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Abstract: Analytical and numerical solution for transient thermal problems of friction were presented for semi limited bodies made from 
thermosensitive materials in which coefficient of thermal conductivity and specific heat arbitrarily depend on the temperature (materials 
with arbitrary non-linearity). With the constant power of friction assumption and imperfect thermal contact linearization of nonlinear problems 
formulated initial-boundary thermal conductivity, using Kirchhoff transformation is partial. In order to complete linearization, method of suc-
cessive approximations was used. On the basis of obtained solutions a numerical analysis of two friction systems in which one element 
is constant (cermet FMC-845) and another is variable (grey iron ChNMKh or aluminum-based composite alloy AL MMC) was conducted. 
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1. INTRODUCTION 

Developing analytical or analytical – numerical solutions of heat 
conduction problems with regard to the frictional heating is neces-
sary in designing new types of friction nodes (eg. the choice of fric-
tion material, estimation of the temperature level, selection of the 
process operational parameters, etc.). In such modeling method 
the real friction pairs are replaced by systems such as: strip - half-
space, strip - strip or semi-space - semi-space. 

Friction heat problem solution for a homogeneous semi-space 
sliding at constant speed on the surface of the second semi-space, 
with constant thermophysical materials properties and perfect ther-
mal contact condition fulfillment are presented in Grylitsky (1996) 
monograph, and solution taking into account  imperfect thermal 
contact – in work: Sazonov (2008). 

Frictional heating during two semi-space, strip and semi-space, 
slipping with a constant delay and the two strips system with regard 
to various kinds of conditions of thermal contact was examined 
in works: Nosko et al. (2009), Yevtushenko et al. (2013, 2014), Bar-
ber (1976). Details on methods for solving one-dimensional thermal 
problems of friction with constant thermophysical materials proper-
ties are given in monograph Kuciej (2012).   

The analysis of literature sources concerning analytical or ana-
lytical-numerical modeling of heat generation processes due to fric-
tional forces, shows that models considering constant thermophys-
ical properties of friction materials are very well developed. 
Whereas, solutions involving a non-linearity of frictional materials 
pairs have been so far developed in an insufficient number 
of cases. 

Homogeneous semi-space surface frictional heating with linear 
dependence of thermal conductivity coefficients and specific heat 
of the temperature at a constant ratio of the thermal diffusivity (ma-
terial with a simple non-linearity) was examined in the work: Abdel-
Aal, (1997), Abdel-Aal et al. (1997), Abdel-Aal and Smith (1998, 
1998b). Methods of solving one-dimensional initial-boundary prob-
lems of thermal conductivity for the two semi-spaces sliding against 

one another at a constant linear velocity or semi-space made of ma-
terials with a simple non-linearity, are proposed in the work: Och 
(2013), Evtushenko et al. (2014), Yevtushenko et al. (2014, 2014b), 
whereas solutions involving arbitrary non-linearity (thermophysical 
properties of materials change under the influence of temperature 
in any way) in the work: Yevtushenko et al. (2014c, d). 

Surveys of analytical and numerical methods for solving initial-
boundary problems of heat conduction for materials with tempera-
ture-dependent thermal properties are presented in the work: Kush-
nir and Popovych (2011), Yevtushenko and Kuciej (2012). 

The present work is a continuation of studies presented in arti-
cle Och (2013), where case of simple thermal nonlinearity of mate-
rials was considered. Whereas in this work friction elements mate-
rials are characterized by arbitrary non-linearity. 

2. STATEMENT OF THE PROBLEM 

Let the two semi-limited thermally sensitive bodies with the 

same initial temperature 𝑇0 be compressed at infinite and constant 
pressure 𝑝0 in the parallel direction to the 𝑧 axis of the Cartesian 

coordinate system 𝑂𝑥𝑦𝑧 (Fig. 1). At initial point of time 𝑡 = 0 bod-

ies start to slip with a constant speed 𝑉0 in the positive direction of 
𝑦-axis. Due to the friction forces, on the contact surface 𝑧 = 0 heat 
is generated, which penetrates into the contacting bodies - heating 
them. 

It was assumed, that the sum of heat fluxes intensities directed 
perpendicularly from the contact surfaces to the inside of each con-

tacting body, is equal to the specific power of friction forces 𝑞0 =
𝑓𝑉0𝑝0 (Yevtushenko and Kuciej, 2012). Whereas the heat transfer 
through the surface of the friction takes place with constant coeffi-

cient of contact thermal conductivity ℎ (Podstrigach, 1963; Barber, 
1970). 

