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Abstract: One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change 
its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular nu-
merical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity 
of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems 
(PIES), which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was 
previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to 
test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape ap-
proximation functions.  
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1. INTRODUCTION 

High power lasers found broad application in processing and 
treatment of materials. They are very popular because of their 
unique properties, like high degree of special coherence, temporal 
dependence and beam directivity (Jewtuszenko et al., 2009; 
Gladush and Smurov, 2011). One of the laser applications 
is heating up the material in order to change its properties. This 
process depends highly on the properties of the processed mate-
rial and the laser itself, therefore modeling and simulation of this 
phenomenon plays a key role in proper selection of these proper-
ties. Analytical methods can be used to simulate these problems 
(Brugger, 1972; Warren and Spark, 1990; Al-Nimr et al., 2002; 
Yanez et al., 2002), but they are rather used to solve problems 
defined with elementary shape areas and elementary boundary 
conditions. In more complex cases numerical methods are used. 
The most popular methods are finite element method (FEM) 
(Lewis et al., 1996) and boundary element method (BEM) (Breb-
bia te al., 1984; Tanaka et al., 1994; Majchrzak, 2001). FEM 
requires discretization of the whole domain, while BEM requires 
only discretization of the boundary. However, when using classical 
BEM for solving temperature equation, domain integral appears. 
Numerical integration over the domain requires dividing it into 
subdomains called cells. Dividing domain into cells in BEM 
is basically the same as dividing it into elements in FEM, so it 
loses its main advantage. There are some approaches that allow 
avoiding domain integrals, like dual reciprocity boundary element 
method (DRBEM) (Partridge et al., 1992) and multiple reciprocity 
boundary element method (MRBEM) (Nowak and Brebbia, 1989). 
However, these modifications have some limitations and cannot 
be used in all situations. Beside the large number of methods that 
already exist, it is still very important to search for new ones that 

would eliminate the disadvantages of the existing methods. 
An alternative approach is served by a group of methods called 
meshless methods (Johanssona and Lesnicb, 2008; Xiaokun 
et al., 2011; Jirousek et al., 1996). These methods require only 
a number of nodes located inside the domain and on the bounda-
ry. Over the past years a method based on the parametric integral 
equations systems (PIES) has been developed. PIESs are analyt-
ical modifications of the classical boundary integral equation (BIE) 
that allows solving problems without the need of discretization of 
boundary and domain. It uses Bézier or B-spline curves and 
patches for modeling. For time dependent problems it also allows 
to avoid the time discretization, but further research is needed. 
First, a version of PIES using time discretization should be proper-
ly tested. Authors found it interesting to test the method for time 
dependent boundary conditions. 

This paper presents PIES method with time stepping scheme 
for laser heating of homogeneous materials. Results obtained with 
PIES have been compared with exact solution and results ob-
tained with FEM. 

2. PIES METHOD FOR UNSTEADY HEAT TRANSFER 
PROBLEMS 

The differential equation for unsteady Fourier heat conduction, 
without internal heat sources, is governed by Brebbia et al. (1984) 
and Majchrzak (2001): 

𝑐
∂𝑇(x,𝑡)

∂𝑡
= 𝐾 (

∂2𝑇(x,𝑡)

∂𝑥1
2 +

∂2𝑇(x,𝑡)

∂𝑥2
2 ),                             (1) 

where: 𝐾[𝑊/𝑚𝐾]is the thermal conductivity, 𝑇(𝐱, 𝑡) is the time-

dependent temperature field, 𝑐[𝐽/𝑚3𝐾] is the volume-specific 
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heat capacity, 𝑡 is time. 
The equation (1) is complemented by the given boundary 

conditions 

{
𝑥 ∈ 𝛤1: 𝑇(𝑥, 𝑡) = 𝑇𝑠 ,

𝑥 ∈ 𝛤2: 𝑞(𝑥, 𝑡) = −𝐾
𝜕𝑇

𝜕𝑛
= 𝑞

𝑠
,
                                 (1a) 

where: is the given temperature on the boundary segment 𝛤1, 𝑞𝑠 
is the given heat flux on the boundary segment 𝛤2 and 𝑛 is the 
normal vector.  

An initial condition is given by 

x ∈ Ω: T(x, 0) = 𝑇0(x),                              (1b) 

where 𝑇0 is the given temperature inside the domain 𝛺 at time 
𝑡 = 0.  

