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Abstract: An absolutely rigid inclusion (anticrack) embedded in an unbound transversely isotropic elastic solid with the axis of elastic 
symmetry normal to the inclusion plane is considered. A general method of solving the anticrack problem is presented. Effective results 
have been achieved by constructing the appropriate harmonic potentials. With the use of the Fourier transform technique, the governing 
system of two-dimensional equations of Newtonian potential type for the stress jump functions on the opposite surfaces of the inclusion 
is obtained. For illustration, a complete solution to the problem of a penny-shaped anticrack under perpendicular tension at infinity is given 
and discussed from the point of view of material failure. 
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1. INTRODUCTION 

The study of the redistribution of stresses due to the presence 
of different kinds of defects in elastic bodies merit attention 
of specialists from many branches, such as geomechanics, metal-
lurgy, material science. From the viewpoint of inhomogeneities 
in solids, cracks characterized by the displacement discontinuity 
and flat rigid inclusions (called anticracks) with the traction discon-
tinuity are the two dangerous extremes. Although the crack prob-
lems have been studied extensively over the past 50 years, re-
search on the corresponding anticrack problems have been rather 
limited and mainly concentrated on two-dimensional problems 
related to rigid line inclusions (see the monographs by Berezh-
nitskii et al. (1983) and Ting (1996)). The corresponding three-
dimensional analysis of a penny-shaped anticrack (absolutely rigid 
circular lamella) has been performed to a much lesser extent. 
Detailed account of elastostatic problems involving planar rigid 
inclusions embedded in homogeneous media is given in the stud-
ies by Kassir and Sih (1968), Selvadurai (1982), Silovanyuk 
(1984, 2000), Podil’chuk (1997), Rahman (1999, 2002), 
Chaudhuri (2003, 2012), Shodja and Ojaghnezhad (2007), 
and in the monographs by Mura (1981), Panasyuk et al. (1986), 
Khai (1993), Rogowski (2006), Kanaun and Levin (2008).  

This paper is devoted to a three-dimensional static problem 
in linear elasticity theory of an infinite transversely isotropic body 
containing an arbitrarily shaped rigid inclusion lying in a plane 
of isotropy and subjected to some external loads. In Section 2 
the basic equations with the potential representations of their 
general solution are reported. Besides, the anticrack problem 
is formulated. Section 3 presents a general method of solving 
the resulting boundary value problems. The governing 2-D singu-
lar integral equations are obtained in terms of the stress disconti-
nuities across inclusion faces. As an illustration, a closed-form 
solution is given and discussed in Section 4 for a circular rigid 
inclusion subjected to tension at infinity. Finally, Section 5 con-
cludes the paper. 

2. STATEMENT OF THE PROBLEM 

2.1. Basic equations and general potential solutions 

The results of comprehensive research on the theory and ap-
plications of the mechanics of transversely isotropic elastic mate-
rials can be found in the book by Ding et al. (2006). 

Referring to the rectangular Cartesian coordinate system 

           denote at the point              the displace-

ment vector by              and the stresses by    ,    , 
   ,    ,    ,    .  

Throughout the considerations the following notations will be 
used: Latin subscripts always assume values 1, 2, 3 and the 
Greek ones 1, 2. The Einstein summation convention holds and 
subscripts preceded by a comma indicate partial differentiation 
with respect to the corresponding coordinates. 

Consider a homogeneous transversely isotropic space assum-
ing that the axis of elastic symmetry of the material coincides with 
the   -axis. Then the number of independent elastic stiffness 
constants (moduli) in the generalized Hooke’s low reduces 

to five:    ,    ,    ,    ,    . The stress-displacement equations 
are the following:  

 , ,α α ασ c u u3 44 3 3  , ,α 1 2                                               (1) 

, ,γ γσ c u c u33 13 33 33                                                              (2) 

, , ,σ c u c u c u11 11 11 12 22 13 33                                                (3) 

, , ,σ c u c u c u22 12 11 11 22 13 33                                                (4) 

  , ,,σ c c u u12 11 12 12 2105                                                 (5) 

Inserting the above expressions into equilibrium equations in 
the absence of body forces 

