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Abstract: This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal de-
formation is proved in two ways. First  proof is based on application of the Iljushin thermo-elastic potential to displacement type system 
of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of sim-
ultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system 
of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field 
is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented. 
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1. INTRODUCTION 

Functionally graded materials (FGMs) provide thermal insula-
tion and mechanical toughness at high temperature by varying  
the composition of thermal conductivity coefficient, thermal ex-
pansion coefficient and Young’s modulus from high temperature 
side to low temperature side continuously and simultaneously by 
removing the discontinuity of layered plate. These advantages 
cause that FGMs are applicable in many fields such as high per-
formance engines for aerospace vehicles, turbine blades and 
heat-resisting tools. A general overview of thermal stresses 
in FGMs comprises work by Noda (1999).  

Numerous analytical solutions of thermo-elastic plane 
or three-dimensional problems of FGMs take advantage of specif-
ic power or exponential function approximation methods of multi-
layered composite plate, limiting simultaneously their generality 
and suggesting question how to reduce the problem. One way to 
attain this may be proving theorem on the stress free deformation 
accompanying linear gradation of thermo-mechanical properties 
of the material staying in constant temperature condition. Such 
a proof can be done following two ways taking advantage of either 
displacement or stress formulation of thermo-elastic equations. 
In the first case lemma consists in generalization of theorem 
on the plane stress state in an isotropic thermo-elastic thick plate, 
originally proved by Sneddon and Lockett (1960). The authors 
presented convinced proof for a problem of semi-infinite thermo-
elastic medium bounded by two parallel planes and loaded by an 
arbitrary temperature field on one surface.  The method of solution 
employed was the double Fourier transform. The results con-
firmed solution of analogous problems, being inspiration to their 
work, received earlier by Sternberg and McDowell (1957), based 
on Green’s function, and by Muki (1957), who used method com-
bining the theory of Fourier series and the Hankel transforms 

of integral order. Also there exists other more elegant way, based 
on application of Iljushin’s potential (Iljushin et al., 1979), which 
is demonstrated in the present work. Final step of the proof 
of theorem relays on pointing out that unique solution of the plane 
stress equations, that satisfy homogeneous boundary conditions, 
guarantees stress free deformation if only temperature field 
is constant and gradation of thermal expansion coefficient is linear 
function. 

In the other case, when stress formulation of thermo-elastic 
equations is used, the proof of theorem is almost elementary and 
turns out to be straightforward analogy to these which were done 
by Fung (1965) and Nowacki (1970) for homogeneous material.  

2. FGM’S – CONCEPT, FABRICATION, PROPERTIES 
AND NUMERICAL MODELING 

In many applications, especially in the space industry as well 
as electronic industry, structures or part of structures are exposed 
to high temperature,  usually up to 2000K or even 3500K in some 
parts of rocket engines, see Schulz et al. (2003), high temperature 
gradients, and/or cyclic temperature changes. Conventional me-
tallic materials, such as carbon steels or stainless steels: ASTM 
321, ASTM 310, nickel- or aluminium-based alloys cannot resist 
such high temperatures, see Odqvist (1966). The first method to 
improve the resistance of metallic structures against extreme 
temperature conditions consists in covering the structure with a 
ceramic layer since ceramics are known for their high thermal 
resistance. For instance, in a metal-ceramic composite: Al-SiC the 
thermal conductivities ratio is approximately equal: 𝜆m/𝜆c = 3.6, 

