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Abstract: The occurrence of statistical size effect is considered for damage in creep conditions. The numerical and experimental analysis 
have been performed. The obtained results are ambiguous. Numerical models confirm the scale effect which can be statistical or determin-
istic one. But this effect has no experimental verification. It may suggest that the weakest link model cannot be applied in creep conditions. 
Explanation of this needs further investigations. 
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1. INTRODUCTION 

As is well-known, the specimen or structural element size in-
fluences the value of fatigue strength (Kocańda and Szala, 1991). 
When the size of element is larger the strength of specimen 
is lower. This phenomenon, known as size effect, can be de-
scribed by probabilistic Weibull model (1939). The damage 
in creep conditions has many common aspects to fatigue failure. 
So it can be expected that creep strength dependence upon the 
specimen size is similar. But there are not so much papers de-
scribing size effect or lack of it for creep (e.g. Yatomi et al., 2003) 
so, evidence of this is not obvious. 

2. THE STATISTICAL AND DETERMINISTIC SIZE EFFECT 

The size effect described by Weibull is called statistical, as its 
nature is connected with statistical dispersion of material proper-
ties. This effect can be modelled by the so-called weakest link 
model (see Fig. 1). It assumes that specimen is made of many 
chains of random strength. The chains are linked in series, and 
therefore the strength of the whole specimen is determined by the 
weakest link. The longer specimen is, the probability of lower 
strength is larger.  

 
Fig. 1. The weakest link model 

Any characteristic dimensions do not occur in the statistical 
size effect. It is caused mainly by nonhomogeneity of material 
or variability of specimen cross-section. The serial connections 
of chains correspond to situation when occurrence of first defect 
in specimen cause all the specimen to failure. In case of fatigue 
it is often related to existence of microcracks or microdefects, 
where the fatigue failure can arise. For larger specimen the prob-

ability of existence of critical defect is larger and the failure can 
occur at lower number of  cycles (Carpinteri et al, 2002, 2004, 
2009, 2010).  

In statistical size effect the power law is used for description 
of dependence of element size: 

sDcD 0)f(   (1) 

where f(D) is a function describing examined parameter (e.g. 

strength), D is the structural element size, and c0, s are material 
constants. The power law is the only one, which allows us to 
describe size dependency without any characteristic length 
(Bažant, 1999).  

 
Fig. 2. Comparison of statistical and deterministic size effects. Solid red 

line - statistical size effect, eq. (1) for s=-1/6, dashed blue line - 

deterministic size effect, eq. (2) 

In contradiction to statistical size effect the characteristic 
length can occur in deterministic size effect. In this case not only 
statistical dispersion, but also relation of specimen size to some 
characteristic material dimension, is responsible for size effect. 
It makes the size effect more deterministic. This phenomenon 
is well described for materials with large inhomogeneities like 



acta mechanica et automatica, vol.7 no.3 (2013), DOI 10.2478/ama-2013-0028 

167 

concrete, rocks. Exemplary law for such effect can be stated 
in form of equation (Bažant, 1984): 
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where D0 is characteristic dimension and f0 material constant. 

Comparison of statistical and deterministic size effect laws 
is shown in Fig. 2. 

It can be shown for the weakest link model that the mean val-
ue of nominal strength is (Bažant, 1999): 
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and the coefficient of variation: 
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where m is the Weibull modulus, s0 is a material parameter, 
V is the examined volume of material, V0 is the volume of the 

smallest possible test specimen, Γ - is the gamma function. 
In equation (4) the value of the coefficient of variation depends 
only on modulus m, so it is often used to determine this parame-

ter. It usually varies from 5 to 50. The small value of m gives 
strong dependency upon the specimen dimensions and also large 
value of coefficient of variation. When the scatter, represented 
by coefficient of variation, of any variable is known it is possible 
to estimate the sensitivity of this variable to size effect. Not always 
the value of the modulus m determined from equation (4) corre-
sponds to the mean value determined from equation (3). It means 
that the deterministic size effect exists, what is characteristic 
for concrete or other quasi-brittle materials (Bažant, 1999). 

