of the number of blocks)

1. Calculate the number K of bits of codes: K =
�log2 card(S)�, where card(S) is the number of
states (card(S) > 1), �a� is a minimum integer but
not less than a.

2. Specify the PMCs of the transition function.

3. Assign the state with the greater weight ηSi with the
zero code (μ = 0). If there is more than one state that
satisfies the condition, choose the state Sj which can

satisfy most PMCs {Si, Sr}Sj

X .

4. μ := 1.

5. Choose the state with the largest weight ηSi . If there
is more than one state that satisfies the condition, the
sort key is as follows:

(a) choose the state Si which can satisfy more pri-
mary merging conditions {Si, Sr}Sj

X ,

(b) choose the state Si which can satisfy more
non-excluding secondary merging conditions
{Si, Sr}Sa,Sb

δj ,X .

6. If none of the μ-range codes is free, then μ := μ+1.

7. Assign to the chosen state Si a free code μ-range. If
there is more than one possibility, the sort key is as
follows:

(a) PAL-cell incrementation is the smallest,

(b) the sum of all Δδi is the smallest.

(PAL-cell incrementation and the sum of all Δδi are
calculated after making allowance for every satisfied
merging condition.)

8. Refresh the IDT.

9. Revise the secondary merging conditions.

10. Cancel the satisfied or excluded primary and sec-
ondary merging conditions.

11. If not all states have been encoded, then return to the
point 5.

12. End.

Weights

= 0�

�

�

1

2

3

= 10

= 7

= 5

= 2

= 4

= 3

= 3

�

�

�

�

�

4

5

6

7

8

PMC
3

3

4

4

7

2

2

2

2

3

110--

111--

10---

100--

101--

00---

--0--

--0--

--0--

11---

{2,4}

{7,8}

{1,3}

{2,4}

{7,8}

{1,3}

{5,7}

{5,8}

{7,8}

{1,3}

11--- 1 3 10111000

00--- 1 2 11000000

10--- 1 4 00101000

0-0-- 2 2 11000000

--1-- 2 5 00001110

110-- 2 3 10111000

100-- 2 4 00101000

10--- 3 4 00111000

00--- 3 2 11010000

11--- 3 3 10111000

01--- 3 6 00110101

010-- 4 6 00100101

--1-- 4 7 00101000

110-- 4 3 10111000

000-- 4 2 11000000

100-- 4 4 00101000

1-10- 5 8 10000100

--0-- 5 2 11000000

--11- 5 8 10000100

0-10- 5 5 00001110

----1 6 2 11000001

10--0 6 4 00101001

00--0 6 2 11000001

11--0 6 3 10111001

01--0 6 6 00100101

--0-- 7 2 11000000

101-- 7 7 00101000

011-- 7 6 00100101

111-- 7 3 10111000

001-- 7 2 11000000

101-- 8 7 00101000

--0-- 8 2 11000000

0-1-- 8 8 10000100

111-- 8 3 10111000

Fig. 6. State transition table of the ex6 FSM with weights of
states and PMCs.

Fig. 7. IDT of the ex6 FSM in different stages of the state as-
signment process.

Example 2. Consider the example of the automaton ex6
(MCNC, 1991). The STT is given in Fig. 6 with weights
of states and PMCs.

The weight η1 of the state 1 is the biggest, the state
is assigned 000. Three rows of the part of the IDT pre-
sented in Fig. 7(a) correspond to the numbers of impli-
cants, which are equal to weights of the states. According
to the IDT, the weights of states are written into the col-
umn δi for which there is 1 on the i-th position of the code.
The state 3 is assigned 001.

Synthesis of finite state machines for CPLDs 651

The continuation of state assignment is presented
in Fig. 7(b). The state 4 is assigned 010. The PMC
{2, 4}3

110−− and {2, 4}4
100−− are fulfilled, so −1 is writ-

ten into the ITD for the column corresponding to the func-
tion δ0 and δ1.

Next, the state 6 is assigned 100 and the state 7 –
011 (Fig. 7(c)). It should be noticed that the states 3 and
7 have common logic high on the position correspond-
ing to the function δ0. Because there are two transitions
from the state 7 for the inputs 101 − − and 111 − −
({7}3,7

δ0,101−−,111−− is fulfilled), Δδ0 is also decremented.
Encoding results in 26 implicants and implementa-

tion uses thirteen 3-AND cells (Fig. 7(d)). �

3.2. PAL-oriented multi-level optimization. Two ba-
sic stages of PAL-oriented multi-level optimization in-
clude

• exchange of codes,

• optimization based on the graph of outputs.

3.2.1. Exchange of codes. The algorithm of the state
assignment presented in section 3.1 is oriented on the
PAL-cell minimization. Searching the shared multi-output
implicants is ineffective. Exchange of codes can be car-
ried out after the state assignment process to increase the
effectiveness of the method based on the graph of output
(Section 3.2.2).

First of all, the state Si with a weight exceeding one
(ηSi > 1) is searched. The state is assigned a code of
the first range (μ = 1). Transition to the state is real-
ized thanks to σSi =

⌈
(ηSi − k)/(k − 1)

⌉
logic cells. If

there exists state Si, then state Sj with greatest weight
(max(ηSj) and ηSj > 1) is searched. States Si and Sj

must have 1 on common position.
As a next step, an IDT is revised. The weight of state

Si is changed to 1. The reason is the feedback from com-
mon block (shared multi-output implicants) to the inter-
connect matrix. Every merging condition in an IDT is
revised. If after exchanging of codes the total number of
logic cells is smaller than before exchanging, then the ex-
change is fixed. Of course to the number of logic cells
after exchanging procedure is added σSi . The procedure
is repeated until there are unchecked states with assigned
codes of the 1-range.