the thermal expansion coefficients ratio: 𝛼m/𝛼c = 5, whereas 

the elastic moduli ratio: 𝐸𝑚/𝐸c = 0.16, see Potarescu and 
Sugano (1993). Indices m and c refer to matrix and ceramic mate-
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rials respectively. Hence, at the metal-ceramic interface, severe 
discontinuity of thermo-mechanical properties occurs, which re-
sults in high strain and stress mismatch at the interface. As a 
consequence, delamination or failure of the coating is rapidly 
observed. As a remedy to these disadvantages the concept of 
Functionally Graded Materials - FGM, was developed in Japan in 
the 1980s, see Yamanouchi et al. (1990), giving structural com-
ponents a spatial gradient in thermo-mechanical properties. The 
spatial gradient is achieved by use of two-component composites. 
The volume fraction of the composite constituents varies spatially 
such that the effective thermo-mechanical properties change 
smoothly from one material (ceramic) to the other (metal). In this 
way, in the case of a Thermal Barrier Coating deposited on a 
metallic substrate, the heat-resistant ceramic layer and the solid 
metal are separated by functionally graded FG layer, the composi-
tion of which varies from pure ceramic to pure metal. The pro-
cessing technologies for TBCs and FGMs may lead to residual 
stresses, which are built-in during cool-down from the elevated 
fabrication temperature. These residual stresses may be signifi-
cant relative to thermo-mechanical stresses applied subsequently. 
As regards FG layer processing, Plasma Spray Thermal Barrier 
Coating leads to lamellar microstructures, whereas columnar-
lamellar microstructures are produced when using Electron Beam 
Physical Vapour Deposition, see  Lee et al. (1996), Schulz et al. 
(2003).  

A general review article on the application of the several ce-
ramic materials  to TBCs is given by Lee et al. (1996). Selected 
thermo-mechanical properties as elastic modulus 𝐸 and both 

thermal expansion 𝛼 and conductivity 𝜆 coefficients are summa-
rized in Table 1 for two alumina-based composites, see Chen and 
Tong (2004), Cho and Shin (2004) for Ni-Al2O3 and Wang et al. 
(2000) for Ti-Al2O3. 

Tab. 1.  Comparison of properties of constituents of two alumina-based 
composites Ni-Al2O3 (Hen and Tong, 2004; Cho and Shin, 2004) 
and Ti-Al2O3 (Wang et al., 2000) 

Composite 𝐸 [GPa] 𝜆 [W/mK] 𝛼 ⋅ 10−6 [1/K] 

Ni 

Al2O3 

199.5 

393.0 

90.7 

30.7 

13.3 

8.8 

Al 

Al2O3 

73 

380 

154 

46 

23 

8.5 

 

Fig. 1. Microstructure of chemically graded Electron Beam Physical  
 Vapour Deposition thermal barrier coating, after Schulz et al. 
(2003) 

When the classical FEM based on homogeneous elements 
is used for FGMs, the material properties stay the same for all 
integration points belonging to one finite element. This means that 
material properties may vary in a piecewise continuous manner, 
from one element to the other and a unique possibility to model 
FGM structure is approximation by use of appropriately fine mesh. 
On the other hand, a too coarse mesh may lead to unrealistic 
stresses at the interface between the subsequent layers. To over-
come this difficulty a special graded element has been introduced 
by Kim and Paulino (2002) to discretize FGM properties. The 
material properties at Gauss quadrature points are interpolated 
there from the nodal material properties by the use of isoparamet-
ric interpolation functions. Contrary to the classical FEM formula-
tion, the stiffness matrix of an element is expressed by the integral 
in which constitutive matrix is a function of the coordinates. In the 
original formulation the same shape functions are used for ap-
proximation of the displacement field and material inhomogeneity. 
However, from the numerical point of view nothing stands in the 
way of implementation of shape functions referring directly to the 
individual character of inhomogeneity, for instance power func-
tions, see Akai et al. (2005) or exponential functions, see Bagri 
et al. (2005). 

