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Abstract: We consider a coupled 3D model that involves computation of the stress-strain state for the body with thin inclusion. For the de-
scription of the stress-strain state of the main part, the linear elasticity theory is used. The inclusion is modelled using Timoshenko theory
for shells. Therefore, the dimension of the problem inside the inclusion is decreased by one. For the numerical solution of this problem
we propose an iterative domain decomposition algorithm (Dirichlet-Neumann scheme). This approach allows us to decouple problems
in both parts and preserve the structure of the corresponding matrices. We investigate the convergence of the aforementioned algorithm

and prove that the problem is well-posed.
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1. INTRODUCTION

A lot of structures, that occur in engineering, are inhomogene-
ous and contain thin parts and massive parts. Therefore, it is
important to develop both analytical methods and numerical algo-
rithms for the analysis of the stress-strain state of such structures.

Different aspects of such problems were discussed in Dyyak
et al. (2012); Niemi et al. (2010); Savula et al. (2000); Vynnytska
and Savula (2008); Nazarov (2005) (in Vynnytska and Savula
(2008) the case of the bodies with thin inclusions is considered;
in Dyyak et al. (2012) the bodies with thin covers are considered;
in Nazarov (2005) asymptotic methods are used for the analysis
of the elastic bodies with thin rods). Papers Niemi et al. (2010)
and Savula et al. (2000) are devoted to the numerical solution
of the Girkmann problem. The discussion on the problems
of thermoelasticity the reader may find in Sulym (2007).

In this article, we consider a model for the description of the
stress-strain state for the 3D body with thin inclusion. The main
part of the body is modelled using the linear elasticity theory. The
thin part is modelled using the Timoshenko theory for shells. In
order to numerically solve this problem, we propose an iterative
domain decomposition algorithm which connects solutions in both
parts using coupling conditions. We prove the convergence of the
proposed algorithm and the existence and uniqueness of the
solution of the corresponding Steklov-Poincare interface equation.

The application of domain decomposition method allows us to
decouple problems in both parts and solve the problems inde-
pendently in each part. As a result, it is possible to compute the
stress-strain state accurately even for small shell thicknesses
without having problems with stability issues of the coupled prob-
lem.

2. PROBLEM STATEMENT

Let us consider a problem of a stress-strain state of an elastic
body Q, with the inclusion in Q, (Fig. 1).

Fig. 1. Body with inclusion

Let us describe the stress-strain state of the body in Q, in rec-
tangular coordinate system x4, x, x5 using the theory of linear
elasticity. Let us denote by X = (cij)fj=1 the Cauchy stress
tensor. The components of X are found from the relationships

=L (20 o
O-l] - 2E1 <6x] + axi>, l;] - 1;2;31

where: E; is the Young's modulus of the body in Q; u(x) =
(uq (x), up(x), u3(x)) is the displacement vector with u; being

the displacements along the directions of x;, i = 1,2,3.
Equilibrium equations for the body in Q; have the form:

60'11 00'12 + 60'13 — f
aaxl ;xz aax3 1
021 022 023 — 1
0x1 + x, + dx3 f21 ( )
60'31 00'32 + 60'33 — f
9x1 dx; dx3 3

where: x € Qq, f = (f}, f2, f5) is the vector of volume forces.

In the following we assume that no volume forces act on the
body in Q.

Let us denote by n = (nt, n2, n3) outer normal vector and
by T, = (z1, 2, 13), 1, = (1, 74, ©3) corresponding tan-
gent vectors.
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Equations (1) are supplemented by the boundary conditions
of one of the following types.
Kinematic (Dirichlet) boundary conditions are of the form:

— 2,0 — 1,0 — 1,0
Uy = un7u‘rl - u‘rllu‘rz - u‘tz7XE Fll (2)

where: I is the outer boundary of Q;; u,, u,, and u,, are the
components of the displacement vector in the coordinate system
n, Ty, T, up, uy, and ug, are the prescribed displacements
onlj.

Static (Neumann) boundary conditions have the form:

Onn = Gr?n! O-nrl = ar(l]rll anrz = ar(l]rzl X € 1—'11 (3)
where: oy, 0pny, and oy, are the components of the stress
tensor in the coordinate system; n, Ty, T;; 01y, Oy, and o,
are the prescribed stresses on I3.

It is possible to consider other types of boundary conditions,
for example mixed boundary conditions, that combine boundary
conditions (2) and (3).