Algorithm ec
(exchange of codes)

1. Choose the state Si.

2. If there exists the state Si, then search the state Sj .

3. Check the IDT for exchanging codes of the states Si

and Sj .

0 0 0 2

0 0 7 3

0 5 0 4

0 0 -1 {2,4}

0 -1 0 {2,4}

4 0 0 6

0 3 3 7

0 0 -1 {7}

3 0 3 8

0 0 -1 {8}

2 2 0 5

0 -1 0 {4,2}

-1 0 0 {5}

1

8 8 10 sum

4 4 5 3-AND cells

3

4

3,7

3,7

7,5

8,5

110--

100--

0,101--,111--

0,101--,111--

1,--1--

2,0-10-,1-10-

�

�

�

�

0 0 0

D D D
d2 d1 d0

st.

0 0 0 2

0 1 1 3

0 5 0 4

0 -1 -1 {2,4}

0 -1 0 {2,4}

4 0 0 6

0 0 3 7

0 0 -1 {7}

3 0 3 8

0 0 -1 {8}

2 2 0 5

0 -1 0 {4,2}

-1 0 0 {5}

1

8 6 4 sum

4 3 2 3-AND cells

3

4

3,7

3,7

7,5

8,5

110--

100--

0,101--,111--

0,101--,111--

1,--1--

2,0-10-,1-10-

�

�

�

�

0 0 0

exchange

of codes

of the states 3 i 7

(9 + 3) cells
(k=3)

13 cells
(k=3)

3 cells
(k=3)

D D D
d2 d1 d0

st.

Fig. 8. Example of applying the exchange of codes procedure.

4. Exchange the codes if the realisation requires fewer
logic cells than before exchanging.

5. If not all states have been checked, then go to 1.

6. End.

The procedure of exchanging codes is presented in
the following example.

Example 3. On the left hand of Fig. 8 there is an IDT
of the ex6 automata after state assignment presented in
Fig. 7 the state 3 is chosen (as first in the exchange of
codes procedure). The code of the state is 001 and the
weight of the state is 7. A transition to the state requires
three 3-AND cells (k = 3). As next, the state 7 is chosen.
The states 3 and 7 have 1 in the common position (δ0—
code 011) and the weight of the state 7 is greater than 1.
The new weight of the state 3 is 1 because feedback from
common block uses one term. A PMC {2, 4}3

110−− must
be revised. A −1 is written in the columns Δδ0 and Δδ1 .
The procedure of the exchange of codes makes the SMC
{4, 2}7,5

δ1,−−1−− unsatisfied. The number of cells required
to implement the transition function after the exchange of
codes is 9 and 3 to implement a common block (shared
multi-output implicants). �

3.2.2. Optimization based on graph of outputs. The
set of multi-output minterms of the Boolean function
f : Bn → Bm serves as a starting point for PAL-oriented
multi-level optimization based on the graph of outputs.
The minimized form of multi-output functions f : Bn →
Bm can be described by a set of multi-output implicants.
The input part of multi-output implicants is composed
of {0, 1,−}, while an output part is composed of {0, 1}
(De Micheli, 1994). Let y be an m component output
vector that is associated with the output part of the multi-
output implicant. The number of the same yi vectors that
constitute the set of multi-output implicants will be called

652 R. Czerwiński and D. Kania

.i 4

.o 3

.ilb a b c d

.ob f3 f2 f1

.p 10

.e

1110 001

0001 110

0111 101

1011 101

111- 100

1000 110

-000 001

0-10 010

-010 010

0100 111

� �

� �

�

�

� �

�

�

=3: =1;

=2: =2;

=2;

=0;

=1: =1;

=2;

=2;

111

110

101

011

100

010

001 �=1

�=2

�=3 1

2 2

21

53
1

=�5
3
2

=�63
3

=�
3
o�

2

f3 f2 f1

Fig. 9. Representation of the minimized function f : B4 → B3

by means of the graph of outputs.

the discriminant Δy . Let μ(Δy) (range of the Δy discrim-
inant) be the number of 1 components included in the y
vector. Let us assume that G

〈
Y, Ū

〉
is the directed graph,

where Y is the set of graph nodes Δy while Ū is a set of
graph edges. Each graph edge connects Δys , Δyr nodes
of the graph, if the code distance of the ys, yr vectors is 1,
and μ(Δys)+1 = μ(Δyr). The reduced graph, presented
in Fig. 9, is obtained by means of eliminating from the
primary graph nodes for which Δy = 0. To simplify, the
nodes of the graph contain only decimal value of discrim-
inants. Every node of the range one that is related to the
implicants of the o-th output of the m-output function can
be associated with the decimal value Δm

o . The discrimi-
nant Δm

o is equal to the sum of discriminants included in
nodes covered by all the paths starting from this node and
ending in nodes of the upper ranges (Fig. 9). The number
of PAL-based blocks, which are necessary for the imple-
mentation of the multi-output function, can be calculated
based on values of the discriminants Δm

o . This number is
equal to

σf =
m∑

o=1

(⌈
Δmo − k

k − 1

⌉
+ 1

)

and, for most cases, greater than σ1
f .