Further in these article, all values referring to the upper and 
lower semi-spaces will respectively have subscripts 1 and 2. 
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Fig. 1. The scheme of frictional heating 

Both, coefficient of thermal conductivity 𝐾𝑙  and specific heat 𝑐𝑙, 

𝑙 = 1, 2 of the two semi-spaces materials depend on temperature 
𝑇: 

𝐾𝑙(𝑇) = 𝐾𝑙,0 𝐾𝑙
∗(𝑇), 𝐾𝑙,0 ≡ 𝐾𝑙(𝑇0)

𝑐𝑙(𝑇) = 𝑐𝑙,0 𝑐𝑙
∗(𝑇), 𝑐𝑙,0 ≡ 𝑐𝑙(𝑇0)

                                       (1) 

𝐾𝑙
∗(𝑇), 𝑐𝑙

∗(𝑇) – dimensionless functions. Densities ρ𝑙, 𝑙 = 1, 2 
of considered bodies materials are constant. 

Taking into account mentioned above assumptions, the distri-

bution of transient temperature field 𝑇(𝑧, 𝑡) in semi-spaces 
is found from the following heat conduction problem boundary-
value solution:  
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𝑇𝑙
∗(ζ, τ) → 𝑇0

∗, |ζ| → ∞,   𝑙 = 1,2                                               (6) 
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∗,   |ζ| < ∞, 𝑙 = 1,2                                                 (7) 

where: 
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𝑎
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∗ =
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𝑎 – is a characteristic linear dimension. Further, as the value of this 
parameter, we take the effective depth of heat penetration, i.e. the 
distance from the contact surface, on which the temperature 
is equal to 5% of the maximal temperature on the surface of friction 
(Chichinadze et al., 1979). 

3. LINEARIZATION OF THE PROBLEM 

In order to linearize the non-linear boundary-value heat conduc-
tion problem of friction (2) – (7) we introduce the Kirchhoff’s function 
(Kirchhoff, 1894): 

Θ𝑙(ζ, τ) = ∫ 𝐾𝑙
∗(𝑇𝑙

∗) 𝑑𝑇𝑙
∗, 𝑙 = 1,2

𝑇∗

𝑇0
∗                                     (11) 

As a result, we obtained a sequence of linear boundary-value 

problems in relation to the functions Θ𝑙
(𝑖)

(ζ, τ), 𝑖 = 0,1, . . ., that 

are successive approximations of the sought Kirchhoff’s function 
(Yevtushenko et al., 2014c, d):  
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Θ𝑙
(𝑖)

(ζ, 0) = 0,   |ζ| < ∞,   𝑙 = 1,2 (17) 

gdzie: 
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∗(0)
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∗(𝑖)

= 𝑘𝑙
∗{𝑇∗[Θ𝑙
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 (19) 

(𝜁∗, 𝜏∗) – these are established values of dimensionless coordinate 
and time (8), for which we perform iteration. 

4. KIRCHHOFF FUNCTION 

By applying the Laplace integral transform (Sneddon, 1972): 

Θ𝑙

(𝑖)
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∞

0
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to the linear boundary-value problem (11)–(19), we obtain the fol-
lowing boundary problem for two ordinary differential equations 
of the second order: 
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Θ̅𝑙
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(ζ, 𝑝) → 0,   |ζ| → ∞,   𝑙 = 1,2 (25) 

Solution to the problem (21)-(25) takes form: 
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ζ1
(𝑖)

=
ζ

√𝑘0
∗𝑘1

∗(𝑖)
, ζ2

(𝑖)
=

|ζ|

√𝑘2
∗(𝑖)

, (27) 

β(𝑖) = 0.5ε−1𝐵𝑖(𝑖)𝑚(𝑖), 𝑚(𝑖) = √𝑘∗(𝑖) + ε, (28) 

𝑘∗(𝑖) =
𝑘1

∗(𝑖)

𝑘2
∗(𝑖), ε =

𝐾0
∗

√𝑘0
∗. (29) 

Applying the inversion formulae (Bateman and Erdelyi, 1954): 