3. THE GENERAL FORMULATION  
OF FGM THERMO-ELASTIC PROBLEM 

A thermo-elastic body under consideration (Fig.1) is bounded 

by two parallel planes normal to axis 𝑥3, and its thermo-
mechanical properties such as thermal conductivity coefficient, 
thermal expansion coefficient and Young’s (Kirchhoff’s) modulus 

are optional functions of 𝑥3  

𝜆 = 𝜆(𝑥3) 𝛼 = 𝛼(𝑥3) 𝐸 = 𝐸(𝑥3)       𝐺 = 𝐺(𝑥3). (1) 

Since 𝐸(𝑥3) and 𝐺(𝑥3) are controlled by the same function 

of 𝑥3 the Poisson ratio is considered as independent of 𝑥3 and 
satisfying classical relation 

𝜈 =
𝐸 

2𝐺
− 1.  (2) 

This guarantees isotropy (two independent material constants) 
on one hand and simultaneously prevents from some peculiar 
effects occurring on the other hand, see Ganczarski and Barwacz 
(2004). 

The body is established a temperature field 𝑇 + 𝜃(𝑥𝑖), where 

𝑇 stands for the temperature of the solid corresponding to zero 
stress and strain. Also it is assumed that there are no body forces 
within the solid and that its surfaces are free from tractions. 

The system of equations of uncoupled thermo-elasticity ex-
pressed in displacements takes the form  

 ∇2𝑢𝑖 +
1

1−2𝜈

𝜕𝛩

𝜕𝑥𝑖
+
1

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕𝑢𝑖

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥𝑖
) = 2

1+𝜈

1−2𝜈

𝜕(∝𝜃)

𝜕𝑥𝑖
, 

 ∇2𝑢3 +
1

1−2𝜈

𝜕𝛩

𝜕𝑥3
+
2

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕𝑢3

𝜕𝑥3
+

𝜈𝛩

1−2𝜈
) = 2

1+𝜈

1−2𝜈
                 (3) 

   × [
𝜕(∝𝜃)

𝜕𝑥3
+
1

𝐸

𝜕𝐸

𝜕𝑥3
𝛼𝜃] ,

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0,

  

where 𝑢𝑖  denotes the displacement vector, and 𝛩 = grad(𝑢𝑖)  
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is the dilatation. The underlined terms in Eqs (3) yield of FGM 
application and they are additional in comparison with classical 
formulation of homogeneous material. The relation between the 
stress tensor 𝜎𝑖𝑗  and the displacement vector 𝑢𝑖 is given by the 

Duhamel-Neumann equation  

𝜎𝑖𝑗 = 𝐺 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
+ 2(

𝜈(𝛩−3𝛼𝜃)

1−2𝜈
− 𝛼𝜃) 𝛿𝑖𝑗].  (4) 

The variation of temperature 𝜃 throughout the solid is deter-
mined by steady Fourier equation Eq. (33) in case of absence 
of inner heat sources.  

System of equations expressed in stresses (extension of Bel-
trami-Michell formulation) equivalent to (3) is as follows 

∇2𝜎𝑖𝑖 +
1

1+𝜈
[
𝜕2𝑠

𝜕𝑥𝑖
2 − ∇

2𝑠] − 2𝐸
𝜕

𝜕𝑥3
(
1

𝐸
) [
𝜕𝜎𝑗𝑗

𝜕𝑥3
−

𝜈

1+𝜈

𝜕𝑠

𝜕𝑥3
]  

   −𝐸
𝜕2

𝜕𝑥3
2 (

1

𝐸
) [𝜎𝑗𝑗 −

𝜈

1+𝜈
𝑠]   

   +
𝐸

1+𝜈
[
𝜕2(𝛼𝜃)

𝜕𝑥𝑖
2 −∇2(𝛼𝜃)] = 0              𝑖, 𝑗 = 1,2,

 

∇2𝜎33 +
1

1+𝜈
[
𝜕2𝑠

𝜕𝑥3
2 − ∇

2𝑠] +
𝐸

1+𝜈
[
𝜕2(𝛼𝜃)

𝜕𝑥3
2 −∇2(𝛼𝜃)] = 0,

 (5)