Nodes of the graph correspond to the number of
multi-output implicants. For example, when a node of the
μ-th range belongs to the graph and for that node Δy = k,
the implementation of the k implicants constituting com-
mon resources of the μ functions is possible within this
one block. Selecting the node leads to the transformation
of the graph and a corresponding reduction of the Δm

o co-
efficients (Fig. 10). As a result, the selection of a certain
node introduces feedback loops marked on the graph by
means of the dashed line. The feedback loop is shown on
the reduced graph in Fig. 10 after implementation of the
fourth-range nodes.

Let iΔy be the discriminants that correspond to the
node which is chosen during the i-th step of the algorithm
of multi-level optimization of the multi-output function.
If

iσf −i+1 σf >

⌈
iΔy − k

k − 1

⌉
+ 1,

Fig. 10. Graph of the function f : B4 → B3 (a), implementa-
tion of the implicants defined by the fourth-range node
(b), graph after reduction (c).

then the implementation of the group of implicants which
correspond to the selected node iΔy may lead to the
minimization of the number of the employed PAL-based
blocks composed of k terms. The selection of the node
iΔy affects the μ(iΔy) discriminants iΔm

o . After hav-
ing the discriminants re-ordered in such a way that the

selected node affects the consecutive iΔμ(iΔy)
j discrim-

inants, the condition for the minimization of PAL-based
logic blocks can be shown in the following form:

Si − Si+1 >

⌈
iΔy − k

k − 1

⌉
+ 1

where

Si =
μ(iΔy)∑

j=1

⎛

⎝

⎡

⎢⎢⎢

iΔμ(iΔy)
j − k

k − 1

⎤

⎥⎥⎥
+ 1

⎞

⎠ ,

Si+1 =
μ(iΔy)∑

j=1

⎛

⎝

⎡

⎢⎢⎢

i+1Δμ(iΔy)
j − k

k − 1

⎤

⎥⎥⎥
+ 1

⎞

⎠ .

Let r
μ(iΔy)
j be number calculated from the congru-

ence

iΔμ(iΔy)
j − 1 ≡ r

μ(iΔy)
j (mod (k − 1)),

where j = 1, 2, . . . , μ(iΔy).
The essence of the theorem presented in (Kania,

2004) consists in the selection of nodes (multi-output im-
plicants) that can be shared by several single-output func-
tions. The theorem serves as a background to draw up
an algorithm for multi-level optimization of multi-output
functions for PAL-based logic blocks. As the number of
logic blocks σf is generally greater than the value of σ1

f ,
the essence of the proposed algorithm focuses on analyz-
ing the graph nodes and searching for nodes that are asso-
ciated with possible large groups of common implicants.

Let us assume that the graph of outputs describes
multi-output implicants that are accomplished by means

Synthesis of finite state machines for CPLDs 653

of iσf PAL-based logic blocks with k terms. Selection, at
the i-th step of iteration, the iΔy node of the graph im-
plies the utilization of iγ =

⌈
(iΔy − k)/(k − 1)

⌉
+ 1

PAL-based logic blocks. This leads to the reduction of
the graph of outputs. The graph after the reduction de-
scribes the implicants that are covered by i+1σf PAL-
based logic blocks. The higher the value of the expression
1σf − (i+1σf +i γ), the better the selection of the node
in question. The rules for the selection of the node can be
deduced directly from the theorem (Kania, 2004) and can
be listed as follows

1. Firstly, at the very beginning, one has to choose the
iΔy node, for which μ(iΔy) = max.

2. From the nodes of the same range, further selection
must be carried out depending on values of discrimi-
nants:

(a) if there exist nodes for which iΔy ≥ k—the
node, for which the discriminant iΔy = max.

(b) if values of all the discriminants are lower
than k—the node for which within the set of
remainders R =

{
r

μ(iΔy)
j ; j ∈ 〈

1, μ(iΔy)
〉}

there exists a maximum number of re-
mainders r

μ(iΔy)
x that meet the condition

0 < r
μ(iΔy)
x <i Δy < k.

The above rules are the basis for the algorithm of
PAL-oriented multi-level optimization.

Example 4. Let us consider the example of the au-
tomaton ex6 (MCNC, 1991). Only five functions of
the output block will be considered for simplicity. The
so min.pla file after classical single-output minimization
dedicated for PAL-based implementation (Espresso-Dso)
is presented in Fig. 11(a).

Classical implementation of the so min.pla file
(Fig. 11(a)) requires 15 logic PAL-based blocks which in-
clude three terms and contain three logic levels.

Let us consider the multi-output function f : B8 →
B5, which, after multi-output minimization (Espresso),
can be depicted in the mo min.pla file (Fig. 11(b)). The
reduced graph of outputs, associated with mo min.pla, is
shown in Fig. 12.

Direct realization of implicants with PAL-based logic
blocks that contain three terms each (by means of the clas-
sical method, after minimization the multi-output func-
tion) needs

0σf =
5∑

o=1

(⌈
0Δ5

o − k

k − 1

⌉
+ 1

)
= 4+5+3+1+2 = 15

PAL-based logic blocks (k = 3).
The node Δ01110 does not meet conditions of mini-

mization (Kania, 2004), hence the realization of the asso-
ciated implicant by means of a separate PAL-based logic

Fig. 11. (a) so min.pla file of the ex6 FSM after single-output
minimization, (b) mo min.pla after multi-output mini-
mization.