,jk kσ 0                                                                                     (6) 
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a governing system of three linear partial differential equations 
of second order with constant coefficients for displacements 
is obtained: 

   

 

    

   

, , ,

,

, ,

, ,

γ γα α γγ α

α

c c u c c u c u

c c u α

11 12 11 12 44 33

13 44 33

05 05

0 1 2
         (7) 

  , , ,γ γ γγc c u c u c u13 44 3 44 3 33 333 0                                  (8) 

According to the results obtained by Kaczyński (1993) with 
some modifications, the general solution of the above equations 

is found in terms of three potential functions                , 

        with         which are harmonic in the appropriate 

coordinate systems          , i.e.  

, , , , ; no sum on  
j

j γγ
j

φ
φ j

z

2

2
0 1 23


  


j                                    (9) 

The form of displacement representation is dependent on the 

three material characterizing parameters   . The constant    

is given as: 

  /t c c c3 11 12 442 0                                                        (10) 

while the constants           are the roots with positive real 
part of the following eigen-equation: 

 c c t c c c c c t c c
24 2

33 44 13 13 44 11 33 11 442 0     
  

     (11) 

 The analysis of modulus restrictions based on the positive 
definiteness of the stress energy leads to two cases (Ding et al.; 
2006): 

Case 1:  t t1 2  when A c442   

 

 

,

,

t t t
A c

t t t

1
44

2

0 5 0
2

0 5 0

 


 

   
  

  

                                         (12) 

or 

 

 

, *
,

, *

t t i t
A c i

t t i t

1 2
44

2

0 5
2 1

0 5






  
   

 

                              (13) 

where: 

 

 

/

* /

A c c c

t A c A c c

t c A A c c

11 33 13

44 33 44

44 33 44

2

2



 

 

 

 

 

                                                (14) 

Case 2:  t t1 2  

/A c t t c c t4
44 1 2 11 33 02                                          (15) 

In the case when the material is isotropic it is found that: 

 

 


   



   


,

t t

μ ν
c c λ μ

ν
μν

c c λ c μ
ν

0 3

11 33

12 13 44

1

2 1
2

1 2

2

1 2

                                             (16) 

Here,     are Lamé constants, and   is Poisson’s ratio. 

For the sake of simplicity, hereinafter we proceed to consider 
the case with distinct eigenvalues (Case 1). Then the displace-
ments and stresses can be represented in terms of potentials as 
follows:  

  ,,
γ

α α γαu φ φ φ1 2 3    , ,α 1 2                                    (17) 

γ
γ γ

γ

φ
u m t

z
3





                                                                       (18) 

  γ γα
γ γ α

γ α γ

φσ φ
m t t

c z x z x

2 2
3 3

3
44 3

1
 

  
   

                           (19) 

  γ
γ

γ

φσ
m

c z

2
33

2
44

1


 


                                                              (20) 

 

    ,,

γ
γ γ

γ

φ
σ c m t

z

c c φ φ φ

2
2

11 44 2

11 12 1 2 3 1222

1


   


    
  

                          (21)  

 

    ,,

γ
γ γ

γ

φ
σ c m t

z

c c φ φ φ

2
2

22 44 2

11 12 1 2 3 1211

1


   


    
  

                          (22) 

     , ,,
,σ c c φ φ φ φ12 11 12 1 2 3 11 3 2212
05     

  
         (23) 

Here ,1 2
2 11 1    , 1 2

1 2 0   and the constants       

related to       are defined as: 

 
α

α
α α

c t c c c
m

c c t t c c

2
11 44 13 44

2 2
13 44 33 44

 
 

 
,  ,α 1 2                        (24) 

It is worth noting that: 

 

 

     

, or 2, no sum on 

/

/

α α α

α α α α

c m t c c m
α α

c c m t c t m

m m

t t c c

t t c c c c c c c

2
33 13 44

2 2
11 13 44

1 2

1 2 11 33

2 2 2
1 2 11 33 13 13 44 33 44

1
1

1

1

2

   


   





   

   (25) 

2.2. Formulation 

Consider a transversely isotropic space with the axis of sym-

metry as the   - axis and the isotropic plane as the       - plane. 
Suppose that this body is weakened by a rigid-sheet like inclusion 

