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INTRODUCTION 

Esophageal adenocarcinoma (EAC) generally 
has a very poor prognosis [1]. The incidence 
of EAC has increased substantially during the 

last four decades in Western countries and proba-
bly will continue to rise [2]. Carcinogenesis of EAC 
is а complex, multistep and multifactorial process in 
which a lot of genetic abnormalities are discovered. 
Nevertheless, molecular alterations in EAC are not 
completely clarifi ed. Inactivation of tumor suppres-
sors responsible for the maintenance of normal cell 
cycle often occurs in the carcinogenesis of EAC [3]. 
One of the key molecular players in the cell cycle con-

trol is p16. Tumor suppressor p16 is a cyclin-depen-
dent kinases (cdk) inhibitor that blocks the activity of 
cyclin-D-cdk4/6 complex, and thus inhibits the phos-
phorylation of pRb and G1/S phase cell cycle transi-
tion [4]. Loss of p16 could lead to unrestrained cell 
proliferation and genomic instability, because insen-
sitivity to antigrowth signals is one of the hallmarks of 
cancer [5]. p16 has been found to lie within the 9p21 
region and loss of p16 is frequently observed in many 
malignant disorders, although overexpression of p16 
is demonstrated in some tumors [6, 7, 8, 9].

p16 loss occurs predominantly by gene deletion, 
promoter methylation, and point mutation [10, 11, 
12, 13]. Allelic losses of 9p21 are detected in EAC 
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carcinogenesis and confl icting data exist whether 
these changes develop early or late in the malignant 
progression from Barrett’s esophagus to esophageal 
adenocarcinoma [14, 15]. Study of the expression of 
p16 could help in the comprehension of EAC patho-
genesis. This marker could also become an appropri-
ate molecule in the targeted therapy of EAC. Prom-
ising results are obtained from p16 gene therapy 
studies in different cancers, including esophageal 
cancer [16, 17, 18, 19].

Therefore, the aim of this study was to evaluate the 
expression of p16 at protein and gene level. We ret-
rospectively assessed p16 protein expression by 
immunohistochemistry (IHC) and 9p21 (p16 gene) 
genomic loss by fl uorescence in situ hybridization 
(FISH) in tissue samples of patients with EAC. Our 
results showed that absent expression of p16 both at 
protein and gene level is common in EAC. Signifi cant 
correlation was found also between the p16 protein 
expression and p16 allelic loss.

MATERIAL AND METHODS

Patients and tissue sampling

Formalin-fi xed, paraffi n embedded (FFPE) archival 
blocks from 13 patients with EAC obtained by endo-
scopic biopsies and surgical resections were studied. 
Tissue samples were evaluated by two experienced his-
topathologists. Medical records of all patients were thor-
oughly reviewed. None of the patients has been treated 
with neoadjuvant chemotherapy or chemoradiotherapy. 

Immunohistochemistry 

Immunohistochemical analysis for the protein expres-
sion of p16 was completed on all cases. 5 μm thick 
FFPE tissue sections were placed on silanized slides, 
deparaffi ned and rehydrated in decreasing concentra-
tions of ethanol. Antigen retrieval was carried out by 
immersing the slides in 10 mM modifi ed citrate buffer 
with pH 6.1 (DAKOCytomation, Denmark) and heated 
in a microwave oven (700 W) 4 times for 5 min. En-
dogenous peroxidase activity was blocked by incu-
bation of the slides in 3% hydrogen peroxide (H2O2) 
for 5 min. Slides were incubated for one hour at room 
temperature with monoclonal mouse anti-human anti-
body against p16 (Clone 175-405, IgG1; Pharmingen, 
Hamburg, Germany) at a dilution of 1:50. LSAB+ visu-
alization kit was used (DAKOCytomation, Denmark). 
Specimens were incubated with a secondary biotinyl-
ated anti-mouse antibody (DAKOCytomation, Den-
mark) for 15 min and then incubated with peroxidase-
labelled streptavidin. The reaction was developed 
by immersing slides in 3,3’-diaminobenzidine (DAB) 
chromogen solution that results in brown staining in 