For the description of the stress-strain state of the inclusion
Q, we use the equations of Timoshenko shell theory in the curvi-

linear coordinate system (&;,&,,&5) that hold on the median
suface (3, where: 0, ={(§1,6,,8):60 <& < &80 <
& < Ef,—% <& < %} h is the thickness of the inclusion
in Q.

By Q3 we denote the median surface of Q. (the projection
of Q, on the surface for which &; = 0).

The equations of Timoshenko shell theory are of the form
(Pelekh, 1978):

1 9(A;T14)

A1A; 08

1 04, 1 9(A%Ty,)
— — Tt ——
A1A; 08y AiA; 0%,
kT +— a( M11)+ ko 041y,
Tt AT, Aay o,
= - +p1),
1 6A1T 4 1 0(AT,,) 1 0(A3Tyy)
MA 08 T AA, 08 AAL 0%
Tk Tyy +— a( M22)+ k1 04z
S A4, 05 AAp 08
= —(p; +p2),
1 9d(A,T; 1 0(AT.
—k2T22+ ( 2 13) ( 1 23) —
A1A2 afl A1A2 aEZ
1 O(A:M_()p;_zl);)éA
_T + 2 1 - —2M22 +
A AZ afl A1A2 afl
1 (42 M) _ _h
a2 (P1 p1),
A3A, 0&,
1 04, 1 9(4;M,,)
_T23 - = _|_ - - - ==
A AZ 652 A1A2 652
1 0(4A5M h
+ g __( 7).
A A2 0,
where: Ty 1, Ty2, Taz, T13, T, My, M5, M, are the forces and
momenta in the shell; A; = A;(&,,&,), A, = A,(§1,&,), ky =
ky(&1,&5), ky, = k,(&;,&,) correspond to Lame parameters

1
and median surface curvature parameters; 7, ==
1

_lell

k_2,
(&1,&2) € Q3 pf, p1, P2, P2, P3, p3 are given functions;
it holds:

28

DOI 10.1515/ama-2015-0006

E;h Exh
Tou = (1_2192) (‘gaa + 1925[3[3); Ty, = m 12
Tys = k'G'heys;
Eoh3 ] Eoh3
My = 12(?_1922) (Xaa + 192)([?[?): M, = m)ﬁz

where: a, 8 = 1,2, a # 8; k', G' are constants that character-
ize transversely isotropic material; E, is the Young's modulus
of the shell, 9, is the Poisson’s ratio.

The strains €1, €22, €12, €13, €23, X11, X22: X12 are ob-
tained from the relationships:

1 0vy 1 aAa
Eqa = Ea-l_AaAﬁ B A7 6f + kaW,
Va P
4 07% 4507 19
zgaﬁ = Eé Aia_fﬁ a3z = _kava +E%+Va
1 aya 1 dA,
X - Y
w =5 T Ag P ogg
L T L
@ TN 08,  AgAg C g, | A, 0%,
pYe o3t
_ ka v 6A3+A_a Aa_I_Aﬁ AB
AaAB 0¢q  Ap 0Sp  Ag 08,
where: @, = 1,2, a # f; vi = v1(§1,$2), V2 = v2(§1,62),

w=w(,8), v1=v1(182), v2 =v2(§1, &) are the
displacements and angles of revolution in the shell;

pt=(1+k2) (14 k20,

vi=(1-k3)(1

Here o, 03, i = 1,2,3 are the components of the stress
tensor on the top (&5 = g) and bottom (é5 = —g) surfaces of the

shell. It is known that in the case of isotropic bodies we have
K =326 =-22_
6 2(1+9,)

On the outer edge of the thin part we impose boundary condi-
tions either on the displacements v,, v,, w and angles vy, v»
or on the forces T, 1, T, T13, To3 and momenta M, ,, M,, in the
shell (depending if the corresponding parts of the boundary are
subjected to load or free). At the outer surface of the shell we
prescribe to o4 and o3, i = 1,2,3 some given stresses.