𝐿−1 [
β 𝑒−α√𝑝

𝑝√𝑝(√𝑝+β)
; τ] = Φ(α, τ)  − β−1Ψ(α, β, τ) (30) 

𝐿−1 [
β 𝑒−α√𝑝

𝑝(√𝑝+β)
;  τ] = Ψ(α, β, τ), α, β ≥ 0 (31) 

Φ(α, τ) = 2√τ ierfc (
α

2√τ
), τ ≥ 0 (32) 

Ψ(α, β, τ) = erfc (
α

2√τ
) − 𝑒αβ+β2τerfc (

α

2√τ
+ β√τ) (33) 

to the solutions (26)-(29), we obtain: 

Θ1
(𝑖)(ζ, τ) =

1

𝑚(𝑖)
[Φ(ζ1

(𝑖)
, τ) + γ1

(𝑖)
Ψ(ζ1

(𝑖)
, β(𝑖), τ)],           

ζ ≥ 0, τ ≥ 0 (34) 

Θ2
(𝑖)

(ζ, τ) =
√𝑘∗(𝑖)

𝑚(𝑖) [Φ(ζ2
(𝑖)

, τ) + γ2
(𝑖)

Ψ(ζ2
(𝑖)

, β(𝑖), τ)]  

 ζ ≤ 0, τ ≥ 0
 (35) 

γ1
(𝑖)

=
(√𝑘∗(𝑖)−ε)

√𝑘2
∗(𝑖)

(√𝑘∗(𝑖)+ε) 𝐵𝑖(𝑖)
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(𝑖)
=
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√𝑘1
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(√𝑘∗(𝑖)+ε) 𝐵𝑖(𝑖)
 (36) 

In particular case 𝜁 = 0 from solutions (34)–(36) we obtain: 

Θ1
(𝑖)

(0, τ) =
1

𝑚(𝑖) [φ(τ) + γ1
(𝑖)

ψ(β(𝑖), τ)],τ ≥ 0 , (37) 

Θ2
(𝑖)

(0, τ) =
√𝑘∗(𝑖)

𝑚(𝑖) [φ(τ) + γ1
(𝑖)

ψ(β(𝑖), τ)], (38) 

φ(τ) = 2√
τ

π
,  (39) 

ψ(β(𝑖), τ) = 1 − 𝑒β(𝑖)2
τerfc(β(𝑖)√τ). (40) 

5. ITERATIVE SCHEME 

To find the relation between temperature and Kirchhoff's func-
tion the form of functions 𝐾𝑙

∗(𝑇𝑙
∗) and 𝑐𝑙

∗(𝑇𝑙
∗) should be  specified  

(1). We assume that these are polynomials: 

𝐾𝑙
∗(𝑇𝑙

∗) = ∑ 𝑎𝑙,𝑛(𝑇𝑙
∗)𝑛𝑁𝑙

𝑛=0 , 𝑐𝑙
∗(𝑇∗) = ∑ 𝑏𝑙,𝑛(𝑇𝑙

∗)𝑛𝑀𝑙
𝑛=0        (41) 

where 𝑎𝑙,𝑛 and 𝑏𝑙,𝑛 - are known coefficients for materials of each 

considered friction pairs. We use both equations (41) to find the 

function 𝑘𝑙
∗(𝑇𝑙

∗) (10). In addition, substituting the function 𝐾𝑙
∗(𝑇𝑙

∗) 
(41) into equation (10), after integration we obtain the relation be-
tween temperature and Kirchhoff's function: 

Θ𝑙(ζ∗, τ∗) = ∑ 𝑎′𝑙,𝑛{[𝑇∗(ζ∗, τ∗)]𝑛+1 − (𝑇0
∗)𝑛+1}𝑛

𝑛=0           (42) 

where 𝑎′𝑙,𝑛 = 𝑎𝑙,𝑛/(1 + 𝑛), 𝑙 = 1, 2. Using the method of least 

squares we located dependency inverse to (42): 

𝑇𝑙
∗(ζ∗, τ∗) = ∑ 𝑐𝑙,𝑛[Θ𝑙(

𝑁𝑙
𝑛=0 ζ∗, τ∗)]𝑛, 𝑙 = 1, 2                      (43) 

where𝑐𝑙,𝑛 - are known coefficients. 