Classical boundary integral equation (BIE) for (1) is presented 
in the form of Majchrzak (2001): 

α(x)𝑇(ξ, 𝑡𝐹) = −
1

𝑐
∫ ∫ 𝑇∗(ξ, x, 𝑡𝐹, 𝑡)𝑞(𝑥, 𝑡)

Γ
𝑑Γ

𝑡𝐹

𝑡0
𝑑𝑡

+
1

𝑐
∫ ∫ 𝑄∗(ξ, x, 𝑡𝐹, 𝑡)𝑇(𝑥, 𝑡)

Γ

𝑡𝐹

𝑡0
𝑑Γ𝑑𝑡

  +∬ 𝑇∗(ξ, x, 𝑡𝐹 , 𝑡0)𝑇
Ω

(x, 𝑡0)𝑑Ω(x),

          (2)       

where  𝑡0, 𝑡𝐹 is the analyzed time interval and  

α(ξ) = {
1
0.5
0

 for 

ξ ∈ Ω
ξ ∈ Γ
ξ ∈ Ω

, for a smooth boundary. 

Integrands 𝑇∗ and 𝑄∗ from equation (2) can be found in an 
explicit form in Majchrzak (2001). 

After applying analytical modification to the classical BIE, simi-
lar to the one applied for steady problems [16], parametric integral 
equation system (PIES) (3) for unsteady heat transfer problem 
has been obtained (Zieniuk et al., 2014). 

0.5𝑇𝑙(𝑠1, 𝑡
𝐹) =

=
1

𝑐
∫ ∑ ∫ �̅�𝑙𝑗

∗

�̅�𝑗

�̅�𝑗−1

𝑛

𝑗=1

𝑡𝐹

𝑡0

(𝑠1, 𝑠, 𝑡
𝐹, 𝑡)𝑞𝑗(𝑠, 𝑡)𝐽𝑗(𝑠)𝑑𝑠𝑑𝑡

−
1

𝑐
∫ ∑ ∫ �̅�𝑙𝑗

∗

�̅�𝑗

�̅�𝑗−1

𝑛

𝑗=1

𝑡𝐹

𝑡0

(𝑠1, 𝑠, 𝑡
𝐹 , 𝑡)𝑇𝑗(𝑠, 𝑡)𝐽𝑗(𝑠)𝑑𝑠𝑑𝑡

+∬ �̅̅�𝑙𝑗
∗

𝛺

(𝑠1, 𝑦, 𝑡
𝐹 ,  𝑡0)𝑇(𝑦, 𝑡0)𝑑𝛺(𝑦) 

(3) 

where: �̅�𝑙−1 ≤ 𝑠1 ≤ �̅�𝑙, �̅�𝑗−1 ≤ 𝑠 ≤ �̅�𝑗, 𝑙 = 1,2,3, . . . , 𝑛. 

�̅�𝑙−1, �̅�𝑙  �̅�𝑗−1, �̅�𝑗 is the beginning and the end of segments, re-

spectively 𝑆𝑙 and 𝑆𝑗 , and 𝐽𝑗(𝑠) is the Jacobian of the transfor-

mation. 

Integrands �̅�𝑙𝑗
∗
, 𝑄

𝑙𝑗

∗
 and Integral Identity �̅� used for obtain-

ing results inside domain have been presented in an explicit form 
in Zieniuk et al. (2014). 

2.1. Numerical solution of PIES 

To solve PIES for transient heat transfer problem (3), a strate-
gy known from BEM and tested previously in PIES (Zieniuk et al., 

2014) was used. This strategy involves discretization of the time 
variable and use of the time stepping scheme, with time step size 

Δ𝑡 in order to get results at desired time. Collocation method was 
used to obtain an algebraic equations system, according to the 
algorithm provided in Zieniuk et al. (2014). Number of collocation 
points should be equal to the number of unknown coefficients 
in the series, used to approximate unknown boundary functions. 
After solving the algebraic equations system, unknown coeffi-
cients from approximating series are obtained. Presented ap-
proaches have been used before, to solve potential problems 
(Zieniuk, 2013) and lately also problems of transient heat transfer 
(Zieniuk et al., 2014). 

