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Abstract: In this study the cyclic linear random process is defined, that combines the properties of linear random process and cyclic ran-
dom process. This expands the possibility describing cyclic signals and processes within the framework of linear random processes theory 
and generalizes their known mathematical model as a linear periodic random process. The conditions for the kernel are given and the 
probabilistic characteristics of generated process of linear random process in order to be a cyclic random process. The advantages of the 
cyclic linear random process are presented. It can be used as the mathematical model of the cyclic stochastic signals and processes 
in various fields of science and technology. 
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1. INTRODUCTION 

Linear stochastic processes are widely studied in different 
fields of science, particularly in radio signals modeling, in technical 
and medical diagnostics, hydroacoustics, geophysics etc. (Yurekli 
et al., 2005; Blake and Thomas, 1968; Bartlett, 1955; Medvegyev, 
2007; Bhansali, 1993; Giraitis, 1985; Olanrewaju and Al-Arfaj, 
2005). A characteristic feature of linear random process (LRP) 
is its constructiveness, namely LRP is specified as a structure − 
stochastic integral Stieltjes of the process of independent (or not 
correlated) increments. Furthermore, it is possible to implement 
the description and analysis of signals using the multivariate 
distribution functions on the basis of LRP and to perform simula-
tions using computers. The problem of identifying the elements 
of its structure from the known (given) probability characteristics 
of the signals and processes is somewhat difficult in applying LRP 
simulation to model real signals and processes. 

In the scientific literature there exist two important subclasses 
of linear stochastic processes. These are stationary linear random 
processes (Bartlett, 1950) and linear periodic random processes 
(Martchenko, 1998; Zvarich and Marchenko, 2011; Pagano, 
1978). Stationary linear random processes are used as appropri-
ate models of stochastic signals with time-invariant probability 
characteristics. The linear periodic random processes allow to 
take into account randomness and recurrence of the studied cyclic 
signals that is provided by the periodicity of the process probabil-
istic characteristics. 

In many cases, when the rhythm of a cyclic signal varies, 
the hypothesis about the periodicity of its probability characteris-
tics is inadequate to the structure of the real signal. Therefore, it is 
not quite correct to apply a linear periodic random process. In this 
case, it is more correct to apply the class of cyclic random pro-
cesses (CRP), defined in the work (Lupenko, 2006). This class 
includes class of periodic random processes (PRP) as its particu-
lar cases and accounts for the variability of cyclic signals rate 

(Naseri et al.,2013). 
Since the class of cyclic random processes is wider class 

of processes than the class of periodic random processes, 
it is useful to define a class of random processes which is the 
intersection of cyclic classes of random processes and linear 
random processes. In this work a linear cyclic random process 
(LCRP) is defined. It combines the properties of linear random 
process and cyclic random process, in order to broaden the pos-
sibility of using a constructive approach to the description of cyclic 
signals and processes in the theory of linear stochastic processes. 
The conditions are given to be met by the kernel and probabilistic 
characteristics of generated process of linear random process to 
be a cyclic random process. An example of linear cyclic random 
process and its probabilistic characteristics are given. 

2. DEFINITIONS AND BASIC PROPERTIES  
OF LINEAR RANDOM PROCESS 

Let’s present briefly some main equations for the LRP 
and CRP. LRP can be presented in the form of a stochastic Rie-
mann integral (Berkes and Horváth, 2006): 

𝜉(𝜔, 𝑡) = ∫ 𝜑(𝑡, 𝜏)𝜁(𝜔, 𝜏)𝑑𝜏,
∞

−∞
𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅,         (1) 

or as an Stieltjes integral over the stochastic measure (Protter, 
2005): 

𝜉(𝜔, 𝑡) = ∫ 𝜑(𝑡, 𝜏)𝑑𝜂(𝜔, 𝜏),
∞

−∞
𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅,         (2) 

where 𝜑(𝑡, 𝜏) is a square-integrable deterministic function with 
respect to variable τ, which is called the kernel of LRP 𝜉(𝜔, 𝑡), 
the random process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 is a process with 
independent (uncorrelated) increments, which is named 
as a generated process, the generalized derivative of which 
is a white noise 𝜁(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 in the narrow (broad) 
sense (𝛺 is a set of elementary events). From the application 
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point of view, LRP is a process from the output of a linear system 
with impulse response 𝜑(𝑡, 𝜏), if white noise 𝜁(𝜔, 𝑡), 𝜔 ∈ 𝛺,
𝑡 ∈ 𝑅 acts on its input (Fig. 1). 