(anticrack) occupying a certain domain   with a smooth boundary 

at the plane      and subjected to some external loads. 
It is known that an anticrack problem can be regarded as the 

superposition of two problems. One (labelled by the subscript 0) 
is no inclusion problem with the given applied loadings and the 
other is the perturbed problem in which the displacements along 

the anticrack   are prescribed as the negative of those generated 
in the first problem. Thus, the total displacement-stress field (de-

noted by   
   

and    
   

) can be expressed as: 
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       
,

t t
j jkj j jk jku u u σ σ σ

0 0
                                            (26) 

Moreover, we assume that   
   

and    
   

)are known from the 

solution to the 0-problem. As a matter of fact, only the values 

of displacements  ̅ 
   

   
                       are 

needed in the subsequent analysis. 
Next, we concentrate attention on the non-trivial perturbed 

problem, solution to which tends to zero at infinity and satisfies 
the necessary boundary conditions on  : 

 u u ε ω x
0

1 1 3 21                                                                (27) 

 u u ε ω x
0

2 2 3 12                                                                (28) 

 u u ε ω x ω x
0

3 3 2 1 1 23                                                     (29) 

in which also the unknown  small displacements    and rotations 

   are included to describe a motion of the inclusion as a rigid 

unit. These parameters will be determined later in solving the 
problem in hand from the equilibrium conditions of the anticrack 
(no resultant forces and zero-moments).  

Now we proceed to the reduction of the above anticrack 
problem to some mixed boundary-value problems of potential 
theory related to the one of a half-space (say,     ). From the 

relevant symmetry properties about the plane      follows the 
division of the problem into antisymmetric (A) and symmetric ones 
(B). 

In the antisymmetric part (A) of the problem, the mixed 
conditions on the plane of antisymmetry may be written as 

 
 , ,u u ε ω x ω x x x S

0
3 3 2 1 1 2 1 23                                (30) 

 , ,u u x x R21 2 1 20                                                          (31)   

 , ,σ x x R S2
33 1 20                                                          (32) 

and are supplemented by the corresponding equilibrium 
conditions to determine the unknown parameters         
    : 

   , , , ,

S

σ x x σ x x dx dx33 1 2 33 1 2 1 20 0 0   
                    (33) 

   , , , ,α
S

x σ x x σ x x dx dx3 33 1 2 33 1 2 1 20 0 0 


  
           (34) 

The symmetric part (B) of the problem leads to the following 
mixed conditions 

 
 , ,u u ε ω x x x S

0
1 1 3 2 1 21                                           (35) 

 
 , ,u u ε ω x x x S

0
2 2 3 1 1 22                                           (36) 

 , ,u x x R23 1 20                                                                  (37) 

 , ,σ σ x x R S2
31 32 1 20                                                (38) 

and additional conditions to determine the unknown parameters  

            : 

   , , , ,α α
S

σ x x σ x x dx dx3 1 2 3 1 2 1 20 0 0   
                   (39) 

   

   

, , , ,

, , , ,

S

S

x σ x x σ x x dx dx

x σ x x σ x x dx dx

2 31 1 2 31 1 2 1 2

1 32 1 2 32 1 2 1 2

0 0

0 0 0

 

 

  
  

   
  





         (40) 

In addition to these boundary conditions, the displacement 
and stress fields must vanish at infinity. 

3. SOLUTION METHOD 

The above-mentioned problems (A) and (B) are now reducing 
to some mixed boundary-value problems of potential theory 
by constructing the potentials functions well suited to the bounda-
ry conditions (30)-(32) and (35)-(38), respectively. Further, 
an integral equation formulation is given for these problems. 