�=3

�=2

�=1

f7 f8f6

m
o�

7 2 4

1

2

1 1 1

9

f3f2

9 12

3

Fig. 12. Reduced graph of outputs.

block is not justified (makes no sense). A much better
solution consists in the transformation of the minimized
function illustrated by the graph by means of the so-called
node splitting.

The node Δ01110 corresponds to the first implicant of
the mo min.pla file (Fig. 11(b)) ----1----000 01110.
The implicant can be replaced with other ones by appro-
priate modification of the output part. The best splitting
can be found by analysing the graph of outputs. The out-
put parts should correspond to the output parts of the im-
plicants that are associated with the nodes of lower ranges
which are connected with the node altered. Figure 13
illustrates the graph of outputs after splitting the node
Δ01110.

During the next steps of the proposed algorithm,
the implicants associated with the nodes Δ11000 = 9,
Δ01100 = 3, Δ00101 = 3 are realized. This step involves
six PAL-based logic blocks that contain three products
(terms) (1γ = 6) and lead to significant lowering of the
number of blocks that are necessary for direct realization

654 R. Czerwiński and D. Kania

�=2

�=1

f7 f8f6

m
o�

7 2 4

3

1 2 1

9

f3f2

9 12

3

Fig. 13. Graph of outputs after splitting the third-range node.

�=1

f7 f8f6

m
o�

3 2 2

2

1 2 1

2

f3f2

0 2

1

Fig. 14. Graph of outputs with feedback loop description.

f2

f7

PAL

k=3

PAL

k=3

f8
PAL

k=3

PAL

k=3

�=2

10/3
(blocks / levels)

�=1

f3
PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

PAL

k=3

f6

Fig. 15. Results of optimization based on the graph of outputs.

of implicants depicted by the reduced graph:

1σf + 1γ =
5∑

o=1

(⌈
1Δ5

o − k

k − 1

⌉
+ 1

)

= 0 + 1 + 1 + 1 + 1 + 6 = 10 ≤ 0σf .

That graph is obtained after removing the nodes
Δ11000 = 9, Δ01100 = 3, Δ00101 = 3 and introducing
an additional node which is connected with these nodes
and represents the feedback loop (Fig. 14).

The nodes that correspond to the first range (Fig. 14)
are implemented at the last stage of the synthesis process.
The final circuit representation that uses ten PAL-based
logic blocks is shown in Fig. 15.

�

3.2.3. Algorithm of FSMs synthesis for PAL-based
devices. The algorithms presented in Section 3.1 make
a complex strategy of FSM synthesis. The strategy is pre-
sented in the algorithm cb. Espresso is used as the mini-
mization method.

Algorithm cb
(common blocks searching)

1. An mb state assignment.

2. Espresso Dso; a pla analysis.

3. Optimization based on the graph of outputs; a pla
analysis.

4. Exchange of codes (ec).

5. If there was a change in the point 4, then: Espresso
and optimization based on the graph of outputs; a pla
analysis.

6. Choosing the best (of 2, 3, 5) result.

7. End.

4. Experimental results

The method of implementing an FSM in PAL-based struc-
tures presented in the paper was compared with an-
other approach with respect to the number of the logic
blocks used and the number of logic levels. The exper-
iments were carried out by means of NOVA (Villa and
Sangiovanni-Vincentelli, 1990; Sentovich et al., 1992)
and the proposed methods using 40 selected benchmarks
(MCNC, 1991). Experiments by NOVA were run for al-
gorithms: the input and output (dominance) constraints
(iohybrid code—ioh) and the input constraints (ihybrid
code—ih). A vast majority of contemporary CPLD con-
tains 5-AND cells. Because some terms are used to en-
sure some extra functions (T flip-flop, product terms ex-
pansion, etc.), experiments were run also for 3-, 4- and
(6–9)-AND cells.

The results of experiments for PAL-based logic
blocks with three, four and five terms are presented in Ta-
ble 2. The results of experiments for (6–9)-AND cells
are presented in Table 3. The numbers (a/b) show the re-
sults of synthesis performed on the benchmarks using the
mb, the cb, the NOVA-ih, and the NOVA-ioh approach.
The first number (a) shows the number of the employed
k-product PAL-based blocks of the transition function,
while the second number (b) is the number of logic lev-
els of the transition function.

Among all examined benchmarks implemented
based on PAL-based logic blocks with three terms, the
proposed methods provided 17 solutions (43%) which re-
quired a smaller number of logic blocks, and 14 solutions

Synthesis of finite state machines for CPLDs 655

(35%) which demanded a greater number of logic blocks
than a better solution from the Nova-ih and the Nova-ioh
approach. In all other cases, the numbers of logic blocks
obtained for both methods were identical.

In the set of 40 compared cases, the proposed cb al-
gorithm found the best 24 solutions (60%) did not require
a greater number of logic blocks with three terms than the
better solution from the Nova-ih and Nova-ioh methods.
Among them, 16 implementations (67%) demanded the
smallest number of logic blocks and only six solutions
(25%) required a greater number of logic levels. For cer-
tain benchmarks, the reduction of logic block count was
significant, e.g., dk27 (18%), keyb (38%), planet (19%),
s1488 (18%), s1494 (17%), s386 (13%), styr (19%), tma
(23%). Significant differences can be noticed not only for
the smallest values of k. The reduction of 4-terms PAL-
based logic blocks is as follows keyb (32%), planet (20%),
tma (17%), sse (17%), s420 (25%), s386 (17%).