 
Fig. 1. The schematic presentation of LRP generation 

Note that a random process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 is the 
process with independent (uncorrelated) increments if for some 
fixed 𝑡0 for all 𝑡−𝑚 < 𝑡−𝑚+1 <. . . < 𝑡−1 < 𝑡0 < 𝑡1 <. . . <
𝑡𝑛−1 < 𝑡𝑛 (𝑚, 𝑛 ∈ Z) from 𝑅 the random values: 

𝜂(𝜔, 𝑡−𝑚) − 𝜂(𝜔, 𝑡−𝑚+1), . . . , 𝜂(𝜔, 𝑡0) − 𝜂(𝜔, 𝑡−1), 

𝜂(𝜔, 𝑡0), 𝜂(𝜔, 𝑡1) − 𝜂(𝜔, 𝑡0), . . . , 𝜂(𝜔, 𝑡𝑛)
− 𝜂(𝜔, 𝑡𝑛−1) 

(3) 

are independent (uncorrelated). 
In case of LRP, one can write the logarithm of its multidimen-

sional characteristic function 𝑓𝑘𝜉
(𝑢1, . . . , 𝑢𝑘 ; 𝑡1, . . . , 𝑡𝑘) in the 

form of Levy: 

𝑙𝑛𝑓𝑘𝜉
(𝑢1, . . . , 𝑢𝑘 ; 𝑡1, . . . , 𝑡𝑘) =  

= 𝑖 ∑ 𝑢𝑗 ∫ 𝜑(𝜏, 𝑡𝑗)𝑑𝜇(𝜏) −
∞

−∞
𝑘
𝑗=1   

− ∑ 𝑢𝑖𝑢𝑗 ∫ 𝜑(𝜏, 𝑡𝑖)𝜑(𝜏, 𝑡𝑗)𝑑𝜎(𝜏)
∞

−∞
𝑘
𝑖,𝑗=1 +   

+ ∫ ∫ [𝑒𝑖𝑥 ∑ 𝑢𝑗𝜑(𝜏,𝑡𝑗) − 1 −
∞

−∞

∞

−∞
  

−
𝑖𝑥

1+𝑥2
∑ 𝑢𝑗𝜑(𝜏, 𝑡𝑗)𝑛

𝑘=1 ]𝑑𝑥𝑑𝜏𝐿(𝑥, 𝜏)  

(4) 

where 𝐿(𝑥, 𝜏) is a function, undefined at zero that is called Pois-
son spectrum jumps in the form of Levi. This function is defined 
as: 

𝐿(𝑥, 𝜏) = {
𝑀(𝑥, 𝜏), 𝑥 < 0,
𝑁(𝑥, 𝜏), 𝑥 > 0,

          (5) 

where 𝑀(𝑥, 𝜏) and 𝑁(𝑥, 𝜏) (𝑀(−∞, 𝜏)=𝑁(∞, 𝜏)=0) are non-
decreasing functions that set negative and positive jumps (incre-
ments) of generating process, respectively. 

Functions μ(τ) and σ(τ) are defined as follows: 

𝑑𝜇(𝜏) = 𝑑𝜒1(𝜏) − 𝑑𝜏 ⋅ ∫ 𝑥𝑑𝑥𝐿(𝑥, 𝜏)
∞

−∞
         (6) 

𝑑𝜎(𝜏) = 𝑑𝜒2(𝜏) − 𝑑𝜏 ⋅ ∫ (1 + 𝑥2)𝑑𝑥𝐿(𝑥, 𝜏)
∞

−∞
         (7) 

where 𝜒1(𝜏) and 𝜒2(𝜏) are first and second cumulant functions 
of generated process 𝜂(𝜔, 𝜏). 