The operator form of the equations of Timoshenko shell theory
is:

—k2) 05,1 =123,

ly=g (4)
with:
g = A145(91, 92, 93, 9 gs)T
91 =0 +DP1:92 =5 +p3:95 =p3 — D3,
h _ h _
gs=5@f —p1)i g5 =5 (7 —p2)

y= (VI'VZ’W'YI'YZ)T7 Ly = (11; l2! l3! l4—! S)T
_ a(AZTll) aAZ T 1 a(AZle)
! 231 08, 7 A, 0%,

9 (?11 M) g,

—A1AkqTy5 — —ky—
142K1113 98, 23¢,
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L 04 0(ATy) 1 0(A3Ty,)
2708 0E, A, 0§
A
A, Ak, T, 6(722M22) k aAZM
1412121423 afz 1 651 12
a(A2T13) a(AlTZS)
l, = A, Ak, Tyy + A Ak, Ty — -
3 14121411 1412121422 651 65—2

a(AZMll) aAZ 1 a(A%MIZ)
_— _M22 —_
afl afl Al 662

041 9(AiMp;) 1 3(A3My,)
b= Adalos ¥ g M =58 "1, a5,

Let us write down the weak formulation of the Timoshenko
shell theory problem. Without loss of generality we assume ho-
mogeneous boundary conditions. Let us define the following
function spaces: V = {v € H*(Q}):v =0, £ = (§,5,,&) €
Lp}, Vi = V5, where I, is the part of the outer boundary of Q,
on which the kinematic boundary condition is prescribed.

The weak formulation of the problem (4) has the form:
findy € V,, such that:

a(y' V) = g(")! Vv e Vl! (5)

where: a(y,v) = (Ly,v), g(v) = (g v).

Lemma. Assume that for the problem (4) there exist positive
constants 7y, 729, A10, A2¢ Such that:

1.l =10 > 05 || 2130 > 0;

2. A1l 2 A10>0;]45] 240> 0

almost everywhere in Q3.

Then the bilinear form a(y, v) for the problem (5) of Timo-

shenko shell theory is continuous.
Proof. Firstly, we remark that from the assumption 1) it follows
that |kq| < k1o < 0, |k;| < kyo < 0. Moreover, the assump-
tions of the lemma do not restrict the class of the problems or the
algorithm that can be used for the numerical solution of this prob-
lem. Indeed, for the points, for which the assumptions do not hold,
the system becomes singular and can no longer be used for the
adequate description of the physical process that is being mod-
eled.

The continuity of the bilinear form follows from the fact, that all
the coefficients in the system (4) are bounded by modulus almost
everywhere, and that the system (4) itself is linear.

The proof also uses the obvious inequality:

ly = A1A;T 5 —

2 b2
ab s%fora,beR.

In order to couple the models in both parts, adequate bounda-
ry conditions need to be specified. Let us denote by Q,;,, part of
the inclusion that lies inside the body Q, and by Q5,,, part of the
median surface Q5 which is the projection of Q,;,, on the surface
$3=0.

Let I7 be a boundary, common to both Q; and (. Let us di-
vide I; into the following parts:

Iy, {E = (§1,62,63): (§1,82) € Qg &3 = _g}

§=(81,62,83): (§1,&2) € Qs
I, = h h

f1=ffi—§S53S§
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§=(§1,62,83): (§1,&2) € Qs
n = h h

s §z=f§’2—5553§§

flop'
I

h
" {E = (§1,62,63): (§1,62) € Qs &3 = E}

Q)

X2
Fig. 2. Cross-section of the body in Q by the plane x; = const.

Fig. 2 shows the cross-section of the body in Q by the plane
x, = const and the connection between rectangular x, x, x3
and curvilinear &, &,, &5 coordinate systems.

On each part of I; the following coupling conditions are pre-
scribed (Pelekh, 1978):
— on [}, (inner part of bottom surface of Q,):

h h
Up =W, Uy, =—Vg + ;]/1! Up, =~V +;Y2!
Onn = —033, Ong, = —013, Ong, = —033; (6)

— on[j, (inner edge of Q,):

Up, =W, U, = —Vy — &3Y2, Uy = Vi + &3Y4,
R R L

f_zganndfz =T, f_zﬁanrldf3 = T3, f_zﬂamzd& = Tia,
22 22 2

f_zgannsz3dsz3 = M, f_zﬁanrzf3df3 = My, (7)
2 2

— on [y, (inner edge of Q,):

U, =W, Uy, = —Vy — §3Y1, Uy = Vy + &3Y0,
h h h

f_zﬁ Onnd$z = Tz, f_zﬁ Onr, d$3 = Tys, f_zﬁ Ong, d§3 = T1a,
2 2 2
h h

f_Eﬁo_nn€3d€3 = M22: f_EEUn‘rl€3d€3 = M12; (8)
2 2
— onI;, (inner part of top surface surface of Q).
h h
Up = —W, Uy =V + Y1 U, = V2 + 272,
Onn = _0-3:'-37 Ong, = 0-1+37 Ont, = 0-2+3- )

3. DOMAIN DECOMPOSITION ALGORITHM

For the numerical solution of the model domain decomposi-
tion algorithm can be used.

