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Abstract: The paper contains comparing calculations of the stress fields in an elastic plate with notch along the arc of a circle, ellipse 
or parabola obtained by analytic method based on complex Kolosov-Muskhelishvili potentials and by numerical variation-difference  
method. These fields differ by no more than 2%, which, in particular, indicates the reliability of such numerical implementation. This dis-
crepancy can be explained by the fact that in the analytical solution domain is unbounded, while the numerical calculation was carried out, 
obviously, for a finite field. The given stresses at the top of the notch along the arc of an ellipse or a parabola significantly increase with in-
creasing of the relative depth of the notch (while increasing its depth or decreasing width). 
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1. INTRODUCTION 

Investigation of the stress-strain state of the plate structural 
elements weakened by notch (Lazzarin and Tovo, 1996, Savruk 
and Kazberuk, 2006-2014, Savruk et al., 2012)  is a necessary 
step in the prediction of their strength and safety. Since these 
structural elements have finite dimensions or curvilinear boundary, 
the possibility of the application of analytical methods for solving 
the corresponding boundary value problems (Muskhelishvili, 
2003) is significantly limited, and in most cases impossible. 

In this paper, we provide comparison of the obtained solutions 
of plane elasticity problems on uniaxial loading of a plate structur-
al element with notch of an arbitrary smooth contour by analytic 
method using the complex Kolosov-Muskhelishvili potentials (Kuz, 
2005) and numerical method on base of the variation-difference 
method (Kuz, 2008, Kuz et al., 2014).  

2. ANALYTIC METHOD FOR SOLVING THE PROBLEM 

Let us find the stress state of a plate of the thicknessℎ, which 
is simulated by the half-plane, on the surface of which a notch is 
made of an arbitrary smooth contour. We assume that the half-
plane extends to infinity by normal stress of value 𝑃 (Fig. 1), and 
the boundary of the half-plane with notch is free from stresses. 

Choose a Cartesian coordinate system 𝑂𝑥𝑦, directing the 
axis 𝑂𝑥 along the straight edge, and the vertical axis – upwards. 
The curve traced by the notch is denoted by 𝐿, the straight line 
portionof the boundary of the half-plane by 𝐿′. The lower half-

plane of the plane 𝑥𝑂𝑦
 
is denoted by 𝑆−, the upper one by 𝑆+. 

According to the formulation of the problem we have the 
following boundary conditions: 

Σ𝑦𝑦 = 0,    Σ𝑥𝑦 = 0,    𝑥 ∈ 𝐿′;𝑁 = 𝑇 = 0,    𝑡 ∈ 𝐿, 

 
where 𝑁 and 𝑇 are the normal and tangential components 
of the vector of stresses on 𝐿 respectively. 

 
Fig. 1. Plate with the notch under uniaxial loading 

To solve the problem, we introduce the complex Kolosov-
Muskhelishvili potentials Φ(z) and Ψ(z)and present them in the 
form: 

𝛷(𝑧) = 𝛷1(𝑧) + 𝛷2(𝑧) +
𝑝

4
,    𝛹(𝑧) = 𝛹1(𝑧) + 𝛹2(𝑧) −

𝑝

2
. 

Here 𝛷2(𝑧) and 𝛹2(𝑧) are complex potentials which are 
holomorphic in the lower half-plane and must ensure that the zero 
boundary conditions on the axis 𝑦 = 0, are fulfilled, and 
corrective complex potentials 𝛷1(𝑧) and 𝛹1(𝑧) are responsible 
for the implementation of the boundary conditions on the surface 
of the notch. 

Analytically extending the function 𝛷2(𝑧) from the region 𝑆− 

over the region 𝑆+ and solving the corresponding problem 
of conjugation of boundary values on the line, we obtain a singular 
integral equation, which we solve numerically using the method 
of mechanical quadratures (Panasiuk et al., 1976). 
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3. VARIATION-DIFFERENCE METHOD  
FOR SOLVING THE PROBLEM 

We also consider the plane problem of elasticity theory in 
a finite region 𝑉 with curved boundary 𝛴 (see Fig. 1), which 
simulates the stress-strain state in a plate with notch of an 
arbitrary smooth contour. From the mathematical point of view it 
consists in solving equations of equilibrium in a plate (Bozydarnik 
and Sulym, 2012): 

(𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙),𝑗
= 0                      (1) 

using mixed boundary conditions on the surfaceΣ   

𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑛𝑗 |Σ = 𝑃𝑖 .                           (2) 

Here 𝐶𝑖𝑗𝑘𝑙 are the components of the elastic modulus tensor; 

𝑢𝑖 , 𝑃𝑖 , 𝑛𝑗  are the components of the displacement vector, 

surface forces, and the external normal to the surfaceΣ 
respectively; 𝑢𝑖,𝑗 ≡ 𝜕𝑢𝑖 𝜕𝑥𝑗⁄ . We assume the summation from 

one to two by the same indices that occur twice in one expression. 
For numerical solution of problem (1) – (2) it is convenient to 

use its variation formulation (Pobedria, 1981), which is to minimize 
the Lagrangian: 

𝐿 = ∫ 𝑊
𝑉

𝑑𝑉 − ∫ 𝑃𝑖 𝑢𝑖𝑑Σ
Σ

,                            (3) 

where 𝑊 =
1

2
𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 is the energy density of elastic 

deformation.  