3. LASER BEAM CHARACTERISTICS 

The main function of the laser in material processing is to 
generate heat in the processed piece of material. A laser beam 
can be characterized with set of parameters, like divergence, 
radius, temporal structure and spatial intensity profile. The effi-
ciency with which a material absorbs an incoming laser beam and 
converts it to heat depends on the properties of the material, like 
absorption coefficient, but also on the characteristics of laser 
beam itself (Jewtuszenko et al., 2009). In the general form, the 
total laser intensity can be written as 

q(r, t) = 𝐴𝑞0φ(𝑟)𝑞𝑡(𝑡),                                    (4) 

where 𝐴 is the effective absorption coefficient of the heated mate-

rial, φ(𝑟) describes the (arbitrary) intensity distribution (beam 
shape) in the cross-section, 𝑞𝑡(𝑡) is the temporal dependence 

(pulse shape) and 𝑞0 is the characteristic intensity of the laser 
(Gladush and Smurov, 2011). 

Assuming the spatial intensity profile of the beam to be evenly 
distributed, equation (4) can be presented as 

q(t) = 𝐴𝑞0𝑞𝑡(𝑡).                   (5) 

Laser pulse shape 𝑞𝑡(𝑡) is often approximated by simple 
functions, like (Jewtuszenko et al., 2009): 

 Rectangular pulse shape: 

𝑞
𝑡
(𝑡) = {

1 𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑡𝑠,

0 𝑓𝑜𝑟 𝑡𝑠 < 𝑡.
            (6) 

 Triangular pulse shape: 

𝑞
𝑡
(𝑡) =

{
 

 2
𝑡

𝑡𝑟
𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑡𝑟,

2
(𝑡𝑠−𝑡)

(𝑡𝑠−𝑡𝑟)
𝑓𝑜𝑟 𝑡𝑟 < 𝑡 ≤ 𝑡𝑠,

0 𝑓𝑜𝑟 𝑡𝑠 < 𝑡.

               (7) 

where 𝑡𝑟 is the pulse rise time and 𝑡𝑠 is the complete pulse time. 
For more accurate approximation, Gaussian function can be 

used (Jewtuszenko et al., 2009): 

𝑞
𝑡
(𝑡) = 𝐼exp[−γ(𝑡δ − 𝑡𝑟

δ)] (
𝑡

𝑡𝑟
)
β

, 𝑡 > 0.           (8) 

where parameters β, γ and δ are related to the pulse rise time 𝑡𝑟, 

while value of parameter 𝐼 can be obtained from the condition 
of total energy conservation for distributions (6-8).  

Fig. 1 presents 𝑞𝑡(𝑡) function diagram with 𝑡𝑟 = 0.2671[𝑠] 
and 𝑡𝑠 = 1[𝑠], for three different laser pulse shape approxima-
tion functions (6-8). 
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Fig. 1.  Diagram of function𝑞𝑡(𝑡) with 𝑡𝑟 = 0.2671[𝑠]  and 𝑡𝑠 = 1[𝑠], 
            for three different laser pulse shape approximation functions (7-9) 

This paper presents heating of a Steel 45 material 
with Nd:YAG (neodymium-doped yttrium aluminum garnet) laser, 
for three different laser pulse shape approximation functions (6-8). 

4. NUMERICAL ANALYSIS 

Few examples have been solved to test efficiency of PIES 
method for issues simulating laser heating of a material, where all 
boundary conditions are dependent on time. Results obtained with 
PIES method have been compared to exact solution and results 
obtained with FEM. For FEM solution authors have used ANSYS 
Workbench 14 simulation tool called Transient Thermal. In FEM, 
square elements with quadratic shape function have been used to 
model the issue. 

Accuracy and stability of results in PIES is dependent 
on many variables, like time step size Δ𝑡, number of collocation 
points used in the approximating series and their location, and 
number of weight coefficients in quadrature for integration over 
boundary and domain. There is a certain relationship between the 

time step size Δ𝑡 and the number of weights in the quadrature 
over the domain in PIES (Zieniuk et al., 2014). The shorter the 
time step the larger number of weight coefficients has to be taken 
for integration over the domain. The applied FEM software uses 
the implicit time integration method, so it is unconditionally stable 
and does not apply Courant-Friedrich-Levy condition (Lewis et al., 
1996). Taking into account the relationship in PIES and uncondi-
tionally stable FEM, both methods have been compared for the 
same time step sizes and a similar number of weight coefficients 
in quadrature for integration over the domain in PIES and nodes 
in FEM. 

3.1. Rectangular pulse shape 

First, a symulation of rectangular pulse shape approximation 
function (6) has been conducted. Exact solution of this problem is 
presented in the following form (Jewtuszenko et al., 2009):  

T(y, t) = 𝐴𝑞0
2√𝑘𝑡

𝐾
𝑖𝑒𝑟𝑓𝑐 (

𝑦

2√𝑘𝑡
), 𝑦 ≥ 0, 𝑡 ≥ 0,            (9) 

where 𝑘 = 𝐾/𝑐 is the diffusion coefficient and 𝑖𝑒𝑟𝑓𝑐(𝑥) is the 
integral of the complementary error function.  

