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Abstract: In this paper is proposed the mathematical description of the temperature distribution resulting from the friction between the two 
inking rollers (one of which is made off steel and the second one has elastic layer) in the offset printing machine. So-called in printing in-
dustry steel vibrator roller perform simultaneously rotary and reciprocating motion. This reciprocating motion is the main source of the heat 
generation. Using the Laplace transform method for heat conduction equations with boundary conditions taking into account the real pro-
cesses taking place in the inking unit in contact area we obtained and analyzed the solution that could be useful for determination and reg-
ulation of parameters in order to decrease time of process stabilization. 
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1. INTRODUCTION 

During the printing process in the offset printing machine, 
temperature of the rollers in the inking unit and surrounding air 
increases gradually. This phenomena bases on the influence 
of the pressure between rotating rigid steel and rubber coated 
rollers and influence of the reciprocating motion along the roller 
pivot. The phenomena of temperature variations in the inking unit 
of the printing machines, particularly the offset printing machines 
which are characterised by a complex inking unit, is inevitable. 
Even in the machines, in which the inking units (more precisely 
selected inking rollers) are thermostatted, the fluctuations of the 
temperature are considerable (Chou et al., 1996). The main cause 
of temperature increase  in the inking unit is the friction between 
the flexible and rigid axially oscillating rollers. Temperature 
variations affect the quality of prints. The temperature increase 
in the inking unit leads to: 

 changes of the rheological ink properties (especially viscosity); 

 the instability of emulsion of ink and dampening solution; 

 the deposition of dust on a rubber blanket; 

 increased demand for dampening solution. 
This all negatively affects quality of prints. Therefore it seems 

to be important and reasonable to study this phenomena more 
carefuly and to built and solve the appriopriate mathematical 
model. Mathematical models describing the various processes 
in  the mechanical frictional contact presented by Awrejcewicz et 
al. (2013), Olejnik et al. (2013), Talati et al. (2009), Yevtushenko 
et al. (2009, 2012) were studied in order to compare various 
approaches and choose the own path. 

2. GEOMETRY AND ASSUMPTIONS OF MODEL  

In the inking unit of the offset press the ink is transported from 
the ink fountain to the plate cylinder through a set of rotating and 
being in contact rigid and covered with flexible layer rollers. Par-

ticular importance for the warm-up phenomenon have steel vibra-
tor rollers which simultaneously perform a rotary (frequency  ) 
and reciprocating motion. 

Due to the high real speed of rotating rollers (rigid vibrator 
roller is cooled by the liquid flowing inside the roller), the problem 
of the roller pair is simplified and reduced to the problem of the 

roller with liquid coolant inside   
 ( )    

   ( ) and roller’s 
surrounding, which on the border with the surrounding reaches 

the temperature ambient (surrounding) temperature   
 ( )  

  
   ( ) (Pyryev et al., 2010). The generated heat is a result 

of friction on the contact surface between rollers. The heat flux 

acts on the border of the roller      and surrounding (Fig. 1). 

 
Fig. 1. The transition from the real issue to the model 

In the case of axisymmetric state of roller temperature T1 state 
the heat conduction equation for an isotropic body in cooperation 

with cylindrical coordinates (     ) given by Carslaw et. al 
(1959) will take the form as follows: 
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with following boundary conditions (after Awrejcewicz et al., 
2009): 
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and initial conditions: 

0)0,(1 RT , 01 RRR   (4) 

Above we have taken indications as follows:   (   )– 

temperature increase of the roller,   – time,  ( )    
   ( ) – 

power density of friction,    – thermal diffusivity of a roller,   
  – 

heat transfer coefficient: (   ) between the coolant and 
material which the roller is made of (forced water flow in the pipe), 
(   ) between the surrounding (air) and material which the 

roller is made of (forced air flow near the surface of the roller),    

– thermal conductivity of the roller,   ( ) – dimensionless internal 

(   ) and external (   ) temperature,   
 ( )    

   ( ), 
  
 ( )    

   ( ) – temperature increase of the coolant 
and sorrounding.  