3. DEFINITIONS AND BASIC PROPERTIES  
OF CYCLIC RANDOM PROCESS 

The cyclic random process of a continuous argument is char-
acterized by the fact that its family of distribution functions satis-
fies the following equation: 

𝐹𝑘𝜉
(𝑥1, . . . , 𝑥𝑘 , 𝑡1, . . . , 𝑡𝑘) = 

= 𝐹𝑘𝜉
(𝑥1, . . . , 𝑥𝑘 , 𝑡1 + 𝑇(𝑡1, 𝑛), . . . , 𝑡𝑘 + 𝑇(𝑡𝑘 , 𝑛)),        (8) 

𝑥1, . . . , 𝑥𝑘 , 𝑡1, . . . , 𝑡𝑘 ∈ 𝑅, 𝑛 ∈ 𝑍, 𝑘 ∈ 𝑁. 

The rhythm function T(t, n) has the following properties: 

1. 𝑇(𝑡, 𝑛) > 0, if 𝑛 > 0 (𝑇(𝑡, 1) < ∞); 

𝑇(𝑡, 𝑛) = 0, if 𝑛 = 0;                  (9) 

𝑇(𝑡, 𝑛) < 0, if 𝑛 < 0, 𝑡 ∈ R. 

2. For any 𝑡1 ∈ 𝑅 and 𝑡2 ∈ 𝑅 for which 𝑡1 < 𝑡2, the strict 
inequality holds for the function 𝑇(𝑡, 𝑛): 

𝑇(𝑡1, 𝑛) + 𝑡1 < 𝑇(𝑡2, 𝑛) + 𝑡2, ∀𝑛 ∈ 𝑍.       (10) 

3. Function 𝑇(t, n) is the smallest by absolute value 

(|𝑇(𝑡, 𝑛)| ≤ |𝑇𝛾(𝑡, 𝑛)|) among all such functions {𝑇𝛾(𝑡, 𝑛),

𝛾 ∈ 𝛤} satisfying the conditions (9) and (10). 

In other words, the cyclic random process is a random pro-
cess, the distribution functions of which are invariant to cyclic 
countable discontinuous group of transformations Г =
{Tn(t) = t + T(t, n), n ∈ Z} for a set of time arguments. 

Note that the family of characteristic functions and moment 
functions (if they exist) of cyclic random process also satisfy the 
condition of invariance, which is similar to the condition (8). Thus, 
they are invariant to cyclic countable discontinuous group of trans-
formations Г = {Tn(t) = t + T(t, n), n ∈ Z}. 

In particular, according to reference (Giraitis, 1985), we will 
give the definition of the process with the independent cyclical 
increments. 

The stochastically continuous process with independent in-
crements η(ω, t) will be called the process with independent 

cyclic increments if there is a function T(t, n) that satisfies the 
rhythm functions conditions, that is, for a fixed h > 0 the distribu-
tions of increments (differentials) Δhη(ω, t)(dη(ω, t)) 
and Δhη(ω, t + T(t, n)) (dη(ω, t + T(t, n))) are the same 
for any n ∈ Z and for any t ∈ R. 

4. LINEAR CYCLIC RANDOM PROCESS 

To take into account the cyclicity of the probabilistic character-
istics of LRP, we can impose relevant conditions on its kernel 
𝜑(𝑡, 𝜏) and probabilistic characteristics of the generated process 
𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅. Namely, a linear stochastic process 
𝜉(𝜔, 𝑡) is cyclic in the following cases: 
1. When 𝜑(𝑡, 𝜏) = 𝜑(𝑡 − 𝜏), that is, a linear system is station-

ary (time-invariant) with the same parameters, and the gener-
ated random process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 is a process 
with independent (uncorrelated) cyclic increments, with the 
function of rhythm T(t, n); 