3. RANDOMNESS OF CREEP FAILURE 

The phenomenon of creep is characterised by large random-
ness. It causes that the scatter of basic parameters describing 
creep failure (time to failure, strain at failure) is significant. It is 
caused mainly by not identical conditions of creep tests (variations 
of temperature, eccentricity, see Hayhurst, 1974). But even ensur-
ing special accuracy in test performance, the scatter of results 
is significant (e.g. Farris et al., 1990, obtained scatter of times to 
failure in test of copper with coefficient of variation about 60%). 
This variability of the results can be explained by nonhomonegeity 
of material connected with its microstructure. 

Estimation of Weiibull modulus from equation (4) by fitting 
to coefficient of variation equal to 60% gives m=1.7. This value 
defines very strong dependency on specimen size, e.g.  two times 
larger specimen should give reduction of creep resistance 
of about 33%. Existing experimental data shows that there is no 
size effect for creep of metallic materials or it is very small. E.g. 
Yatomi et al. (2003) made comparison of creep crack growth for 
welds of sizes: 15, 25 and 50 mm and claimed no size effect. 

4. TIN WIRE EXPERIMENTS 

The creep experiments are very time consuming. Therefore 
there is not much data allowing to draw conclusions about proba-

bilistic behaviour of material, i.e. the nature of scale effect. This 
is the reason why own experiments were performed for wire made 
of tin alloy Sn60Pb40, which has small melting temperature 
(460 K) and creeps in room temperature. The specimens have 
1mm of diameter and were loaded by constant force giving nomi-
nal stress 11.8 MPa. Two lengths of specimens were examined: 
short - 54 mm, and long - 93 mm. The obtained times to failure 
are shown in Table 1. 

Tab. 1. Experimental results for tin alloy wire 

length  
of specimen 

[mm] 

number  
of probes 

mean time  
to failure [s] 

coefficient  
of variation 

54 14 1617.3 15.6% 

93 11 1777.3 20.8% 

The observed in experiment scale effect is reverse to the ex-
pected one. The mean time to failure for longer specimens 
is about 10% greater than for shorter ones. The explanation of this 
phenomenon requires much more experiments to perform to 
exclude any accidental cause of this behaviour. 

5. NUMERICAL ANALYSIS 

5.1. FEM model 

In order to numerically verify statistical size effect, series 
of simulations were performed by author. Rectangular specimen 
5x2.5mm was modelled in plane strain state by the finite element 
method. ABAQUS code was used. Keeping constant mesh densi-
ty the simulations were performed for lengths: 10, 20, 40, 80 
and 160 mm. The specimen of 20 mm was chosen as a reference 
one. The material model was Hook-Norton-Kachanov (equations 
after Bodnar and Chrzanowski, 2002): 
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where:        
     

  – total, elastic and creep strain tensors, re-

spectively, σkl - stress tensor, Dijkl – elastic constants matrix, B, n, 
A, m, α – steady-state creep and damage material constants, 
σmax, σeff, σeq – main positive principal stress, Huber-Mises effec-
tive stress and equivalent stress, respectively, ω – scalar damage 
parameter (0<ω<1), t – time. 

The material constants were fitted to data for copper in tem-
perature 723K and mean grain diameter 30 microns obtained by 
Feltham and Meakin (1959): elastic constants – Young modulus 
82.7GPa, Poisson ratio 0.33, creep constants – B=1.18MPa-ns-1, 
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n=4.17 damage constants – A=5.04MPa-μs-1, μ=2.87, α=1. 
In order to ensure randomness of results, the random initial dam-
age parameter was introduced. Its values were spread over 
a volume of specimen according to exponential distribution with 
expected value ω0=0.006.  