Unfortunately, the number of logic levels does not
follow the reduction of the number of logic blocks.
Among the examined benchmarks implemented based on
3-terms PAL-based logic blocks, five implementations
(13%) required a greater number of logic levels with
respect to the better result from the NOVA-ih and the
NOVA-ioh method, and four solutions (10%) needed a
smaller number of logic levels. In all other cases (77%),
the numbers of obtained logic levels for both methods
were identical.

The analysis of the obtained experimental results is
presented in the form of a yield of the logic cells Uσδ and
a yield of the logic levels Uξδ of the transition function.
The yield of the logic cells Uσδ is calculated from the
equation Uσδ =

(∑
σδ(A) − ∑

σδ(M)
)
/

∑
σδ(A),

where
∑

σδ(A) denotes the average of the whole num-
ber of transition blocks of the selected benchmarks, while
the average is calculated for all tested method;

∑
σδ(M)

denotes the whole number of transition blocks of the se-
lected benchmarks for the selected encoding method.

The yield of the logic levels Uξδ is calculated ana-
logically to the yield of the logic cells Uσδ . The yield of
the logic cells (levels) should be interpreted as the percent
of the number of the logic cells (levels) for which the se-
lected method is better (or worse if the yield is negative)
than the average.

The graphs in Figs. 16 and 17 present the yield of
the logic cells and logic levels of the experimental results.
First of all, it should be noticed that the yield of logic
cells for the cb algorithm is more than 6% for the smallest
logic cells (k = 3). Moreover, the yield of the logic cells
is greater than 3% for 4-AND cells and about 2% for 5-
AND cells. The mb method gives results comparable with
NOVA.

The graphs presented in Figs. 18 and 19 concern the
experimental results of “small” automata. As “small” au-
tomata, the authors of the paper found automata with the

-3,0

-2,0

-1,0

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

3 4 5 6 7 8 9

k

mb

cb

ih

iohU
	

�

�

�

Fig. 16. Yield of the logic cells.

-15

-10

-5

0

5

10

3 4 5 6 7 8 9

k

mb

cb

ih

iohU

�

�

�

Fig. 17. Yield of the logic levels.

-7,0

-5,0

-3,0

-1,0

1,0

3,0

5,0

3 4 5 6 7 8 9

k

mb

cb

ih

iohU
	

�

�

�

Fig. 18. Yield of the logic cells of “small” automata.

number of terms (in the kiss2 format) less than 60. Those
results are especially interesting. Both methods, mb and
cb, gave results better than NOVA in relation to the yield
of the logic cells and comparable results in relation to the
yield of the logic levels. The cb method does not im-
prove significantly the results received after state assign-
ment process carried out by means of the mb algorithm.

The heuristic methods of state assignment and PAL-
oriented multi-level optimization (proposed in the paper)
can be implemented as quick computer algorithms. PAL-
oriented multi-level optimization ensures searching out a
solution which is not worse with respect to the number of
blocks than the one generated by synthesis without multi-
level optimization. The optimization is carried out at the
expense of slightly increased calculation time. Computa-
tional complexity of the proposed algorithms is less than

656 R. Czerwiński and D. Kania

-9

-7

-5

-3

-1

1

3

5

3 4 5 6 7 8 9

k

mb

cb

ih

iohU

�

�

�

Fig. 19. Yield of the logic levels of “small” automata.

that of NOVA algorithms. Example synthesis times for se-
lected benchmarks are presented in Table 1. Differences
are especially noticeable for big benchmarks. Sometimes,
synthesis time exceeded one day for the NOVA-ih algo-
rithm. The presented computational complexity compar-
ison is only approximate. The experiments were run for
different conditions (different computers and operating
systems), so the results should be treated warily.

The obtained results have also been compared to ven-
dor tools (Czerwiński and Kulisz, 2009). Commercial
vendor-independent systems use low level netlist formats
to export structures resulting from logical synthesis to
vendor systems. This approach is secure, because there is
little chance that the low level structure will be interfered
with by implementation tools. The method is, however,
not universal, because netlist formats are vendor specific.
Using this approach requires thus equipping software with
procedures or plugins responsible for converting formats
and preparing data specific for implementation tools. This
is acceptable for commercial companies but difficult for
academic research teams, as it requires much “scientifi-
cally worthless” extra work. The purpose of the presented
approach (Czerwiński and Kulisz, 2009) is to use a special
style of HDL description as the intermediate format. The
proposed format is universal and portable, and it is much
more comprehensible to a human than low level netlists.
The method was verified for main vendor synthesis sys-
tems and CPLD circuits. The experimental results proved
that the method is secure, i.e., the investigated implemen-
tation tools did not deteriorate the results of logic synthe-
sis.

Table 1. Synthesis times for selected benchmarks.
Benchmark cb ih ioh
planet 3 [s] >1800 [s] 20 [s]
train11 <1 [s] 28 [s] 4 [s]

5. Conclusions

The synthesis of finite state machines dedicated for PAL-
based CPLDs was presented in the paper. The essence
of the method lies in incorporating two-level minimiza-
tion into the synthesis process. All steps of the pro-
posed method are directed to efficient implementation of
FSMs into CPLDs with PAL-based logic blocks contain-
ing a predefined number of product terms. The synthesis
of FSMs consists of PAL-oriented state assignment using
primary and secondary merging conditions and PAL ori-
ented multi-level optimization based on the graph of out-
puts. PAL-oriented multi-level optimization can also be
used for the optimization of combinational circuits.