the positive cells. Specimens were counterstained 
with hematoxylin, dehydrated in ascending concen-
trations of ethanol and mounted with non-aqueous 
mounting medium. Negative controls were performed 
by omission of the primary antibody. Positive staining 
of normal, non-neoplastic epithelial cells, fi broblasts 
and lymphocytes within analyzed specimens served 
as an internal positive control. More than 500 cancer 
cells were counted in fi ve representative high-power 
magnifi cation fi elds (400x) for each specimen. Scoring 
was based on the percentage of the stained epithelial 
cancer cells and nuclear staining was considered pos-
itive. The analyzed specimens were scored into four 
groups as follows: 0 (negative expression, 0-25%); 
1+ (weak expression, 26-50%); 2+ (moderate expres-
sion, 51-75%); and 3+ (strong expression, 76-100%), 
regardless of staining intensity. 

FISH

For detection of 9p21 deletions, FISH was performed 
on the same 13 EAC specimens. Specimens were 
dewaxed by three 5-min immersions in xylene, dehy-
drated in two 5-min 100% ethanol washes, followed by 
drying on a 40°C slide warmer for 5 min. Pretreatment 
kit (Vysis, Downers Grove, IL, USA) UK) was used 
and the slides were consecutively immersed in 0.2N 
HCL for 20 min, in purifi ed water, and in Pretreatment 
Solution at 80°C for 15 minutes, followed by immer-
sion of the slides twice in purifi ed water for 1 minute, 
and in Wash Buffer for 5 minutes. Protease treating of 
the slides was done by immersing the slides in prote-
ase solution for 30 min at 37°C, followed by immersion 
of the slides in Wash Buffer. The slides were dehydrat-
ed with increasing concentration of ethanol at room 
temperature. Locus specifi c identifi er (LSI) p16 Spec-
trumOrange/centromeric enumeration probe (CEP) 9 
Green Dual Color Probe (Vysis, Downers Grove, IL, 
USA) was used in the hybridization. The DNA probe (1 
μl DNA probe + 7 μl hybridization buffer + 2 μl purifi ed 
water) and the target DNA were codenatured in slide 
warmer at 75°C for 5 min. Then the slides were cover-
slipped and incubated in a humidifi ed chamber at 37°C 
for 24 hours. After washing the slides with Wash Buffer 
– 2XSSC/0.1% (Vysis, Downers Grove, IL, USA) and 
nonionic detergent 0.3%NP40 (Vysis, Downers Grove, 
IL, USA), the slides were washed twice with purifi ed 
water and dried at room temperature. Counterstain-
ing was performed with 10 μl 4’,6-Diamidino-2-phe-
nylindole (DAPI) (Vysis, Downers Grove, IL, USA) 
and slides were coverslipped. An Olympus BX60 epi-
fl uorescence microscope was utilized for scoring the 
signals. The loss of p16 FISH signals was analyzed 
in minimum 50 nonsquamous cells in every slide and 
damaged or overlapping nuclei were excluded from 
the analysis. Loss of LSI p16 probe signals compared 
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to the corresponding CEP 9 or gain (> 2 FISH signals) 
of CEP was determined as an abnormal FISH result. 
We used squamous esophageal tissues as controls to 
establish the background hybridization variation. The 
cut-off levels for p16 deletions were defi ned as the 
mean percentage of cells + 3 SD of the signal losses 
displayed in the evaluated control samples. The mean 
+ 3 SD percentage of nuclei with losses of one LSI 
p16 (9p21) signal (hemizygous deletion), two LSI p16 
(9p21) signals (homozygous deletion) and one and 
two LSI p16 (9p21) signals (combination of hemizy-
gous and homozygous deletion) was 8%, 5% and 6%, 
respectively.

Statistical Analysis

Fisher’s Exact Test and Cramer’s V coeffi cient (V) 
were used for statistical analysis. SPSS (version 

13.0; SPSS, Chicago, IL) statistical software was 
used for statistical analysis. Statistical signifi cance 
was defi ned as p < 0.05. 