For the zero approximation (𝑖 = 0, 𝑘𝑙
(0)

= 1, 𝐵𝑖(0) = 𝐵𝑖) 

solutions (34) – (40) are coincident with boundary-value problems 
solutions with constant thermo-physical properties of materials (Sa-
zonov, 2008). The relation between temperature and Kirchhoff's 
function at this iterative step is linear:  

𝑇𝑙
∗(0)

(ζ∗, τ∗) = Θ𝑙
(0)

(ζ∗, τ∗) + 𝑇0
∗, 𝑙 = 1,2. (44) 

For successive approximations (𝑖 ≥ 1) we begin with calculat-

ing the values of 𝑘𝑙
∗(𝑖)

, 𝑙 = 1,2, (17) and 𝐵𝑖(𝑖) (18) and finding 

the function Θ𝑙
(𝑖)

(ζ∗, τ∗) (34) - (36) or Θ𝑙
(𝑖)

(0, τ∗) (37) – (40),  

𝑙 = 1,2. Then from the formula (43), we obtain an approximation 

of the dimensionless temperature 𝑇𝑙
∗(𝑖)

(ζ∗, τ∗) or 𝑇𝑙
∗(𝑖)

(0, τ∗), 

𝑙 = 1,2. The convergence of an iterative process in (ζ∗, τ∗) is mon-
itored by checking the inequality (Euclidean norm): 

√(
𝑇1

∗(𝑖)
−𝑇2

∗(𝑖−1)

𝑇1
∗(𝑖) )

2

+ (
𝑇2

∗(𝑖)
−𝑇2

∗(𝑖−1)

𝑇2
∗(𝑖) )

2

≤ 10−6. (45) 

6. NUMERICAL ANALYSIS AND CONCLUSIONS 

The calculations have been made for the following friction pairs: 
gray iron ChNMKh - cermet FMC-845 and composite on aluminum 
alloy base AL MMC - FMC-845. These materials are used to pro-
duce friction elements of braking systems (Chichinadze et al., 1986; 
Kim el al., 2008). The values of the thermophysical properties of se-
lected materials at temperature 𝑇0 = 20 ∘C are given in Tab. 1. 

Graphs of functions 𝐾𝑙
∗(𝑇∗) and 𝑐𝑙

∗(𝑇∗) (41), for the consideraded 
friction materials are shown in Fig. 2, and the corresponding values 

of the coefficients 𝑎𝑙,𝑛, 𝑏𝑙,𝑛 and 𝑐𝑙,𝑛, 𝑛 = 0,1,2,3 are given 

in Tab. 2. We can notice that the coefficient of thermal conductivity 
of gray iron ChNMKh and cermet’s FMC-845 decreases with in-
creasing temperature, and AL MMC increases in the range  

0 ≤ 𝑇∗ ≤ 0.5, and then for 0.5 < 𝑇∗ ≤ 1.3 decreases, and next 

for 𝑇∗ > 1.3 rise again. Specific heat of all considered materials 
increases with increase of temperature. Calculations were per-

formed for the following input parameters: 𝑞0 = 1MW/m,  

𝑎 = 5 mm, 𝑇𝑎 = 204 ∘C and 𝐵𝑖 = 5. 

Tab. 1. The thermo-physical coefficients values of the materials  

            at the𝑇0 = 20 ∘C 

Materials 
𝐾0  

W/(m ⋅ C) 

𝑐0 

J/(kg ⋅ C) 

ρ 

kg/m3  

FMC-845  

(Chichinadze et al., 1986) 
24.5 392.2 6000 

ChNMKh  

(Chichinadze et al., 1986) 
51 500.1 7100 

AL MMC  

(Kim el al., 2008) 
155.75 874 2730 

Evolutions of the dimensionless temperature on the contact 
surface of two selected friction pairs ChNMKh–FMC-845 and AL 
MMC–FMC-845 are presented in Fig. 3. The calculations have 
been made with taking into account friction materials thermal prop-
erties changes influenced by temperature (solid lines) and at the 
constant thermal properties of these materials (dashed lines). 
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Tab. 2. The approximation coefficients values 