2. When 𝜑(𝑡, 𝜏) = 𝜑(𝑡 + 𝑇(𝑡, 𝑛), 𝜏), that is a linear system 
is described by a cyclic linear operator, and the generated 
process is a homogeneous random process with independent 
(uncorrelated) increments; 

3. When 𝜑(𝑡, 𝜏) = 𝜑(𝑡 + 𝑇(𝑡, 𝑛), 𝜏), that is a linear system 
is described by a cyclic linear operator, and the generated 
random process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 is a process with 
independent (uncorrelated) cyclic increments of the rhythm 
function 𝑇(𝑡, 𝑛). 
If the condition of generated process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈

𝑅 increments non-correlatedness holds true, we have a linear 
cyclic random process in a broad sense. This means that its 
expectation and correlation function are cyclic on the set of its two 
arguments. If you require an independence of generated process 
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increments, we obtain a linear cyclic random process in the nar-
row sense, for which its multidimensional distribution functions 
and characteristic functions are cyclic on the set of all time argu-
ments. 

We will show the correctness of formulated conditions of the 
cyclical linear random process only for the second case when the 
generated process is homogeneous. In this case 𝐿(𝑥, 𝜏) =
𝐿(𝑥),𝜇(𝜏) = 𝑚𝜎(𝜏) = 𝜎, and the kernel of a linear process 

is a cyclic function for argument τ. Then, for the characteristic 
function (4) we have: 

𝑙𝑛𝑓𝑘(𝑢1, … , 𝑢𝑘 ; 𝑡1, … , 𝑡𝑘) =  

= 𝑖𝑚 ∑ 𝑢𝑗 ∫ 𝜑(𝜏, 𝑡𝑗)𝑑𝜏 −
∞

−∞
𝑘
𝑗=1   

−𝜎2 ∑ 𝑢𝑖𝑢𝑗
𝑘
𝑖,𝑗=1 ∫ 𝜑(𝜏, 𝑡𝑖)𝜑(𝜏, 𝑡𝑗)𝑑𝜏 +

∞

−∞
  

+ ∫ ∫ [𝑒𝑖𝑥 ∑ 𝑢𝑗𝜑(𝜏,𝑡𝑗) − 1 −
∞

−∞

∞

−∞
  

−
𝑖𝑥

1+𝑥2
∑ 𝑢𝑗𝜑(𝜏, 𝑡𝑗]𝑑𝐿(𝑥)𝑑𝜏 = 𝑖𝑚 ∑ 𝑢𝑗

𝑘
𝑗=1 ×𝑛

𝑘=1   

× ∫ 𝜑 (𝜏, 𝑡𝑗 + 𝑇(𝑡𝑗 , 𝑛)) 𝑑𝜏 − 𝜎2 ∑ 𝑢𝑖𝑢𝑗 ×𝑘
𝑖,𝑗=1

∞

−∞
      (11) 

× ∫ 𝜑(𝜏, 𝑡𝑖 + (𝑇(𝑡𝑖 , 𝑛))𝜑(𝜏, 𝑡𝑗
∞

−∞
+ 𝑇(𝑡𝑗 , 𝑛))𝑑𝜏 +  

+ ∫ ∫ [𝑒
𝑖𝑥 ∑ 𝑢𝑗𝜑(𝜏,𝑡𝑗+𝑇(𝑡𝑗,𝑛))

− 1 −
𝑖𝑥

1+𝑥2
∑ 𝑢𝑗 ×𝑛

𝑘=1
∞

−∞

∞

−∞
  

× 𝜑 (𝜏, 𝑡𝑗 + 𝑇(𝑡𝑗 , 𝑛)) 𝑑𝐿(𝑥)𝑑𝜏 = 𝑙𝑛𝑓𝑘(𝑢1, … , 𝑢𝑘 ; 𝑡1 +  

+𝑇(𝑡1, 𝑛), … , 𝑡𝑘 + 𝑇(𝑡𝑘 , 𝑛)) 