We assume that the reciprocating movement (and resulted 
from it friction) is the source of heat, and hence we assumed the 
formula of the friction power density: 

021 )()1()( pVVftQ rr  (5) 

where:    – average contact pressure, associated with a contact 
force   by formula        , where contact area width    
is found from Herz problem solution for two rollers (Jurkiewicz 

et al., 2011),    – relative velocity of being in contact rollers, 
 (  ) – kinematic friction coefficient,    – coefficient responsible 
for the part of the power which is lost e.g. because of wear,  

   – coefficient depending on time. 
After Blok (1940) we assume that kinematic friction coefficient: 

 (  )       (  ) and therefore we obtain: 

0021)1()( pVftQ r  (6) 

The construction and operation of the inking unit (rotary and 
reciprocating motion of the roller) results that the relative 
movement of being in contact rollers along the axis changes 
periodically: 

tZtZ sin)( 0  (7) 

where: – maximum relative displacement of the rollers,   – 
frequency of relative displacement of rollers (from the construction 

of the inking unit    ). 
The fact that the heat is generated by friction in changing 

contact area: 

   )(2 tZLatS   (8) 

where:  ( ) – contact area between rollers,   – length of the 
roller,is included by entering the depending on the time coefficient 

   into the formula (6) of the heat flux  ( ): 

12 )( StS  (9) 

where:    – area of the cylinder side         . 
Hence the coefficient: 
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The heat flux can now be written as: 
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Below, in Fig. 2, there is shown an exemplary graph of the 

function   ( ) for       . 

 
Fig. 2. The evolution of the heat flux due  

 to the rollers’ reciprocation motion 

3. NON-STATIONERY SOLUTION 

On the proposed model equation (1) we perform Laplace 
transform (Carslaw et al., 1959; Abramowitz et al., 1965) defined 

by the relationship (  – transform parameter): 
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As a result of the Laplace transform we obtain second-order 
differential equation (modified Bessel equations): 
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and boundary conditions: 
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The general solution of the equations system (16)-(18) has the 
form (Carslaw et al., 1959; Abramowitz et al., 1965): 
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We find required differential (Abramowitz et al., 1965): 
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After introducing equations (19)-(20) into the boundary condi-
tions (17)-(18) we get a set of two equations with two unknowns: 
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By entering constants obtained from the equations (21)-(22) 
into the general solution (19) we receive the final solution and 
write it in form: 
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By entering obtained from set of equations (21)-(22) constants 
into general solution (20) we receive the form of heat flux: 
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Above we have taken indications as follows:   ( ),   ( ) – 

modified  th-order Bessel functions, of first and second kind 

respectively Abramowitz et al., 1965),         
    ,     

    
     – Biot’s numbers (Carslaw et al., 1959). Temperature 

transform  ̅ (   ) and heat flux transform have been written 

in forms (23) and (24) by means of functions    
( )(     ), which 

are defined above. 
The Laplace transform of periodic function (14) has the form: 
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4. ANALYSIS 

The analysis of obtained Laplace transforms shows that the 
peculiarities of these transforms can be only zero points of the 
characteristic function  ( ) and the peculiarities of Laplace trans-

forms  ̅ ( ). 
Using the Laplace transform method and Borel convolution 

theorem we find the solution and write roller temperature and the 
heat flux in the forms as follows (Piętak et al., 2011; Jurkiewicz et. 
al., 2011): 

 )(

)exp(
)(

),(

)0(

)0,(
),(

0

1

1
2

0

1
1

th
dt

d

ts
ss

sRR
tRT

nn

k

k
kk

kn

n

n




















 



  (26) 

 )(

)exp(
)(

),(

)0(

)0,(
),(

0

1

1
2

0

1
1

th
dt

d

ts
ss

sRQRQ
tRQ

nn

k

k
kk

kn

n

n



















 



  (27) 

where:   (  )    ( )        . 

Roots    of the characteristic equation  ( )    lie on the 
negative part of the real axis of complex plane of Laplace trans-

form parameter, i.e.:       
 . 

For example, the thermostatted vibrator roller in the machine 
Heidelberg XL105 (according to technical drawing) has a diameter 

           
    and length             , width 

of the contact zone           , displacement of the roller 

along the axis           
   , coolant flow diameter 

         
   . We assume that: 

 the roller is made of steel (according to VanSant (1983): 

        (  ),          
      ); 

 the cooling fluid is the water at a temperature   
   ( ) under 

conditions of forced flow into the pipe (  
        

(  )); 
 and the surrounding is the air at the temperature   

   ( )  
under conditions of forced flow near the surface of the roller 

(  
      (  )). 