RESULTS

Of the patients, 10 were male and 3 were female with 
an age range of 45-80 (mean of 62 years). Of the tu-
mors, 2 were categorized as Stage 2B, 6 as Stage 3, 
and 5 as Stage 4 according to the TNM staging sys-
tem and classifi cation of the American Joint Commit-
tee on Cancer (AJCC). Tumor differentiation grade 
was determined using the criteria of the World Health 
Organization, and 1 tumor was graded as well dif-
ferentiated (G1), 6 as moderately differentiated (G2), 
and 6 as poorly differentiated (G3).

a b 

Fig. 1. Images of esophageal adenocarcinoma evaluated by fl uorescence in situ hybridization and immunohistochemistry. a. Immunos-
taining for p16 showing strong nuclear and weaker cytoplasmic staining (400x). b. Hemizygous deletion of p16 

.

Table 1. Summary of p16 protein and gene expression patterns in esophageal adenocarcinoma specimens 
analyzed by immunohistochemistry and fl uorescence in situ hybridization

Specimen № p16 protein expression p16 gene expression % p16 gene deletion
1 Negative (-) Negative (-) 34
2 Negative (-) Positive (+)
3 Negative (-) Negative (-) 27
4 Positive (+) Positive (+)
5 Negative (-) Negative (-) 80
6 Negative (-) Negative (-) 28
7 Positive (+ + +) Positive (+)
8 Negative (-) Negative (-) 38
9 Negative (-) Negative (-) 50
10 Negative (-) Negative (-) 14
11 Negative (-) Negative (-) 63
12 Positive (+) Positive (+)
13 Negative (-) Negative (-) 48
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Loss of p16 protein expression was observed in 10 
of 13 (77%) immunohistochemically analyzed EAC 
specimens. Weak p16 immunostaining was found in 
2 of 13 (15%) EAC specimens and strong p16 im-
munostaining was found in 1 of 13 (8%) EAC speci-
mens (Fig. 1a). Loss of p16 gene was detected in 9 
of 13 (69%) EAC specimens studied by FISH. Hemi-
zygous deletion occurred with highest frequency and 
was found in 7 of 13 (54%) EAC specimens (Fig. 1b), 
whereas homozygous deletion of p16 and combina-
tion of hemizygous and homozygous p16 deletion 
were presented in 2 of 13 (15%) EAC specimens. 
Detailed data for the protein and gene expression 
patterns of p16 are shown in Table 1. 

Using a Fisher’s Exact Test, a signifi cant correlation 
was found between the loss of p16 protein expres-
sion and the p16 allelic loss (p = 0.014) in the ana-
lyzed specimens. The statistical analysis also shows 
that Cramer’s V Coeffi cient (V) is statistically signifi -
cant (Approx.Sig = 0,003) with V = 0,822. 

DISCUSSION

EAC occurs commonly with increasing age, which co-
incides with our fi ndings. Higher number of men with 
EAC in our study is anticipated, because for unknown 
reasons male predominance is particularly strong in 
this cancer [20, 21]. More severe gastroesophageal 
refl ux found in men is considered as putative con-
tributing factor for higher incidence of EAC in male 
individuals [22].

FISH and IHC are proper and complimentary tech-
niques to estimate the molecular alterations at pro-
tein and gene level in human cancers. ICH detects 
protein (antigen) expression within tissues by ap-
plication of antibodies and is very helpful in the di-
agnosis of different cancers [23, 24]. Advantages of 
IHC are high sensitivity and comparatively low cost. 
FISH technique is also an important tool in cancer 
research and is characterized by the utilization of fl u-
orescent DNA probes to localize and visualize gene 
or chromosome abnormalities [25]. FISH is possible 
due to the stability of the DNA double helix and the 
ability of the DNA helix to renature. FISH is more ac-
curate, reproducible and notably could be used for 
examination of resting cells in interphase. FISH al-
lows analysis of chromosomal disturbances even in 
samples in bad condition. Drawbacks of FISH include 
higher price, inability to value the pathomorphological 
alterations and the long time to count FISH signals by 
fl uorescence microscopy [26, 27].