That is, the linear random process 𝜉(𝜔, 𝑡) is a cyclic random 
process with a rhythm function 𝑇(𝑡, 𝑛). The moment functions of 
such a linear random process are also cyclic. Consider this only 
for its two first moment functions − mathematical expectation and 
correlation function. These moment functions fully exhaust the 
description of a LRP in the broad sense, when only the non-
correlatedness of the generated process increments is required, 
rather than their independence. In this case, we can write the 
following expression for the expectation function LCRP: 

𝑚𝜉(𝑡) = 𝑀{𝜉(𝜔, 𝑡)} = 𝑚 ∫ 𝜑(𝑡, 𝜏)𝑑𝜏 =
∞

−∞
  

= 𝑚 ∫ 𝜑(𝑡 + 𝑇(𝑡, 𝑛), 𝜏)𝑑𝜏 =
∞

−∞
𝑀{𝜉(𝜔, 𝑡 + 𝑇(𝑡, 𝑛))},    (12) 

𝑡 ∈ 𝑅, 𝑛 ∈ 𝑍, 

where m is the homogeneous process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 
increments expectation with uncorrelated increments. 

For the correlation function LCRP, we have: 

𝑅𝜉(𝑡1, 𝑡2) = 𝑀{𝜉̇(𝜔, 𝑡1)𝜉̇(𝜔, 𝑡2)} = 

𝜎2 ∫ 𝜑(𝑡1, 𝜏)𝜑(𝑡2, 𝜏)𝑑𝜏 =
∞

−∞
        (13) 

= 𝜎2 ∫ 𝜑(𝑡1 + 𝑇(𝑡1, 𝑛), 𝜏)𝜑(𝑡2 + 𝑇(𝑡2, 𝑛), 𝜏)𝑑𝜏 =
∞

−∞
  

= 𝑅𝜉(𝑡1 + 𝑇(𝑡1, 𝑛), 𝑡2 + 𝑇(𝑡2, 𝑛)), 𝑡1, 𝑡2 ∈ 𝑅, 𝑛 ∈ 𝑍, 

where σ is standard deviation of increments homogeneous pro-
cess 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 with uncorrelated increments. 

That is, LCRP expectation is a cyclic deterministic function 
with the rhythm function 𝑇(𝑡, 𝑛), and its correlation function 
is cyclic with the rhythm function 𝑇(𝑡, 𝑛). 

5. PARTICULAR CASE OF CYCLIC LINEAR RANDOM 
PROCESS WITH FACTORIZED KERNEL 

In a particular case when the LRP kernel 𝜑(𝑡, 𝜏) can be fac-
torized, it is represented as a product of two functions: 

𝜑(𝑡, 𝜏) = 𝜑1(𝑡)𝜑2(𝜏), 𝑡, 𝜏 ∈ 𝑅,         (14) 

then a LRP looks like: 

𝜉(𝜔, 𝑡) = ∫ 𝜑1(𝑡)𝜑2(𝜏)𝑑𝜂(𝜔, 𝜏) =
∞

−∞
  

= 𝜑1(𝑡) ∫ 𝜑2(𝜏)𝑑𝜂(𝜔, 𝜏)
∞

−∞
, 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅  

(15) 

This presentation is equivalent to the presentation of a ran-
dom process as a product of deterministic function 𝜑1(𝑡) 
and random variable 𝐴(𝜔), namely: 

𝜉(𝜔, 𝑡) = 𝜑1(𝑡) ⋅ 𝐴(𝜔), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅       (16) 

where 𝐴(𝜔) = ∫ 𝜑2(𝜏)𝑑𝜂(𝜔, 𝜏)
∞

−∞
 is a random functional. 