 𝑛 0 1 2 3 
F

M
C

-8
45

 𝑎𝑛 1 0.001799 -0.019018 0.001953 

𝑏𝑛 1 0.000547 0.048323 0.001003 

𝑐𝑛 0.098041 0.99977 0.001746 0.005215 

C
hN

M
K

h 𝑎𝑛 1 -0.112   

𝑏𝑛 1 0.325214 0.065993 -0.027336 

𝑐𝑛 0.098543 1.012837 0.05264 0.011315 

A
L 

M
M

C
 𝑎𝑛 1 0.356782 -0.421682 0.141147 

𝑏𝑛 1 0.209544 -0.147707 0.062199 

𝑐𝑛 0.097949 0.926329 0.002449 -0.00639 

The temperature increases monotonically during the whole pro-
cess of frictional heating, which is characteristic for the heating pro-
cess at the constant power of friction forces (Grylitsky, 1996). 
The effect of thermal sensitivity with temperature increase is most 
noticeable for the cermets in the case of frictional pair ChNMKh-
FMC-845 (Fig. 3a). However for gray iron ChNMKh temperature 
difference after certain time from beginning of the frictional heating 

process (τ ≈ 0.5), reaches predetermined value. Taking into ac-
count FMC-845 thermal sensibility results in temperature increase, 
and decrease in ChNMKh, compared to the temperature values 
found at constant thermophysical properties of materials. This is 
caused by cermet FMC-845 coefficient of thermal conductivity 

(1%) and specific heat (2.5%) decrease at 0 ≤ τ ≤ 2. Corre-

sponding values for ChNMKh gray iron are 7% decrease of𝐾∗ 

and 21% increase of 𝑐∗. It is a significant increase of𝑐∗ in the gray 
iron semi-space (despite the 𝐾∗ decrease) which caused a slight 
decrease in temperature. 

 
Fig. 2. Dependence of thermal conductivity 𝐾∗(solid lines) and specific 

            heat 𝑐∗ coefficient (dashed lines) on the dimensionless  

            temperature 𝑇∗ for the considered materials: ChNMKh,  

            AL MMC, FMC-845.    

In the case of the second friction couple AL MMC - FMC-845 
(Fig. 3b), the difference between the temperature calculated 
with taking into consideration nonlinearity of materials and at con-
stant thermo-physical properties is also increasing, but much more 
slower than in the case of the first friction pair. Consideration of ma-

terials thermal sensitivity causes a decrease in temperature on sur-
faces of both semi-spaces. For an AL MMC aluminum alloy 10% 
increase in coefficient of thermal conductivity 𝐾∗ and 6% increase 

in specific heat 𝑐∗ at 0 ≤ τ ≤ 2 causes, that the temperature dif-
ference calculated with and without taking into consideration 
the thermal sensitivity is significantly greater than cermet FMC-845. 

In both considered cases, the temperature on semi-spaces sur-
face made from cermet FMC-845 is always higher than the temper-
ature on gray iron ChNMKh semi-spaces surface or aluminum alloy 
base composite AL MMC. This is due to significantly worst inferior 
thermal conductivity of FMC-845 when compared to ChNMKh 
and AL MMC (Tab. 1 and 2). 

a)  

b)  

Fig. 3. Evolution of the dimensionless temperature on the contact surface 
            for two friction pairs at 𝐵𝑖 = 5: a) ChNMKh – FMC-845,  

            b) AL MMC – FMC-845 (solid lines – calculations with considered 
            materials thermal sensitivity; dashed lines – without materials  
            thermal sensitivity consideration 

Nomenclature: 𝑎 – characteristic dimension; 𝐵𝑖 – Biot number; 𝑐 – spe-

cific heat; 𝑐0 – specific heat at an initial temperature; ierfc(𝑥) =

π−1/2𝑒−𝑥2
− 𝑥 erfc(𝑥), erfc(𝑥) = 1 − erf(𝑥), erf(𝑥) – Gauss error 

function; 𝑓 – friction coefficient; ℎ – coefficient of thermal conductivity of 

contact; 𝐾 – coefficient of thermal conductivity; 𝐾0 – coefficient of thermal 

conductivity at an initial temperature; 𝑘 – coefficient of thermal diffusivity; 

𝑝0– pressure; 𝑞0 – specific power of friction; 𝑇 – temperature; 𝑇0 – initial 

temperature; 𝑇∗ – dimensionless temperature; 𝑡 – time; 𝑉0 – sliding speed; 

𝑧 – spatial coordinate; Θ – Kirchhoff’s variable; ρ – specific density; τ – 

Fourier number; ζ – dimensionless spatial coordinate. 
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