∇2𝜏𝑖𝑗 +
1

1+𝜈

𝜕2𝑠

𝜕𝑥𝑖𝑥𝑗
+

𝜕

𝜕𝑥3
(
1

𝐸
) [
𝜕𝜎𝑘𝑘

𝜕𝑥𝑖
−

1

1+𝜈

𝜕𝑠

𝜕𝑥𝑖
−
𝜕𝜏𝑘𝑖

𝜕𝑥𝑘
] 

    +
𝐸

1+𝜈

𝜕2(𝛼𝜃)

𝜕𝑥𝑖𝑥𝑗
= 0           𝑖, 𝑗, 𝑘 = 1,2,3    𝑖 ≠ 𝑗 ≠ 𝑘, 

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0, 

where 𝑠 = tr(𝜎) = 𝜎11 + 𝜎22 + 𝜎33. It worth to notice that 
equations (51-3) can be obtained either in classical way or directly 
from equations (31-2) according to concept by Ignaczak (1959). 

4. CONDITIONS OF EXISTENCE  
OF STRESS FREE DEFORMATION 

4.1. Proof based on displacement formulation 

To solve Eqs (3) the following potential, originally proposed by 
Iljushin et al. [8], is introduced 

𝑢𝑖 =
𝜕𝜙

𝜕𝑥𝑖
, 𝑢3 = −

𝜕𝜙

𝜕𝑥3
+ 𝑓(𝑥3), 

𝑓(𝑥3) = 𝐴𝑥3
2 + 𝐵𝑥3 + 𝐶  (6) 

𝛼𝛳 = 2
1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2 , 

where function of displacement potential 𝜙 is of harmonic type  

∇2𝜙 = 0  (7) 

and 𝐴, 𝐵, and 𝐶 are constants. 
Simple introducing of definitions (6) to Eqs (3) shows that only 

equations of mechanical state are satisfied as identity, contrary 
to the case of homogeneous material, when also the equation 
of thermal state is satisfied as identity   

𝜕

𝜕𝑥𝑖
(∇2𝜙)⏟  

=0

+
1

1−2𝜈

𝜕

𝜕𝑥𝑖
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵), 

   +
1

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕2𝜙

𝜕𝑥3𝜕𝑥𝑖
−

𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥3
)

⏟          
=0

, 

   = 2
1+𝜈

1−2𝜈
(−

1

1+𝜈

𝜕3𝜙

𝜕𝑥𝑖𝜕𝑥3
2) −

𝜕

𝜕𝑥3
(∇2𝜙)⏟  

=0

+ 2𝐴 

   +
1

1−2𝜈

𝜕

𝜕𝑥3
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵)  (8) 

   +
2

𝐺

𝜕𝐺

𝜕𝑥3
[−

𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 +

𝜈

1−2𝜈
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2  

+2𝐴𝑥3 + 𝐵)] = 2
1+𝜈

1−2𝜈
[2

1−𝜈

1+𝜈
𝐴 −

1

1+𝜈

𝜕3𝜙

𝜕𝑥3
3 , 

+
1

𝐸

𝜕𝐸

𝜕𝑥3
(2

1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2)]. 

The stress components referring to the plane stress state with 

respect to axis 𝑥3  

𝜏13 = 𝐺 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
) = 𝐺 (

𝜕2𝜙

𝜕𝑥1𝜕𝑥3
−

𝜕2𝜙

𝜕𝑥3𝜕𝑥1
)

⏟          
=0

= 0, 

𝜏23 = 𝐺 (
𝜕𝑢2

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥2
) = 𝐺 (

𝜕2𝜙

𝜕𝑥2𝜕𝑥3
−

𝜕2𝜙

𝜕𝑥3𝜕𝑥2
)

⏟          
=0

= 0, 

 𝜎33 = 2𝐺 [
𝜕𝑢3

𝜕𝑥3
− 𝛼𝜃 +

𝜈

1−2𝜈
(𝛩 − 3𝛼𝜃)] (9) 