If, in this case, the function 𝜑1(𝑡) = 𝜑1(𝑡 + 𝑇(𝑡, 𝑛)) 

is a cyclic numerical function, then the formulae (12) and (13) take 
the following form: 

𝑚𝜉(𝑡) = 𝑀{𝜉(𝜔, 𝑡)} = 𝑚 ∫ 𝜑(𝑡, 𝜏)𝑑𝜏 =
∞

−∞
  

= 𝑚 ∫ 𝜑1(𝑡)𝜑2(𝜏)𝑑𝜏 =
∞

−∞
𝑚𝜑1(𝑡) ∫ 𝜑2(𝜏)𝑑𝜏

∞

−∞
,         (17) 

𝑡 ∈ 𝑅, 𝑛 ∈ 𝑍, 

𝑅𝜉(𝑡1, 𝑡2) = 𝜎2 ∫ 𝜑(𝑡1, 𝜏)𝜑(𝑡2, 𝜏)𝑑𝜏 =
∞

−∞
  

= 𝜎2 ∫ 𝜑1(𝑡1)𝜑1(𝑡2)𝜑2(𝜏)𝜑2(𝜏)𝑑𝜏 =
∞

−∞
       (18) 

= 𝜎2𝜑1(𝑡1)𝜑1(𝑡2) ∫ (𝜑2(𝜏))
2

𝑑𝜏
∞

−∞
,    

𝑡1, 𝑡2 ∈ 𝑅, 𝑛 ∈ 𝑍. 

The problem of identifying the elements of its structure from 
the known probability characteristics of the studied signals and 
processes is somewhat difficult in applying LRP simulation to 
model real signals and processes. In this case, the probability 
characteristics cyclicity of a LRP is due to cyclical numerical func-
tion 𝜑1(𝑡). 

Consider an example of LCRP and its probability characteris-
tics in the case of LCRP kernel factorizing. Let LCRP kernel has 
the form: 

𝜑(𝑡, 𝜏) = 𝑠𝑖𝑛(2𝑡2)𝑒−0.3𝜏𝑐𝑜𝑠(𝜏), 𝑡 ∈ (0, ∞), 𝜏 ∈ 𝑅,        (19) 

and the generated stochastic process 𝜂(𝜔, 𝑡), 𝜔 ∈ 𝛺, 𝑡 ∈ 𝑅 is 
a homogeneous process with independent increments with expec-
tation m and standard deviation σ of its increments. Then, 
the linear cyclic random process will look like: 

ξ(𝜔, 𝑡) = 𝑠𝑖𝑛(2𝑡2) ∫ 𝑒−0.3𝜏𝑐𝑜𝑠(𝜏)𝑑𝜂(𝜔, 𝜏),
∞

−∞
  

𝜔 ∈ 𝛺, 𝑡 ∈ (0, ∞) 
(20) 

and its expectation and correlation function will be: 

𝑚𝜉(𝑡) = 𝑚𝑠𝑖𝑛(2𝑡2) ∫ 𝑒−0.3𝜏𝑐𝑜𝑠(𝜏)𝑑𝜏
∞

−∞
,  

𝑡 ∈ (0, ∞),    𝑛 ∈ 𝑍, 
(21) 

𝑅𝜉(𝑡1, 𝑡2) =

𝜎2𝑠𝑖𝑛(2𝑡1
2)𝑠𝑖𝑛(2𝑡2

2) ∫ (𝑒−0.3𝜏𝑐𝑜𝑠(𝜏))
2

𝑑𝜏
∞

−∞
,  

𝑡1, 𝑡2 ∈ (0, ∞), 𝑛 ∈ 𝑍. 
(22) 

Fig. 2 and 3 show plots of kernel sections 𝜑(𝑡, 𝜏) (19) 
for fixed values of 𝑡 and 𝜏. 

Fig. 4 presents a plot of the expectation function, and Fig. 5 
represents the plot of section correlation function LCRP. 

It can be seen from Fig. 4 and 5, that the respective probabil-
istic characteristics of LRP are cyclic. 