In the exact solution a laser heating of the half-space is con-
sidered. However, the half-space has to be approximated with 

a rectangular area for numerical calculations with PIES and FEM, 
as shown in Fig. 2.    

 
Fig. 2. Laser heating schema 

Value of 𝑞(𝑡) has been calculated from equation (5). The en-
ergy losses by radiation and convection on the surface have been 
omitted. Material and laser parameters used in calculations are 
presented in Tab. 1. 

Tab. 1. Parameters used for simulation of temperature distribution  
             in material heated by laser beam (Jewtuszenko et al., 2009) 

Metal Laser 
𝐭𝐬
[𝒎𝒔]

 
𝐭𝐫
[𝒎𝒔]

 
𝐪𝟎 × 𝟏𝟎

−𝟗

[𝑾𝒎−𝟐]
 
𝐊
[𝑾𝒎−𝟏𝑲−𝟏] 

𝐤 × 𝟏𝟎𝟓

[𝒎𝟐𝒔−𝟏]
 
𝑨
[%]

 

Steel 
45 

Nd:YAG 1 0.2671 0.58 33.5 1.5 41 

The first step was to establish the optimal size of the area, 𝐿𝑥  

and 𝐿𝑦 approximating the half space (Fig. 2). Height of the area 

𝐿𝑦 has been determined based on the exact solution (9). A mini-

mal height y has been assumed, for which the temperature 𝑇 and 

heat flux 𝑞(𝑡) are approximately equal to 0, for the given bounda-
ry condition (5) and maximum simulation time (𝑡 = 2𝑚𝑠). Width 

of the area  𝐿𝑥  was established after a series of numerical exper-

iments with use of PIES method. A minimal width 𝐿𝑥  was sought, 
for which a further increase of this width won’t have any impact on 

the results obtained at point 𝑝1(0,0.04). It has turned out that 

the optimal size of approximating area is 𝐿𝑥 = 𝐿𝑦 = 3. It has 

been also established, that in order to get stable and accurate 
results there has to be a minimum of 9 collocation points evenly 
distributed on each of the boundary segments. Also a minimum 
number of 20 weight coefficients in quadrature for integration over 
each boundary segment has to considered. 

In the next step, the example has been solved multiple times 
using both methods, PIES and FEM. Results have been obtained 
for different time step sizes, and different number weight coeffi-
cients in quadrature for integration over the domain in PIES and 
number of nodes in FEM. Results have been compared with the 
exact solution. Temperature has been measured at point 

𝑝1(0,0.04). Tab. 2 presents parameters of different PIES solu-
tions. Results are shown in Fig. 3. 

As it can be seen in Fig. 3, PIES method gives more accurate 
results when decreasing the time step size and increasing the 
number of weight coefficients in quadrature for integration over 
the domain. The best results (PIES-3) have been obtained for the 
smallest time step size and the largest number of weights. 

0
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2

0 0,2 0,4 0,6 0,8 1

q
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2
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Next, results obtained with FEM, have been compared with 
the exact solution. Input data for FEM are shown in Tab. 3. Re-
sults are presented in Fig. 4. 

Tab. 2. Input data for PIES 

  PIES-1 PIES-2 PIES-3 

weights in the  
domain integral 

10080 19680 40080 

𝛥𝑡 [ms] 0.1 0.05 0.02 

 
Fig. 3. Relative error [%] history at point 𝑝1, obtained by different PIES  

           solutions, compared to the exact solution 

Tab. 3. Input data for FEM 

  FEM-1 FEM-2 FEM-3 

elements 3249 6415 13293 

nodes 9976 19564 40336 

𝛥𝑡 [ms] 0.1 0.05 0.02 

 
Fig. 4.  Relative error [%] history at point 𝑝1 obtained by different FEM  
             solutions, compared to the exact solution 

FEM (Fig. 4) also gives more accurate results for smaller time 
step size and larger number of nodes (elements). 

Tab. 4 presents temperature value at the point 𝑝1 and time 
𝑡𝑠. Temperature has been obtained for the exact solution, best 
PIES solution and best FEM solution.  