 

Fig. 2. Mapping of a grid in the curvilinear region 𝑉  
           onto the uniform rectangular grid in the region 𝑉0 

We write the Lagrangian (3) in the canonical region 𝑉0, which 
can be a rectangle or a region composed of rectangles. For this 
purpose we use a discrete bijection mapping of the grid 
in a curvilinear region 𝑉 to a uniform rectangular grid 𝑁1 × 𝑁2 
of the region 𝑉0 (Fig. 2): 

𝑥𝑖 = 𝑥𝑖(β1 , β2)    (𝑖 = 1,2).                    (4) 

Then 𝐽 = 𝑑𝑒𝑡(𝐴𝑖
𝑗
), 𝑔𝑖𝑗 = 𝐴𝑖

𝑚𝐴𝑗
𝑚, where 𝐴𝑖

𝑗
= 𝜕𝑥𝑖 𝜕𝛽𝑗⁄  

is the Jacobi matrix of this mapping. Using (4) we write the density 

energy of the deformation Win the coordinates 𝛽 

𝑊 =
1

2
𝐶𝑖𝑗𝑘𝑙𝑢𝑖,𝑗𝑢𝑘,𝑙 =

1

2
𝐶𝑖𝑗𝑘𝑙(𝛽)𝐵𝑗

𝑚𝐵𝑙
𝑛𝑢𝑖|𝑚𝑢𝑘|𝑛

=
1

2
𝐷𝑖𝑚𝑘𝑛(β⃗⃗)ui|muk|n 

where 𝑢𝑖|𝑚 ≡ 𝜕𝑢𝑖 𝜕𝛽𝑚⁄ ,    𝐵𝑗
𝑚 = 𝜕𝛽𝑚 𝜕𝑥𝑗⁄ ,    𝐷𝑖𝑚𝑘𝑛 =

𝐶𝑖𝑗𝑘𝑙𝐵𝑗
𝑚𝐵𝑙

𝑛. 

Thus, the Lagrangian in the rectangle 𝑉0 
will look like: 

 

𝐿0 =
1

2
∫ 𝐽𝐷𝑖𝑚𝑘𝑛

𝑉0
𝑢𝑖|𝑚𝑢𝑘|𝑛𝑑𝑣 − ∫ 𝑞(β⃗)

Σ0
𝑃𝑖𝑢𝑖𝑑Σ,            (5) 

where 𝑞(β⃗⃗) = {
√𝑔11, β2 = {0, 𝑙2},

√𝑔22, β1 = {0, 𝑙1}.
 

Replacing in (5) all continual function by grid ones, integrals 
by finite sums, and derivatives by difference derivatives, we obtain 
the difference analogue of the Lagrangian 𝐿0

ℎ  using the discrete 
analogue of mapping (4), which should not be given analytically, 
in particular, to be conformal. It is sufficient to have one 
correspondence between nodes in the curvilinear 𝑉1 and model 

𝑉0 regions. To determine the stationary point 𝐿0
ℎ  we obtain 

a system of linear algebraic equations: 

∂𝐿ℎ ∂𝑣β
ℎ⁄ (𝑖1, 𝑖2) = 0,    𝑖α = 1,2, . . . , 𝑁α,    α, β = 1,2.    (6) 

This approach leads to the impossibility of the use of direct 
methods for solving the system (6) due to the accumulation 
of errors of rounding. However, it was done with a combined 
iterative process that implements the scheme of the gradient 
method and the method with Chebyshev set of iterative 
parameters. The complexity of its practical implementation is 
selection of iterative parameters. 

The described variation-difference method in domains with 
curved boundary is implemented as a software on FORTRAN. 

4. RESULTS 

For example, the calculations of the components of the stress 
tensor on the notch and near it done, if its boundary is an arc 
of the circle, ellipse or parabola. 

In Fig. 3 and Fig. 4 there are shown the graphs 

of dimensionless stresses 𝜎𝜃𝜃
0 ≡ 𝜎𝜃𝜃 𝑃⁄ , 𝜎𝑥𝑥

0 ≡ 𝜎𝑥𝑥 𝑃⁄  and 

𝜎𝑦𝑦
0 ≡ 𝜎𝑦𝑦 𝑃⁄  for the notches along the arc of the circle. Here 

and after, 2lis the width of the notch (along the axis Ox); δis the 
depth of the notch (along the axis Oy); 𝑎 = 𝛿 𝑙⁄  

is a dimensionless parameter relative absorption; 𝜎𝜃𝜃
0  

is dimensionless circumferential stress on the notch,   𝜎𝑥𝑥
0 , 𝜎𝑦𝑦

0  

are dimensionless normal stresses on a segment 𝑥0 ≡ 𝑥 𝑙⁄ = 0, 
𝑦0 ≡ 𝑦 𝛿⁄ ∈ [−5, −1] (along the axis Oy below the groove). 
The hatched lines represent stress obtained by the analytic 
method, and the solid lines by variation-difference method.  