Sergiy Lupenko, Nadiia Lutsyk, Yuri Lapusta        DOI 10.1515/ama-2015-0035 
Cyclic Linear Random Process as a Mathematical Model of Cyclic Signals 

222 

 

Fig. 2. Plots of kernel sections 𝜑(𝑡, 𝜏) for some fixed values of 𝑡 (𝑡 =1 left and 𝑡 =5 right) 

 

Fig. 3. Plots of kernel sections 𝜑(𝑡, 𝜏) for fixed values of 𝜏(𝜏 = 0.1 left and 𝜏 = 5 right) 

 
Fig. 4. Plot of linear cyclic random process expectation 
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Fig. 5. Plots of correlation function 𝑅𝜉(𝑡1 , 𝑡2) section of linear cyclic random process a) 𝑅𝜉(𝑡1 , 𝑡1), b) 𝑅𝜉(𝑡1 , 1), c) 𝑅𝜉(5, 𝑡2) 

6. SOME ADVANTAGES OF LINEAR CYCLIC RANDOM 
PROCESS 

The LCRP that is proposed in this study has the advantage, 
that allows to take into account the variation of rhythm of the 
investigated signals and processes as compared with known 
mathematical models of random cyclic signals and processes 
such as periodically correlated random process (cyclic stationary 
random process) (Gardner et al., 2006; Hurd and Miamee, 2006), 
periodically distributed random process, linear periodic random 
process. 

Namely the following advantages in modeling of cyclic signals 
and processes can be mentioned in comparison with the known 
cyclic random process.  
1. The entire probabilistic structure of LCRP is completely de-

termined by the deterministic kernel 𝜑(𝑡, 𝜏) and characteris-
tics 𝐿(𝑥, 𝜏), 𝜇(𝜏), 𝜎(𝜏) of its generated process, which can 
be parameterized in many applied problems. This allows 
a compact and economical description of the studied stochas-
tic signals of the cyclic structure. 

2. Using LCRP as the mathematical model, cyclic stochastic 
signals and processes can be explored in a broad range 
of probability characteristics, namely within the framework of 
the spectral correlation theory of random processes, within the 
framework of the higher orders moment distribution functions, 
within the framework of the multivariate distribution functions 
and characteristic functions. 

3. LCRP remains LCRP after transformation by a linear dynamic 
system. This LCRP has unchanged characteristics of the gen-
erated process. It has the changed kernel only. This property 
simplifies the study of the transformations of cyclic stochastic 
signals in the linear systems that often arise in the problems 
of radio engineering, technical and medical diagnostics, geo-
physics and mechanics. 

4. The result of the LCRP constructiveness is the ability to dis-
play the mechanisms of the studied signals formation in the 
LCRP structure that allows to study the influence of various 
parameters of generation process mechanism on its probabil-
istic characteristics. 

5. The construction of the LRCP is directly suitable for generat-
ing and simulating cyclic stochastic signals and processes by 
modern software and hardware systems. 

7. CONCLUSIONS 

1. The linear cyclic random process is defined. It combines the 
properties of linear random process and cyclic random pro-
cess. This enables the extension of a constructive approach to 
the description of cyclic signals within the linear theory of ran-
dom processes and summarizes their mathematical model 
as a linear periodic random process. 

2. The conditions are given for the kernel and the probabilistic 
characteristics of generated process of linear random process 
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in order to be a cyclic random process. 
3. The advantages of the LCRP allow to use it as mathematical 

models of the cyclic stochastic signals and processes in vari-
ous fields of science and technology, particularly as mathe-
matical models of a wide class of human body heart and res-
piratory system cyclic signals, as models of the data transmis-
sion channels process, as models of vibrating processes in ro-
tating mechanical structures of different types of generators, 
turbines, propellers, as models of the cyclical economic pro-
cesses. 

4. Presented results open some perspectives such as develop-
ment of discrete analogues of cyclic linear stochastic process-
es, including definitions and study of classes of cyclic moving 
average (MA), autoregressive (AR), autoregressive moving 
average (ARMA). This will permit to create further effective 
models and methods of analysis, simulation and prediction of 
cyclic processes with the use of modern digital technology. 
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