The approximate solutions in both domains are connected us-
ing Dirichlet-Neumann scheme (Quarteroni and Valli, 1999). Do-
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main decomposition algorithm has the following form:

1. set an initial guess A° for the unknown displacements on the
interface I3, set e > 0;

2. for k = 0,1, ... solve the boundary value problem in Q; with
the displacements equal to AX to obtain the approximation for
the forces and momenta in Q,, using (6)-(9);

3. solve the corresponding problem in Q, to find the displace-
ments wuy;, uf , uk, onIy;

4. update the displacements A¥ on I}:

- only:
A= (1-0)A%, + ouk, Al =1-0)2% + Bufl,

M3t =1-0)A + eu’;z;

- only:
AEFL = (1-0)2%, +6vE, A3 = (1 - 0)2%, + 6vE,
"“ = (1-0)A%; + owk, "“ = (1-0)2%, +0yk,
"“ =(1-0)2A% +6y¥;

- only:
k+1

Al = (1 - 0)A%, + vk,
’<+1 = (1 - 0)A%, + oy,

= (1 - 0)A%, + vk,
’<+1 = (1-0)A%, + 6wk,

"“ = (1-0)2A% + 6yF;
- onflj:

AL = (1 - 0)2%, + 0uk,

At = (1 - 0)Ak, + ouk,

k+1

= (1 - 0)2%; + 0uk,,

where 8 > 0 is a relaxation parameter;

5. if ||Ak** —AK|| > &, then go to step 2, otherwise the algo-
rithm ends.

In the following we assume that the variational problems cor-
responding to the domains Q;, Q, and € have unique solutions
(Hsiao and Wendland, 2008; Vynnytska and Savula, 2012; Dyyak
and Savula, 1997).

Let us prove the convergence of the domain decomposition
algorithm and the existence and uniqueness of the solution of the
corresponding Steklov-Poincare equation.

For this purpose let us introduce on the common boundary
of both domains the function ¢ € A, with:

A={¢ = (91,92, 903 94},
@1 = (@11, P12, P13), ¢1; € Hl(l",l),i =123;
©2 = (P21, V22, V23, P24 P25))

1
21 = 921(§) € HE(GZ)'

©3 = (P31, P32, P33, P34, P35),
1
@3 = @3i(&) € HZ([}3)'

@4 = (Qa1) Paz) Pa3z), Pai € HI(IL).i =123.

We remark, that the choice of the space A is motivated by the
specifics of the model and is based on the regularity of the corre-
sponding functions on each part of the interface I;.

The connection between the functions ¢;; and the displace-
ments on the interface is the following:

i=1,2345;

i=1,2345;
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- only:
P11 = Un, P12 = Ug, P13 = Ug,,
- only:

P21 = V1, P22 = V2, P23 =W, P4 = V1, P25 = V2,

- only:

P31 = Va2, P32 = V1, P33 = W, P34 = V2, P35 = V1,

- only:

Pa1 = Up, Paz = Ugy, Paz = Ug,.

Let S be a Steklov-Poincare operator for our problem and
S;,i = 1,2 be local Steklov-Poincare operators corresponding to
the domains ;. Steklov-Poincare operator for the boundary-
value problem is an operator that transforms boundary conditions
of one type into boundary conditions of another type. In our case,
Steklov-Poincare operator transforms the displacements on the
boundary into loads on the boundary.

Let us multiply interface conditions (6) by A;A, (1—
—ky2) (1=K, 2): (7) and (8) - by = (9) - by A4, (1+

h h
+hy2) (14 k2 2).
The Steklov-Poincare operator can be written in the form:

{So, W3, = {S10, ¥}, + {S290, W}, where:

{81003, =

= (—A4; (1= k1 2) (1= k2 2) 0n (@), a1)r,, +
+(=A1Az (1= k1 ) (1 = k2 5) O, (@) Wi2dr, +
+(=A1Az (1= k1 ) (1 = k2 5) O, (@) Wadr, +
+(=AyA (1+1s %) (14 k2 2) 0 (@), Yar)r, +
+ (=44 (14 k3 2) (14 Kz 2) e, (0, W)y, +
+Hdudy (14 ke 2) (14 k22) G, (@), Wiaodry, +