 
Fig. 3. Size dependency of time to failure obtained from numerical  
            simulation in comparison with the weakest link model - eq. (6) 

The scatter of creep test results in FEM model was obtained 
from 8 probes performed for reference size of specimen. Every 
probe had unique random configuration of initial damage parame-
ter. For uniaxial tensile loading corresponding to equivalent stress 
σeq=34.6MPa, the obtained scatter was very small. The mean 
value of time to failure was 18635s and coefficient of variation was 
0.65%. This coefficient corresponds to Weibull modulus m=196 
according to equation (4). Despite the relation is very weak it is 
possible to compare the values resulting from the weakest link 
model with results of numerical simulations (see Fig. 3). According 
to the weakest link model and the Monkman-Grant relation (1956), 
the size dependency of time to failure can be calculated as fol-
lows: 
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where: l is length of specimen, l0 is length of reference specimen, 
tf0 is value of time to failure for reference size. The correlation 
of simulation results with the model is quite good, although the 
size effect is very weak due to uniform material properties over 
the volume of specimen. The influence of characteristic size, 
which in this case is finite element size, is also very small. There-
fore it can be stated that the numerical model confirms the statisti-
cal size effect. 

5.2. Multiscale model 

The second model analysed is the multiscale CAFE model 
(see Nowak, 2011). It allows to introduce nonhomogeneity 
of microstructure of material resulting in large scatter of simulation 
results. The model consists of two main parts describing defor-
mation and damage. They operate on different scales and use 
different methods of analysis.  

The deformation is modelled on macro level using discretised 

version of constitutive equation (7):  
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where n1, B1 are creep constants fitted to primary creep behaviour 
according to Chrzanowski’s (1972) proposal of description 
of primary, secondary and tertiary creep. 

The damage development processes is modelled by Cellular 
Automata (CA) technique (see Raabe, 2002,  for review). It oper-
ates on microstructure of polycrystalline material using Repre-
sentative Volume Element (RVE) approach. The CA model re-
flects the discrete nature of material. The state value of a single 
cell and its neighbourhood allows to distinguish if cell belongs to 
grain interior or grain boundary, it also allows to model voids or 
cracks. Also the randomness of creep process can be modelled 
by CA very easily by introduction the random microstructure 
and by random process of damage development. The algorithm 
uses in current simulation prefer development of intergranular 
cracks, as size effect is more significant in brittle failure. 
The relative length of longest crack inside the RVE is used 
as damage parameter ω in deformation equation (7). In turn 
the deformation obtained by FE model influences the current size 
of RVE. It results in mutual coupling of both scales. 

 
Fig. 4. Size dependency of time to failure obtained from CAFE simulation  
            in comparison with the weakest link model 

Similar to the previous case, the simulations were performed 
for specimen of 5 mm width and different lengths from 5 to 20mm, 
keeping constant the density of FE mesh and size of RVE 
(in cells). The material parameters were also fitted to results 
of experiment for copper by Feltham and Meakin (1959) but the 
loading in uniaxial tensile test was σeq=30.0MPa. The reference 
length was 5mm. The scatter of results was produced by different 
initial microstructure of grains of mean diameter about 100 cells, 
where RVE size was 320 cells. For 8 tests of reference length size 
the mean value of time to failure was 39100s with coefficient 
of variation equals to 14.1%. This scatter is comparable 
with scatter of experiments results (cf. Garofalo et al., 1961, and 
Tab. 1). According to equation (4) corresponding Weibull modulus 

is m=8.5. Comparison of the simulations results for different 
specimen length with values predicted by equation (3) gives much 
strongest relation with scale (see Fig. 4). This indicates that this 
size effect cannot be considered as only statistical one. Existence 
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of at least two characteristic dimensions like grain size and RVE 
size results in deterministic size effect. The effect is strong as they 
are quite close one to another. 

6. CONCLUSIONS 

It has been shown that the numerical simulations performed 
by the author can be used in the description of scale effect 
in creep tests. 

The scatter of results obtained by means of multiscale model 
coincides with scatter of times to failure obtained from experi-
ments. This scatter should cause statistical scale effect described 
by weakest link model. However, the results of own and also other 
experiments do not show such effect. The reason of that is not 
clear. The explanation of that phenomenon requires more experi-
mental and numerical investigations.  
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