3.1. Antisymmetric problem  

It is expedient to choose in the displacement-stress represen-
tations (17)-(23) only one harmonic function             such 
that: 

   

   

 

, , , ,

, , , ,

, ,

φ x x z f x x z

φ x x z f x x z

φ x x z

1 1 2 1 1 2 1

2 1 2 2 1 2 2

3 1 2 3 0

 





                                              (41) 

Then the corresponding displacement and stress components 
become: 

    ,
, , , ,

β
α α β
u f x x z α1 21 1 2                                        (42) 

 
 , , ββ

β β
β

f x x z
u m t

z

1 2
3 1


 


                                         (43) 

   
 , ,

, ,
ββα

β β
β α

f x x zσ
m t α

c z x

2
1 23

44
1 1 1 2


   

 
               (44) 

   
 , , ββ

β
β

f x x zσ
m

c z

2
1 233
2

44
1 1


  


                                 (45) 

   

    
,

, ,

β
β β

β

β
β

f
σ c m t

z

c c f x x z

2
2

11 44 2

11 12 1 2
22

1 1

1


    



   
 

                      (46)

   

    
,

, ,

β
β β

β

β
β

f
σ c m t

z

c c f x x z

2
2

22 44 2

11 12 1 2
11

1 1

1


    



   
 

                      (47) 

     
,

, ,
β

βσ c c f x x z12 11 12 1 2
12

1    
 

                           (48) 

In the limit as      , the above equations reduce to: 
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u u1 2 0                                                                                  (49) 

   , , , xu m t m t f x x x
33 2 2 1 1 3 1 2 3 0  

                              (50) 

   , , ,α
α x

σ
m t m t t t f x x x

c 3

3
2 2 1 1 2 1 3 1 2 3 0

44


    
 

         (51) 

   , , ,
x

σ
m m f x x x

c 3

33
2 1 33 1 2 3 0

44





  
 

                             (52) 

       

 , , ,
x

σ σ c m t m t t t

f x x x
3

2 2 2 2
11 22 44 2 2 1 1 2 1

33 1 2 3 0

 



      
  

 
 

        (53) 

σ12 0                                                                                      (54) 

A glance at equations (37)-(39) reveals that the potential 
            is governed by: 

 for            

 
 

, , ,
x

u ε ω x ω x
f x x x

m t m t3

0
3 2 1 1 23

3 1 2 3 0
2 2 1 1



   
  
  

           (55) 

 for               

 , , ,
x

f x x x
3

33 1 2 3 0
0

  
 

                                                    (56) 

3.2. Symmetric problem  

This problem is substantially more complex (see the corre-
sponding skew-symmetrical crack problem considered in Kassir 
and Sih (1975)). We choose the potential functions in the general 
representation (16)-(22) such that:   

 

 

, ,

, ,

, ,

m t m t
φ G H F

m t m t m t m t

m t m t
φ G H F

m t m t m t m t

φ G H F

2 2 2 2
1 1 1 1 2 1

2 2 1 1 2 2 1 1

1 1 1 1
2 2 1 2 2 2

2 2 1 1 2 2 1 1

3 3 2 3 1 3

   
 

  
 

  

           (57) 

where                and               ,         

are harmonic functions in the corresponding systems of coordi-
nates. Then, the corresponding displacement-stress field be-
comes: 

  ,
, , ,

α γ
α α γ

m t F m t F
u F α

m t m t

1 1 2 2 2 1
3

2 2 1 1
1 2


  


                       (58) 

t t F F
u

m t m t z z
1 2 2 1

3
2 2 1 1 2 1

  
  

   
                                               (59) 

   
,

, ,

α

α

γ
α

γ

σ t t F F
m m

c m t m t z z

F
t α

z x

3 1 2 2 1
1 2

44 2 2 1 1 2 1

2
3

3
3

1 1

1 2

  
    

   


 

 


          (60) 

   
σ F F

t m t m
c m t m t z z

2 2
33 2 1

1 1 2 22 2
44 2 2 1 1 2 1

1
1 1

  
    

    

     (61) 

   

 
  ,

,

c t t F F
σ t m t m

m t m t z z

m t F m t F
c c F

m t m t

2 2
44 1 2 2 1

11 2 1 1 22 2
2 2 1 1 2 1

1 1 2 2 2 1 22
11 12 3 12

2 2 1 1

1 1
   

    
    

  
   

  

      (62) 

   