+ (_%ffgann((p)df3’¢21)r12 +
_%fé Onz, (@)dE3, Ya2)r,, +
_%fé Onr, (@)E3,Y23)r,, +
—%f_gg Gun(@)E3E3  Poadr, +
1 f Gy (@)E3 A3 Pos)ry, +

+ (—%f_gg Tnn(@)dS3, P31dr,, +
_%f_gg Onr, (@)E3, Y32)r,, +
_%f_gg Onr, (@)dE3, Y33)r,, +

+ (—%f_% O (9)é3483, Wsadr, +

h
+ (_ % f_zl_l o-n‘rl ((P)E3df3 ’ ¢35>F13'



]

DE GRUYTER
OPEN

DOI 10.1515/ama-2015-0006

S0, ¥, =

= (—A4; (1 =k, 2) (1= k2 2) 053, ¥radry, +
iy (1= 105) (1= ka3) o5 Y, +
+(=Ash, (1= ks 5) (1= ko 3) 033, Wisdry, +
+(=Ayhy (1+4a 5) (14 ko 3) 0 Wandr, +

h
+ (A1A2 (1 + kl E) (1 + kz E) 0-1+3, lp42>['14 + <A1A2 (1 +
h h 1

+hky ;) (1 + k, ;) 033 Yazdry, + T Youdry, +

1 1 1
+ (ET12:¢22)FIZ + (E T13'1/)23>r,2 + <EM11v¢24>r,2 +

1 1 1
+ (EM12:1/’25>1“12 + (ET22v¢31)I’13 + (E T12v¢32>1"13 +

1 1 1
+ (ET23:¢33)FI3 + (EM22:¢34-)I’13 + (EM12v¢35)I’13

with (u, v)r, being a bilinear form:
1 *
(wv)p, = fr, uvdl}, Vv € HY?(I}),Vu € <HE(1‘,)> .

Let Q, Q4, Q, be preconditioners of the domain decomposi-
tion algorithm for the Dirichlet-Neumann scheme (Quarteroni and

Valli, 1999), where: Q = Q; + Qz, {Q10, ¥}y, = {S10, U},
{Q0, L|J}1", = {S;0, L|J}1",-

In the case of Dirichlet-Neumann scheme the preconditioners
Q, Q, and Q,, coincide with Stelkov-Poincare operators S, S; and
S, respectively.

Let us investigate the properties of the Steklov-Poincare op-
erators S, S, S,.

The linearity and symmetry of S, follows directly from the lin-
earity of the corresponding operator in €15, median surface of Q.
Theorem. Operator S, is continuous and positive—definite on A.
Proof. Let us rewrite operator S, in the form:

20, W3, =

= Jj, Ashs ((1 +k1§)(1 + ke 2) o5y — (1 - klg)(l -
—ky %) o33 ) W + [, Ay (1410 %) (14

) o+ (1- k) (1 ke &) o2 ) 92 +
b {(1 8o (1) (-
—ky%) alg)yld(z; + [y Ardy ((1 +hi o) (14

2 oty + (1 k) (1 - ko) o ) 72005 +
(kD)0 () -
k%) 073 ) 1200 + G Tan, by, + T T, +

+ 4 Tass Whry, + G Man, Vadry, + G- Mz To)ry, +

+ Ty, Vadry, + G Tia Ty, + (G Tos, Wy, +

+ My, Vory, + G Mao, Vo)

Let us substitute the corresponding left-hand sides from the
Timoshenko shell theory model equations (4). As a result, we can
prove the continuity and coercitivity of the local Steklov-Poincare
operator S, taking into account properties of the operator (4). It is
known, that the operator (4) is coercive (Vynnytska and Savula,
2008).

acta mechanica et automatica, vol.9 no.1 (2015)

Therefore, we obtain:

{S20, 03, 2 ¢ [, ((Z—;i)z + (%)2 + (;%)2 + (%)2 +
2 2 2 2 2 2
+Ge) G +(G) G +G) G +
+Vf+V§+w2+yf+y§>dQ§,c¢0. (10)
From (10) it follows that:

a hdy,\2 F}
{sch,cp}r, o (- a;; B) 4 (~22 4

+ (g—;"l) + (%) +(—vitivi) + (v + %yz) +

w?)d0; + Hlgal’s -+ clgsls
H2 FIZ 13)

+c2 [, <(Z—‘;+§Z—2)Z + (%+%2%) + (2%+
o)+ i)+ () ()
+ (v1 +%y1) + (v2 +EY2) + w2) dQs,

¢ >0,i=1,234

Therefore, the operator S, is coercive on A.