We found signifi cant aberrant protein expression of 
tumor suppressor p16 in EAC tissue samples. In con-
cert with our fi ndings, Langer et al. identifi ed a loss 

of p16 expression in 76% of immunohistochemically 
stained EAC samples [28]. Hardie et al. also found 
sizable loss of protein expression of p16 in 85% of 
the explored by IHC esophageal adenocarcinomas 
[29]. The expression of p16 in 23% of the specimens 
in our study supports the idea that p16 is not always 
implicated in the development of EAC and most likely 
other genetic disturbances could drive the uncon-
trolled cell proliferation and neoplastic progression. 
The pronounced lack of immunohistochemical ex-
pression of p16 protein in this study presumes that 
the cell cycle control is impaired in the examined 
EAC tissue samples.

Endoscopic brushing cytology specimens are nor-
mally used for FISH analysis of molecular changes 
in EAC, but FFPE tissue is also an attractive and 
proven option [30]. Moreover, use of FFPE tissue al-
lows retrospective sample analysis [31]. Exploration 
of p16 (9p21) by FISH is successfully utilized for EAC 
detection [32]. We found prominent loss of p16 gene 
by means of FISH. In agreement with our fi ndings, 
although reporting higher rate of p16 locus loss, are 
data presented in other studies. Fahmy et al., using 
cytological specimens, found noticeable loss of the 
9p21 signals in 9 (90%) of analyzed by FISH samples 
with EAC [33]. Similarly, Doak et al. reported a hemi-
zygous deletion of p16 (9p21) in 7 (100%) patients 
with EAC in their study for determination of genetic 
alterations in EAC pathogenesis by FSIH [34]. In con-
trast to other studies, we did not observe a gain of 
chromosome 9 in samples with EAC. Fahmy et al. 
discovered a net gain of chromosome 9 in all EAC 
cases with p16 loss [33]. In the investigation per-
formed by Brankley et al., 80% of the polysomic EAC 
cells showed hemizygous, homozygous, or relative 
loss of 9p21, whereas loss of 9p21 without associ-
ated chromosomal gain in EAC cells was not seen 
[35]. It is possible that molecular carcinogenesis of 
EАC is following distinct pathways in the cases when 
the loss of p16 occurs simultaneously with a gain of 
chromosome 9. Nevertheless, the abrogation of the 
normal p16 function could promote high cell prolifera-
tion rate in the esophageal tissue and enhance the 
development of EAC.

The estimated signifi cant correlation between the 
p16 protein expression and FISH signals in the cur-
rent study could be due to the fact that p16 inacti-
vation in EAC is often accomplished by allelic loss 
[14]. We must mention, however, that one of the ana-
lyzed specimens manifested positive p16 gene and 
negative p16 protein expression. Alternative mech-
anisms like p16 promoter methylation or p16 gene 
mutation could be the reasons for loss of p16 protein 
expression in this case. Methylation of p16 promoter 
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is considered as common mechanism of p16 gene 
derailment during molecular pathogenesis of EAC, 
whereas p16 gene mutation is less probable [15, 36, 
37, 38, 39]. It is plausible also that very small deletion 
of p16 could occur, which does not delete the entire 
LSI p16 probe target and consequently cannot be de-
tected by FISH technique.

Limitation of this study is the relatively small number 
of analyzed patients. In patients with EAC, simulta-
neous exploration of gene and protein expression of 
other biomarkers (cyclin-D-cdk4/6 complex, retino-
blastoma protein, E2F transcription factor and p53) 
interfering in the p16 signaling pathway could contrib-
ute to a better understanding of EAC.

CONCLUSION

Our data suggest that the absence of p16 protein ex-
pression and allelic loss of p16 gene are common mo-
lecular disturbances in EAC. Signifi cant association be-
tween protein and gene expression supposes that p16 
(9p21) deletion account for appreciable part of the p16 
protein loss in EAC. IHC and FISH are reliable methods 
for detection of p16 changes at protein and chromo-
somal level in EAC, but larger studies are needed to re-
veal the exact role of p16 in the carcinogenesis of EAC.
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