 

Fig. 3. Stress 𝜎𝜃𝜃
0

 
on the notch in an arc of the circle for 𝑙 = 1 

           at different values of δ 
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In Fig. 3, the curves 1 are obtained for δ = 1, curves 2 
for 𝛿 = 0.75, curves 3 for 𝛿 = 0.5. As seen from this figure, the 

stress σθθ
0  (actually the coefficient of stress concentration) in the 

top of the notch (𝜂 = 0) achieves its greatest value in the case of 
notch along the semicircle (curve 1). And it is only slightly higher 
than typical for the Kirsch problem value 3. 

Here and after, the accuracy of the results is of four significant 
digits (the error of about 0,1%). Monitoring convergence and 
accuracy of analytic and numerical solution is conducted by 
comparing the studied parameters on the grids with single and 
double number of nodes.  

 
Fig. 4. Stresses 𝜎𝑥𝑥

0  and 𝜎𝑦𝑦
0 on extension of the axis of symmetry  

           of the notch along the arc of a circle 𝛿 = 1 for various values of 𝑙 

In Fig. 4, the curves 1 are obtained for 𝑙 = 1, curves 2 for 
𝑙 = 1.5, curves 3 for  l = 2. As shown in Fig. 4, the normal 

stress σxx
0  much lower of the notch (y = −5) is almost equal 𝑃, 

and at the top of the notch it is obvious that 𝜎𝑥𝑥
0 = 𝜎𝜃𝜃

0 . 

Fig. 5 and Fig. 6 show the relevant graphs of stresses 

  𝜎𝜃𝜃
0 ,    𝜎𝑥𝑥

0  and 𝜎𝑦𝑦
0  for the notches along the arc of the ellipse. 

In Fig. 5 the curves 1 are obtained for 𝛿 = 0.5, curves 2 for 
𝛿 = 0.75, curves 3 for 𝛿 = 1, curves 4 for 𝛿 = 1.5. 

 
Fig. 5. Stress 𝜎𝜏𝜏

0  on the notch along the arc of the ellipse for 𝑙 = 1  
          and various values of 𝛿 

 

 
Fig. 6. Stresses 𝜎𝑥𝑥

0  and 𝜎𝑦𝑦
0  on the extension of the symmetry axis 

           of the notch along the arc of the ellipse for𝛿 = 1 
           and various values of 𝑙 

In Fig. 6, the curves 1 are obtained for 𝑙 = 0.5, curves 2 for 
𝑙 = 1, curves 3 for 𝑙 = 1.25, curves 4 for𝑙 = 2. 

Fig. 7 and Fig. 8 show the relevant graphs of stresses 

σττ
0 , σxx

0  and σyy
0

 
for the notches along the arc of the parabola. 

 
Fig. 7. Stress 𝜎𝜏𝜏

0  on the notch along the arc of the parabola  
           for 𝑙 = 1 and various values of 𝛿 

In Fig. 7, the curves 1 are obtained for δ = 0.5, curves 2 for 
δ = 1, curves 3  for δ = 2. 

 
Fig. 8. Stresses 𝜎𝑥𝑥

0  and 𝜎𝑦𝑦
0  on the extension of the symmetry axis  

           of the notch along the arc of the parabola for 𝛿 = 1  
           and various values of 𝑙 

In Fig. 8, the curves 1 are obtained for 𝑙 = 0.5, curves 2 for 
𝑙 = 1, curves 3 for 𝑙 = 2. 
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Fig. 9 shows the change of the stress 𝜎𝜏𝜏
0  for the three types 

of notches of the same depth (arces of circle, parabola and ellipse 
that pass through three fixed points), which enables us to identify 
the influence of notch shape on the stress state of the plate. 

 
Fig. 9. Stress 𝜎𝜏𝜏

0  on the surface of the notches of the same depth along  
           the arc of the circle, parabola, and ellipse for 𝑙 = 1, 𝛿 = 1.5 

In Fig. 9, curve 1 concerns the circle, curve 2 the parabola, 
and curve 3 the ellipse. 

5. CONCLUSIONS 

As is shown in Fig. 5-8, the given stresses at the top of the 
notch along the arc of an ellipse or a parabola significantly in-
crease with increasing of the relative depth of the notch (while 
increasing its depth or decreasing width). As is shown in Fig. 9, 
sharpness of the notch, obviously, also enlarges the level 
of stresses. 

As is shown in Fig. 3-9, the stress fields obtained by analytic 
and variation-difference methods differ by no more than 2%. This 
discrepancy can be explained by the fact that in the analytical 
solution domain is unbounded, while the numerical calculation 
was carried out, obviously, for a finite field. 

Thus, the developed method of numerical determination 
of stresses and their concentrations agrees at solving plane elas-
ticity problems in the plates with notch. 
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