Subsequent steps of the synthesis process are adapted
to logical resources of PAL-based CPLDs. The elements
of two-level minimization are included in the process of
state assignment. The procedure of coding word chang-
ing and PAL-oriented multi-level optimization make the
method of FSM synthesis competitive. Adjustments of
state assignment to logical resources characteristic for a
PAL-based logic block enables significant improvement
of synthesis effectiveness in relation to other approaches.
Moreover, it is worth noting that the achieved FSMs are
self-correcting. The reason for this is the usage of coding
words with all inactive output levels.

The proposed method is an alternative to FSMs clas-
sical technology mapping based on classical coding (bi-
nary, one-hot, Gray) with elements of two level minimiza-
tion of individual single-output functions and other aca-
demic methods like YEDI, NOVA, etc. The results of ex-
periments presented in the paper prove that the proposed
synthesis method is especially attractive for CPLD struc-
tures consisting of small PAL-based logic blocks. The re-
sults of synthesis of “small” automata are especially in-
teresting. Both the proposed methods gave results bet-
ter than NOVA with respect to the number of logic lev-
els and the number of PAL-based blocks. For all cases
(not only a contrived benchmark), the solutions generated
by the proposed method were minimal with respect to the
number of the PAL-based blocks used.

References
Baranov, S. (1994). Logic Synthesis for Control Automata,

Kluwer Academic Publishers, Dordrecht.

Barkalov, A., Titarenko, L. and Chmielewski, S. (2007). Reduc-
tion in the number of PAL macrocells in the circuit of a
Moore FSM, International Journal of Applied Mathemat-
ics and Computer Science 17(4): 565–575.

Chattopadhyay, S. (2001). Low power state assignment and
flipflop selection for finite state machine synthesis—A ge-
netic algorithmic approach, IEE Proceedings—Computers
and Digital Techniques 148(45): 147–151.

Chyży, M. and Kłosiński, W. (2002). Evolutionary algorithm for
state assignment of finite state machines, Proceedings of

Synthesis of finite state machines for CPLDs 657

Table 2. Direct comparison of experimental results.
k = 3 k = 4 k = 5

b-mark mb cb ih ioh mb cb ih ioh mb cb ih ioh
bbara2 19/3 17/3 12/2 15/3 12/2 12/2 8/2 10/2 10/2 9/2 7/2 9/2
bbsse1 14/2 14/2 17/3 18/3 10/2 10/2 12/2 12/2 9/2 9/2 9/2 10/2
bbtas1 4/2 4/2 5/2 5/2 4/2 4/2 4/2 4/2 3/1 3/1 3/1 4/2
beecnt1 3/1 3/1 3/1 6/2 3/1 3/1 3/1 5/2 3/1 3/1 3/1 4/2
cse2 27/3 22/4 25/3 32/3 19/3 18/3 18/2 22/3 14/2 14/2 14/2 18/2
dk141 12/3 12/3 9/2 12/3 8/2 8/2 6/2 8/2 6/2 6/2 6/2 7/2
dk151 3/2 3/2 3/2 5/2 3/2 3/2 2/1 3/2 2/1 2/1 2/1 3/2
dk162 40/3 40/3 37/3 36/3 28/3 28/3 25/3 24/2 23/2 23/2 20/2 19/2
dk171 8/2 8/2 7/2 8/2 6/2 6/2 6/2 6/2 5/2 5/2 4/2 5/2
dk271 3/1 3/1 5/2 4/2 3/1 3/1 3/1 4/2 3/1 3/1 3/1 3/1
dk5121 9/2 9/2 10/2 11/2 8/2 8/2 7/2 8/2 8/2 7/2 6/2 7/2
ex12 31/3 30/4 26/3 29/3 22/3 22/4 19/2 20/2 19/2 19/2 14/2 16/2
ex41 6/2 6/2 14/2 6/2 6/2 6/3 10/2 5/2 5/2 5/2 8/2 4/1
ex61 10/2 10/2 11/3 11/3 7/2 7/2 8/2 8/2 6/2 6/2 6/2 6/2
keyb2 31/3 31/4 50/4 77/4 23/3 23/3 34/3 52/3 16/2 16/2 27/3 39/3
lion1 3/2 3/2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
lion91 8/2 8/2 5/2 4/1 7/2 7/2 4/1 4/1 6/2 6/2 4/1 4/1
mark11 11/2 11/2 9/2 10/2 6/2 6/2 6/2 6/2 5/2 5/2 5/2 6/2
mc1 2/1 2/1 3/2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
opus1 9/2 9/3 10/2 9/2 7/2 7/2 7/2 7/2 5/2 5/2 7/2 6/2
planet2 56/3 54/5 67/3 72/4 39/3 37/4 46/3 50/3 30/2 30/2 35/3 36/3
pma2 33/3 31/3 33/3 40/3 24/3 23/3 23/2 28/3 18/2 18/3 18/2 22/2
s12 50/3 48/5 60/4 38/3 36/3 34/4 41/3 26/3 29/2 28/4 31/3 20/2
s14882 53/3 50/5 61/4 66/3 39/3 38/4 43/3 45/3 26/2 26/2 31/3 34/3
s14942 57/3 52/5 66/3 63/4 40/3 40/3 45/3 45/3 30/2 30/2 35/3 32/3
s2082 10/2 10/2 10/2 12/2 7/2 7/2 8/2 9/2 5/1 5/1 6/2 8/2
s271 6/2 6/2 8/2 5/2 5/2 5/2 5/2 3/1 4/2 4/2 5/2 3/1
s3862 14/2 14/2 18/3 16/2 10/2 10/2 12/2 12/2 8/2 8/2 10/2 8/2
s4202 9/2 9/2 10/2 12/2 6/2 6/2 8/2 9/2 6/2 6/2 6/2 8/2
s5102 57/3 52/5 56/4 58/3 38/3 36/4 40/3 39/3 28/2 28/2 30/3 29/2
s8202 45/3 41/4 37/3 33/3 33/3 32/4 25/3 22/3 21/2 21/2 19/2 18/2
s8322 48/3 44/4 36/3 32/3 32/3 30/4 25/3 22/3 27/3 27/3 19/2 17/2
sand2 64/4 59/5 66/4 58/3 44/3 44/5 46/3 40/3 32/3 32/3 34/3 30/3
sse1 16/3 15/3 17/3 18/3 10/2 10/3 12/2 12/2 8/2 8/2 9/2 10/2
styr2 63/4 55/5 70/4 68/4 46/3 41/4 48/3 46/3 34/3 32/4 36/3 35/3
tav1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
tbk2 127/4 102/6 93/5 72/4 85/4 68/6 63/4 50/3 63/3 56/6 48/3 38/3
tma1 20/3 20/3 26/3 27/3 15/2 15/2 18/2 19/2 11/2 11/2 15/2 14/2
train111 10/2 10/3 6/2 7/2 7/2 7/2 5/2 5/2 7/2 7/2 4/1 4/1
train41 3/2 3/2 4/2 3/2 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
Sum 996/98 922/119 1009/105 1004/102 706/90 672/104 703/85 698/87 543/75 531/82 547/79 544/78
Sum1 162/41 161/43 176/43 175/43 123/36 123/38 126/34 127/36 104/34 103/34 107/32 108/33
Sum2 834/57 761/76 833/62 829/59 583/54 549/66 577/51 571/51 439/41 428/48 440/47 436/45
1 the number of terms in the kiss2 format is less than 60 (“small” automata); 2 the number of terms in the kiss2 format is greater than 59