       = 2𝐺 {−
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 − 2

1−𝜈

1+𝜈
𝐴𝑥3 +

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2  

       +
𝜈

1−2𝜈
[∇2𝜙⏟
=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 

       −3 (2
1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2)]} = 2𝐺

1−𝜈

1−2𝜈
𝐵, 

are also identically equal to zero when 𝐵 = 0 for any point 𝑥𝑖. 
This proves that Eqs (6) transform original mechanical problem 

Eq. (3) into plane stress problem  

∇2𝜙 + 2(1 − 𝜈)𝐴𝑥3 − (1 + 𝜈)𝛼𝜃 = 0. (10) 

The general solution (10) can be written in a form which 
is more suitable to plate problem, namely in which the thermo-
elastic solid is bounded by two parallel planes 𝑥3 = 𝑧 and exhib-
its axial symmetry  

𝜕2𝜙

𝜕𝑟2
+
1

𝑟

𝜕𝜙

𝜕𝑟
+ 2(1 − 𝜈)𝐴𝑧 − (1 + 𝜈)𝛼𝜃 = 0. (11) 

Differentiation of Eq. (11) with respect to 𝑟 and next substitu-
tion 𝑢 = 𝜕𝜙/𝜕𝑟 according to Eqs (61), lead to the classical 
Euler-type differential equation describing thermo-mechanical 
membrane state  

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
= (1 + 𝜈)

𝜕(𝛼𝜃)

𝜕𝑟
. (12) 

Unique solution of equation (12) that satisfies homogeneous 
boundary conditions  

𝑢(0) = 0,  𝜎𝑟(𝑅) = 0 (13) 

takes well known form  

𝑢 =
(1−𝜈)

𝑅2
𝑟 ∫ 𝛼𝜃𝑟d𝑟

𝑅

0
+
(1+𝜈)

𝑟
∫ 𝛼𝜃𝜌d𝜌
𝑟

0
, 
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𝜎𝑟 =
𝐸

𝑅2
∫ 𝛼𝜃𝑟d𝑟 −

𝐸

𝑟2
∫ 𝛼𝜃𝜌d𝜌
𝑟

0

𝑅

0
, (14) 

𝜎𝜑 =
𝐸

𝑅2
∫ 𝛼𝜃𝑟d𝑟 +

𝐸

𝑟2
∫ 𝛼𝜃𝜌d𝜌
𝑟

0

𝑅

0
− 𝐸𝛼𝜃, 

which in case of constant temperature 𝜃 = const and linear 

gradation of coefficient of thermal expansion 𝛼(𝑧) = 𝑎0 + 𝑎1𝑧 

leads to purely linear (stress-less) deformation  

 𝑢(𝑟, 𝑧) = 𝛼𝜃(𝑧)𝑟, 𝜎𝑟 = 𝜎𝜑 ≡ 0, (15) 

what closes the proof. 

4.2. Proof based on stress formulation  

The proof of theorem presented in point 4.1, in case of the 
stress formulation Eq. (51-3), is straightforward analogy to those 
done by Fung (1965) and Nowacki (1970) for homogenous mate-
rial. This turns out to be almost elementary when one assumes 
that 𝜎𝑖𝑗 ≡ 0 in both Eq. (51-3) and appropriate boundary condi-

tions. Namely, system of equations is satisfied as identity if  

𝜕2(𝛼𝜃)

𝜕𝑥𝑖
2 − ∇2(𝛼𝜃) = 0          𝑖 = 1,2,3, 

𝜕2(𝛼𝜃)

𝜕𝑥𝑖𝑥𝑗
= 0                             𝑖, 𝑗 = 1,2,3, (16) 

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0. 

For constant temperature 𝜃 = const satisfying Fourier’s law 
(163) the unique solution of (161,2) corresponds again to the linear 

gradation of coefficient of thermal expansion 𝛼(𝑥3) = 𝑎0 +
𝑎1𝑥3.  