Let us prove the continuity of S,. The continuity of S, follows
from the continuity of the operator for the problem (4) in Q3.

Using the continuity of the operator for the problem (4), we

get:
20,00, < 02 (1, (22) + (22) + () +
2 2 2 2 2 2

+Ge) +Ga) +Ge) +Ga) +(Ge) +Ga)
+(%)2 + v+ i+ w? +y7 +y§>dﬂ§> X

(s () + () + G + G + G’
PGR) G G () () ot +
+V2 + W2 + §? +v§>dn;) ! ,C>0.

As aresult, S, is continuous.

Let us consider now the local Steklov-Poincare operator S,
and rewrite it in the form:

{S10, ‘ll}r, =

= (—AA; (1= ky 2) (1= k2 2) Gun (@) ), +
+(=A4, (1= ks 5) (1= k2 3) Oue, (9D, e, )r, +
+ (=44, (1= ks 5) (1= k2 3) Oury (0), ey )r, +
+(=AAy (14 k1 5) (14 k2 3) Oun(0), ), +
+ (=44 (14 ks %) (14 k2 2) e, (0,2, ), +
+(-A A2 (14 ke 2) (1 + k2 2) One, (@), z,)ry, +

+ ( h f_ﬁ O_nn((p)d% ’ un)l"lz +

h
1 2

+ (E f_zl_l Onrt, (9)dés, U, )FIZ +
2
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h
L2
+ (_zf_zg One, (@)AS3, U )y, +
2
K
L2
+ <_;f_zg Onn (@S, Up)r;, +
2

n
L2

+ <_;f_zg One, (@)AS3, U, )y, +
2

h
.

+ (; f_zg One, (@)dS3, u11>r,3 .
2

Since the Steklov-Poincare operator for the problem of linear
3

1
elasticity theory is linear, continuous and coercive on (HE(I}))
(Hsiao and Wendland, 2008), and using the continuous and com-

1
pact embedding H*(D) cc Hz(D) for a strong Lipschitz do-
main D (Hsiao and Wendland, 2008), we get that the operator S;
is linear, continuous and positive on A (assuming that the corre-
sponding tensions are prescribed as boundary conditions on each
part of the interface I3).

It is obvious that the Steklov-Poincare operator S is therefore
linear, continuous and coercive.

As a result, the preconditioner operators Q, Q, and Q, are al-
so linear and continuous, and the operators Q and Q. are coer-
cive. Moreover, operator Q. is symmetric.

By Lax-Milgram lemma, the corresponding Steklov-Poincare
equation has unique solution.

Let us state the theorem about the convergence of domain
decomposition algorithm (Niemi et al., 2010).

Theorem: (the convergence of domain decomposition algorithm).

Let:

— operator Q, be continuous and coercive on a Hilbert space X;
— operator Q, be continuous on X;
— operator Q, be symmetric and operator Q be coercive on X.

Then for arbitrary A° € X iterations:

A =2k 4+ 6Q;1 (G — QAX)
converge in X to the solution of the equation:
QA=G

for arbitrary 6 satisfying 0 < 0 < 0,,4-

Therefore, we have formulated and proven the following

Theorem: Let:

— the Steklov-Poincare operator corresponding to the problem
of linear elasticity (1) with corresponding boundary conditions
be continuous, symmetric and coercive on the corresponding
trace spaces defined in Hsiao and Wendland (2008);

— the assumptions of Lemma hold;

— Ay, Ay ky, ky € L2(Q0).

— Then the iterative Dirichlet-Neumann scheme for the problem
(1)-(4), (6)-(9) with the Dirichlet boundary conditions imposed
on the outer edge of the thin part is convergent for some re-
laxation parameter 8 where 0 < 6 < 0,44
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Proof: Follows from the theorem about the convergence of do-
main decomposition algorithms  (Dirichlet-Neumann scheme)
(Quarteroni and Valli, 1999).

4. CONCLUSIONS

We propose a domain decomposition algorithm for the compu-
tation of the stress-strain state of the body with thin inclusion.
Based on the fact, that the corresponding problems in both parts
can be solved separately, one can efficiently solve them preserv-
ing the structure and properties of the resulting matrices in both
parts. Since the inclusion is modeled using Timoshenko shell
theory, the dimension of the problem in the thin part is decreased.

We prove that the corresponding Steklov-Poncare interface
equation is well-posed and that the proposed algorithm converges
for the appropriately chosen relaxation parameter, which gives the
theoretical background for implementation of the proposed algo-
rithm.
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