Tab. 4. Temperature at point 𝑝1 and time 𝑡𝑠 

t[ms] Exact PIES-3 FEM-3 

1 723.10 725.81 718.97 

Taking into account the data presented in Fig. 3-4 it can be 
noticed that FEM gives more accurate results than PIES, which is 
especially visible in the beginning of simulation. Tab. 4 shows that 

for 𝑡 = 𝑡𝑠 = 1[𝑚𝑠], best FEM and PIES solutions give results 
with similar accuracy. 

In the next step, the best PIES solution and the best FEM so-
lution have been compared. A longer time period has been con-
sidered, including the time after which the laser has been turned 

off. Fig. 5 presents temperature history at point 𝑝1, obtained with 
both methods during the laser heating process and after the laser 
has been turned off. 

 
Fig. 5. Temperature history at point 𝑝1 obtained with best PIES  

            and FEM solutions for rectangular beam shape 

As can be noticed, both methods give close results during 
the whole simulation time.  

3.2. Triangular pulse shape 

Next, a simulation for the triangular pulse has been carried out 
(7). The exact solution for this particular problem does not exist, 
so the problem has been first solved with FEM and then with 
PIES. Results obtained with PIES have been compared to the 
best FEM results. In FEM a different number of elements, nodes 
and different time step size have been considered, as presented 
in Tab. 3. Results are presented on Fig. 6. Result is the tempera-

ture history at point 𝑝1. 
As it can be seen on Fig. 6, improve of the accuracy of FEM 

solutions by reduction of the time step size and increase of the 
number of elements (nodes) leads to stabilization of results. FEM-
3 has been chosen as the best solution. 

Sequentially, the example has been solved with the use of 
PIES method and results have been compared to the best FEM 
solution (FEM-3). Parameters of specific PIES solutions can be 

found in Tab. 2. Temperature history at point 𝑝1 obtained with 
PIES can be found on Fig. 7. 

Fig. 7 shows that increase of accuracy of PIES method brings 
the obtained results closer to results obtained with best FEM 
solution. Closest to the FEM-3 results were the best PIES results 
(PIES-3).  
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Fig. 6. Temperature history at point 𝑝1 obtained with FEM  

            for triangular pulse shape 

 
Fig. 7. Temperature history at point 𝑝1 obtained with PIES  

           and compared to best FEM solution, for triangular pulse shape 

3.3. Gaussian pulse shape 

In the next step, the Gaussian approximation function (8) has 
been used in the simulation. The same procedure has been used 
here, as in previous example. Due to the lack of exact solution, 
examples has been solved first with FEM and best FEM solution 
was used as a reference points for results obtained with PIES 
method. 

Different variants of FEM (Tab. 3) have been considered. Re-
sults are presented on Fig. 8. Result is the temperature history at 

point 𝑝1. 
As it can be seen on Fig. 8, also in this case, increase of the 

accuracy of FEM solutions results in stabilization of obtained 
results. 

Next, the example has been solved with PIES method. Ob-
tained results are compared with FEM-3 results. 

As can be noticed (Fig. 9), increase of accuracy in PIES 
makes the results obtained with this method closer to the best 
FEM results. 

Fig. 10 presents the temperature history at point 𝑝1, obtained 
with best PIES-3 solution, for three different laser pulse shape 
approximation functions (6-8). 

 
Fig. 8. Temperature history at point 𝑝1 obtained with FEM  

            for Gaussian pulse shape 

 
Fig. 9. Temperature history at point 𝑝1 obtained with PIES and compared  

            to best FEM solution, for Gaussian pulse shape 

 
Fig. 10. Temperature history at point 𝑝1 obtained with best PIES  

              solution, for three different pulse shapes 

As can be seen on Fig. 10, the temperature history obtained 
for different pulse shape approximation functions varies, which is 
mostly visible at the beginning of simulation. After some time the 
temperature stabilizes and all graphs converge to a single point. 
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5. CONCLUSIONS 

This paper presents the parametric intergral equations system 
for temperature equation, with the use of time stepping scheme. 
In the time stepping scheme each step is treated as a seperate 
problem, which allows in an easy way to solve issues with all 
boundary condition dependent on time. The exaples presented in 
this paper, laser heating of homogeneous materials belong to this 
category of issues. Three different functions approximating the 
real laser pulse shape have been considered. Comparison of the 
results with the exact solution and FEM found that PIES method 
gives accurate results, comparable with FEM. Therefore, PIES 
method can be an alternative for the commonly used FEM. In the 
future, further tests are planned to prove the effectiveness of PIES 
method in solving transient heat transfer problems.  
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