the Euromicro Symposium on Digital System Design, Dort-
mund, Germany, pp. 359–362.

Czerwiński, R. and Kania, D. (2005). State assignment for PAL-
based CPLDs, Proceedings of the 8-th Euromicro Sympo-
sium on Digital System Design, DSD2005, Porto, Portugal,
IEEE Computer Society Press, Porto, pp. 127–134.

Czerwiński, R., Kania, D. and Kulisz, J. (2006). FSMs state
encoding targeting at logic level minimization, Bulletin of
the Polish Academy of Sciences 54(4): 479–487.

Czerwiński, R. and Kulisz, J. (2009). State machine description
oriented towards effective usage of vendor-independent
synthesis tool, IFAC Workshop on Programmable Devices
and Embedded Systems, PDES’2009, Roznov and Rad-
hostem, Czech Republic, pp. 27–32.

Czerwiński, R. (2006). The FSMs State Assignment for PAL-
Based Matrix Programmable Structures, Ph.D. thesis, Sile-
sian University of Technology, Gliwice, (in Polish).

De Micheli, G. (1994). Synthesis and Optimization of Digital
Circuits, McGraw-Hill Inc., New York, NY.

Devadas, S. and Newton, A. R. (1991). Exact algorithms for
output encoding, state assignment and four-level boolean
minimization, IEEE Transactions on Computer-Aided De-
sign 10(1): 13–27.

Jóźwiak, L. and Volf, F. (1995). Efficient decomposition of as-
signed sequential machines and boolean functions for PLD
implementations, Proceedings of Electronic Technology
Directions to the Year 2000, Adelaide, Australia, pp. 258–
266.

658 R. Czerwiński and D. Kania

Table 3. Direct comparison of experimental results for (6–9)-AND cells.
k = 6 k = 7 k = 8 k = 9