The preliminary analysis was performed for the case when 
functions   ( ) for         are Heaviside step functions 

 ( ) ( ( )    for     and  ( )    for    ). Instead 

of periodic function   ( ) with the period     we took in to 
account also the  Heviside function  ( ) with the amplitude equel 

to the average value    of this function: 
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We examine the case where at the surface of the roller 

     due to the friction acts the heat flux   with amplitude 

  
          , the surrounding temperature increases 

in amount of   
    , and the coolant temperature is lower 

in amount of   
      . 
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First roots of the characteristic equation  ( )    are as 

follows:            
  ,            

  ,    
          ,            

  ,            
  , 

        ,         ,         . 
Taking into account the the first 17 roots of the chareacteristic 

equation in the formula (26) we show in Fig. 3 the evolution of the 

changes in the temperature of the roller surface      (curve 
1). 

 
Fig. 3. The evolution of temperature changes at the roller surface  
                

Curve 2 presents roller surface temperature changes in case 
when the surrounding temperature increase and the coolant tem-
perature change are both zero. The change of the roller surface 

temperature (    ) in time in case when there is no friction 
and no changes of the surrounding temperature shows the curve 

3 in Fig. 3. The change in roller surface temperature (    ) 
caused by the increase of the surrounding temperature illustrates 
the curve 4 in Fig. 3. 

The evolution of the roller temperature at surface      
we present in Fig. 4 (curve 1). Curve 2 in Fig. 4 describes evolu-
tion of roller internal surface (    ) temperature which 

is a result of the heat flux operating at the surface      in case 

when the surrounding temperature is constant (  
   ( )   ) 

and there is no change in the coolant temperature. Changes in the 
temperature at internal roller surface in case when there is no 
friction and no changes in surrounding temperature are presented 
by curve 3 in Fig. 4. Changes in the temperature at internal sur-

face      caused by increase in the surrounding temperature 
shows curve 4 in Fig. 4. 

 
Fig. 4. The evolution of temperature changes at the roller surface 

     

The roller temperature distribution   (   ) along the roller 

radius   is shown in Fig. 5. Curves 1-5 correspond to the temper-
ature distribution, respectively at time             
          . 

 
Fig. 5. The temperature distribution along the roller radius at different 

time instants 

5. CONCLUSIONS 

We obtain an analytical solution of the heat conduction 
problem for the inking unit in the offset printing machine. It has 

been proven that the functions    
( )(     ), which we entered 

into transforms’ formulas of the roller temperature (23) and the 
heat flux (24), are analytic functions. 

It is worth noting, that the first terms of obtained formulas 
of roller temperature (26) and heat flux (27) corresponds to the 

stationary solution (    of this problem received in the earlier 

work (Piętak et al., 2011) for the case when the functions   ( ) 
where         are Heaviside step functions (unit step 
function). 

We assume that the inking is at temperature    . During the 
printing process (when machine is working) the heat flux 

is generated at the surface of the vibrator roller (    ) 
as a result of friction. The heat flux causes heating of the roller. 
If there is no cooling, the temperare increase overe time 

in amount of 24°C and reaches the level of     (curve 2, Fig. 3). 
Offset printing technology requires lower temperature of the roller 
surface and of the ink transported by the roller. Therfore, 
in modern inking units rollers are thermostatted. When we take 
into account the coolant inside the roller we receive an increase 
of roller surface temperature in amount of only    (curve 1 
in Fig. 3). This way our model allows to simulate the temperature 
distribution in one of the elements of the prinitng unit of the offset 
printing machine and to regulate coolant temperature depending 
on the surrounding temperature changes and printing parameters, 
such as speed and properties of the ink. 

The obtained solution makes it possible to determine and to 
regulate the time necessary to reach the stationery coditions 
of the temperature. Stationery conditions of the temeperature 
gurantee the stability of the printing process and less paper waste. 
In this way we can affect the amount of foracasted paper and ink 
waste. 

We woluld like also notice that various forms of solutions 
for the cylinder (roller) are showed, e.g. in works of Carslaw et al. 
(1959) and VanSant (1983). 
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