5. EXAMPLE 

It has been proved in points 4.1 and 4.2 that material of linear 
gradation of thermal expansion coefficient, subjected to constant 
temperature exclusively, is not stressed. This means that it exhib-
its unconstrained and purely thermal deformation. In case of axial 
symmetry such deformation can be expressed by following equa-
tions  

휀𝑟 =
𝜕𝑢

𝜕𝑟
= 𝛼𝜃, 휀𝜑 =

𝑢

𝑟
= 𝛼𝜃, 휀𝑧 =

𝜕𝑤

𝜕𝑧
= 𝛼𝜃.  (17) 

Let us assume that the structure is composed of homogene-
ous metallic substrate (Al) and ceramic layer (Al2O3), joined by 
FGM interface as shown in Fig.3, and thermo-elastic properties 
presented in Tab.1.  

 

Fig. 3. Metallic substrate and ceramic layer joined by FGM interface  
           of linear thermal expansion coefficient structure  

Hence linearly graded coefficient of thermal expansion exhib-
its polygonal function  

𝛼(𝑧) =  {

𝛼m                                0 ≤ 𝑧 < 𝑧i          

𝛼m − (𝛼m − 𝛼c)
𝑧−𝑧i

ℎi
𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c                                 𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

 (18) 

and we easily arrive at following of solution Eqs (18) for 𝑢  

𝑢(𝑟, 𝑧) = ∫ 𝛼(𝑧)𝜃d𝜌
𝑟

0
=

   {

𝛼m𝜃𝑟                                      0 ≤ 𝑧 < 𝑧i          

𝛼m𝜃𝑟 − (𝛼m − 𝛼c)
𝑧−𝑧i

ℎi
𝜃𝑟 𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c𝜃𝑟                                       𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

 (19) 

and for 𝑤 respectively 

𝑤(𝑟, 𝑧) = ∫ 𝛼(𝑧)𝜃d휁
𝑧

0
=

  

{
 
 

 
 
𝛼m𝜃𝑧                                             0 ≤ 𝑧 < 𝑧i          

𝛼m𝜃𝑧 − (𝛼m − 𝛼c)
(𝑧−𝑧i)

2

2ℎi
𝜃     𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c𝜃(𝑧i + ℎi) − (𝛼m − 𝛼c)
ℎi

2
𝜃

+𝛼c𝜃(𝑧 − 𝑧i + ℎi)
𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

. (20) 

The displacement field corresponding to stress free defor-
mation defined by Eqs (19-20) is spanned over the mesh of 81×41 
square elements and shown in Fig. 4. It is well visible that both 
substrate and ceramic layers exhibit homogeneous deformation, 
whereas deformation of interface links them satisfying simultane-
ously stress less state. 

 

Fig. 4. Unconstrained (stress less) and purely thermal deformation  
Eqs (19-20) of three layer structure: initial mesh – black colour,  
deformed mesh – red colour (displacement magnified ×100)  

6. CONCLUSIONS 

Homogeneous temperature field does not result stress 
in thermo-elastic material of linear gradation, if only force type 
boundary conditions are homogeneous and there are not body 
forces. However, the case of stress less deformation has only 
theoretical sense since neither manufacturing nor classical FEM 
do not allow for modeling of continuously varying FGM. Namely, 
from technological point of view the Al2O3 outer layer deposed 
on top of a NiCoCAlY bond coat, shown in Fig. 1 after Schulz et 
al. (2003), exhibits hardly noticeable stress state resulting from 
mismatch between metal and ceramic Young’s modules and 
coefficients of thermal expansion. On the other hand, if the classi-
cal FEM is used for solving FGM problems, the material properties 
can only vary in a piecewise continuous manner since all integra-
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tion points within an element have a common property value. 
To overcome this difficulty a special graded element concept, 
based on additional interpolation for nodal material properties, 
is necessary to apply. 
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