b-mark mb cb mb cb mb cb mb cb
bbara 8/2 8/2 8/2 8/2 7/2 7/2 6/2 6/2
bbsse 7/2 7/2 6/2 6/2 6/2 6/2 4/1 4/1
bbtas 3/1 3/1 3/1 3/1 3/1 3/1 3/1 3/1
beecount 3/1 3/1 3/1 3/1 3/1 3/1 3/1 3/1
cse 12/2 12/2 9/2 9/2 8/2 8/2 8/2 8/2
dk14 6/2 6/2 6/2 6/2 5/2 5/2 4/2 4/2
dk15 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
dk16 18/2 18/2 14/2 14/2 15/2 15/2 11/2 11/2
dk17 3/1 3/1 3/1 3/1 3/1 3/1 3/1 3/1
dk27 3/1 3/1 3/1 3/1 3/1 3/1 3/1 3/1
dk512 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1
ex1 15/2 15/2 13/2 13/2 11/2 11/2 10/2 10/2
ex4 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1
ex6 6/2 6/2 6/2 6/2 4/2 4/2 3/1 3/1
keyb 13/2 13/2 12/2 12/2 11/2 11/2 9/2 9/2
lion 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
lion9 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1
mark1 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1
mc 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
opus 5/2 5/2 4/1 4/1 4/1 4/1 4/1 4/1
planet 24/2 24/2 19/2 19/2 19/2 19/2 18/2 18/2
pma 15/2 15/2 13/2 13/2 12/2 12/2 11/2 11/2
s1 22/2 22/2 19/2 19/2 17/2 17/2 16/2 16/2
s1488 24/2 24/2 22/2 22/2 17/2 17/2 17/2 17/2
s1494 25/2 25/2 19/2 19/2 19/2 19/2 16/2 16/2
s208 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1
s27 3/1 3/1 3/1 3/1 3/1 3/1 3/1 3/1
s386 8/2 8/2 6/2 6/2 6/2 6/2 4/1 4/1
s420 5/1 5/1 5/1 5/1 5/1 5/1 5/1 5/1
s510 23/2 23/2 21/2 21/2 18/2 18/2 17/2 17/2
s820 21/2 21/2 18/2 18/2 15/2 15/2 13/2 13/2
s832 19/2 19/2 17/2 17/2 15/2 15/2 13/2 13/2
sand 27/2 27/2 22/2 22/2 20/2 20/2 17/2 17/2
sse 7/2 7/2 7/2 7/2 6/2 6/2 4/1 4/1
styr 27/2 27/2 22/2 22/2 18/2 18/2 17/2 17/2
tav 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
tbk 54/3 49/4 41/3 41/3 37/3 36/5 34/3 34/3
tma 10/2 10/2 9/2 9/2 8/2 8/2 6/2 6/2
train11 4/1 4/1 4/1 4/1 4/1 4/1 4/1 4/1
train4 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1
sum 451/64 446/65 388/63 388/63 353/63 352/65 317/59 317/59

Kania, D. (2003). An efficient approach to synthesis of
multi-output boolean functions on PAL-based devices,
IEE Proceedings on Computer and Digital Techniques
150(3): 143–149.

Kania, D. (2004). The Logic Synthesis for the PAL-based Com-
plex Programmable Logic Devices, Silesian University of
Technology, Gliwice, (in Polish).

MCNC (1991). LGSynth’91 benchmarks, Collaborative
Benchmarking Laboratory, Department of Computer Sci-
ence at North Carolina State University, Raleigh, NC,
http://www.cbl.ncsu.edu/.

Mengibar, L., Entrena, L., M.G.Lorenz and E.S.Millan (2005).
Patitioned state encoding for low power in FPGAs, Elec-
tronics Letters 41(17): 948–949.

Park, S., Yang, S. and Cho, S. (2000). Optimal state assign-
ment technique for partial scan designs, Electronics Letters
36(18): 1527–1529.

Salauyou, V., Klimowicz, A., Grzes, T., Dimitrova-Grekow, T.
and Bulatowa, I. (2006). Experimental Studies of Finite
State Machines Synthesis Methods Implemented in Pack-
age ZUBR, Pomiary, Automatyka, Kontrola 52(6 bis): 44–
46, (in Polish).

Sentovich, E., Singh, K., Moon, C., Savoj, H., Brayton, R. and
Sangiovanni-Vincentelli, A. (1992). SIS: A system for se-
quential circuit synthesis, Technical report, University of
California, Berkeley, CA.

Sharma, K. (1998). Programmable Logic Handbook, PLDs,
CPLDs, & FPGAs, McGraw-Hill, New York, NY.

Villa, T., Kam, T., Brayton, R. and Sangiovanni-Vincentelli, A.
(1997). Synthesis of Finite State Machines: Logic Opti-
mization, Kluwer Academic Publishers, Boston, MA.

Villa, T. and Sangiovanni-Vincentelli, A. (1990). NOVA: State
assignment for finite state machines for optimal two-level
logic implementation, IEEE Transactions on Computer-
Aided Design 9(9): 905–924.

http:// www.cbl.ncsu.edu/.

Synthesis of finite state machines for CPLDs 659

Yang, S. and Ciesielski, M. (1991). Optimum and suboptimum
algorithms for input encoding and its relationship to logic
minimization, IEEE Transactions on Computer-Aided De-
sign 10(1): 4–12.

Robert Czerwiński received his M.Sc. and
Ph.D. degrees in technical sciences from the
Faculty of Automatics, Electronics and Com-
puter Science, Silesian University of Technol-
ogy, Poland, in 2001 and 2006, respectively.
At present he works at the Institute of Elec-
tronics of the same university as an assistant
professor. His research interests include pro-
grammable logic devices, logic synthesis and
optimization.

Dariusz Kania received his M.Sc. and Ph.D.
degrees from the Silesian University of Tech-
nology, Gliwice, Poland, in 1989 and 1995, re-
spectively. He has worked as an assistant lec-
turer (1989–1995) and an assistant professor
(1995–2004). Since 2006 he has been a pro-
fessor at the Silesian University of Technol-
ogy. His main interests and research areas in-
clude programmable devices and systems, logic
synthesis dedicated to a wide range of pro-

grammable logic devices (CPLD, FPGA), and the implementation of
digital circuits.

Received: 25 September 2008
Revised: 14 March 2009
Re-revised: 28 April 2009

	Introduction
	Basic definitions
	Synthesis of FSMs for PAL-based devices
	PAL-oriented state assignment
	PAL-oriented multi-level optimization
	Exchange of codes
	Optimization based on graph of outputs
	Algorithm of FSMs synthesis for PAL-based devices

	Experimental results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