 
  ,

,

c t t F F
σ t m t m

m t m t z z

m t F m t F
c c F

m t m t

2 2
44 1 2 2 1

22 2 1 1 22 2
2 2 1 1 2 1

1 1 2 2 2 1 11
11 12 3 12

2 2 1 1

1 1
   

    
    

  
   

  

      (63) 

 
 ,

, ,,
m t F m t Fσ

F F
c c m t m t

1 1 2 2 2 1 1212
3 11 3 22

11 12 2 2 1 1
0 5


  

 
    (64) 

It is seen that the above expressions simplify across the plane 
     since the subscripts j can be dropped for    and   , 

so we get                           . Introducing 

the notation: 

 
 

 
 

, ,
, ,

, ,
, ,

G x x x
g x x x

x

H x x x
h x x x

x

1 2 3
1 2 3

3

1 2 3
1 2 3

3











                                              (65) 

the displacements and stresses in the plane of symmetry are 
found as: 

 

 

,

,

, ,

, ,

x

x

u g x x x

u h x x x

u

3

3

1 3 1 2 3 0

2 3 1 2 3 0

3 0





 
 

 
 



                                                 (66) 

 , , ,*
x

σ
C g κ g h

c 3

31
33 22 12 044






   
 

                              (67) 

 , , ,*
x

σ
C h κ h g

c 3

32
33 11 12 0

44





   
 

                             (68) 

, ,*
x

σ
D g h

c 3

33
31 32 0

44


   
 

                                              (69) 

 , , ,*
x x

σ E g h c c h
3 3

11 31 32 11 12 320 0 
      
   

        (70) 

 , , ,*
x x

σ E g h c c g
3 3

22 31 32 11 12 310 0 
      
   

      (71) 

  , ,,
x

σ c c g h
3

12 11 12 32 31 0
05


   
 

                              (72) 

where: 

 

 



 


 

 

 


 

 

*

*

* , *

c c tt t m m
C

m t m t c c c

t
κ

C

A A cA c
D E

cc c c c c c

11 331 2 2 1

2 2 1 1 11 33 44

3

4411

3311 33 44 11 33 44

1                  (73) 

It follows immediately from the boundary conditions (35)-(38) 

that the unknown potentials   and   can be determined from:  
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   

   
 

,

,

, ,

,

, ,

x

x

g x x x u ε ω x
x x S

h x x x u ε ω x

3

3

0
3 1 2 3 1 3 210

1 2
0

3 1 2 3 2 3 120









        


     
  

 (74) 

 

 
 

, , ,

, , ,

,
x

x

g κ g h

x x R S
h κ h g

3

3

33 22 12 0 2
1 2

33 11 12 0

0

0









   
  

 
    
  

         (75) 

It is easy to seen from a comparison of the above conditions 
that the formulation given by Eqs. (74) and (75) is inverse to that 
for the crack problem involving shear tractions (Kassir and Sih, 
1975).  

To obtain integral equations, the two-dimensional Fourier 
technique will be used (see the method developed by Kaczyński 
(1999)). The space harmonic functions     and   are 
represented by Fourier’s integrals (Sneddon, 1972): 

 

 

 

 
 

 

 

exp f
α α

g

h
S

f A
x i x ξ

g A dS

h A

3
2











  
          

  
   

ξ

x ξ
ξ

x ξ
ξx ξ

                   (76) 

where   , ,ξ ξ S1 2 ξ    ξ ξ2 2
1 2 ξ .  

From the boundary condition (56), in view of (52), one finds 
immediately that: 

 
 

   , , expf α α
S

A ξ ξ σ η η i η ξ dη dη
π c m m

1 2 33 1 2 1 22
44 2 1

1

4






   



(77) 

Accordingly, the conditions in equation (75) yield a system 

for the remaining unknown functions       and      : 

 

 

 

 

 

 
 

,

,

,
exp

* ,

g

h

α α

S

κ ξ κ ξ ξ

A ξ ξ

A ξ ξκ ξκ ξ ξ

σ η η
i η ξ dη dη

π c C σ η η

2
2 1 2
2 2

1 2

2
1 211 2

2 2

31 1 2
1 22

44 32 1 2

1

1

1

4













 
 
   
   
    
 
 
 

 
      
 

ξ ξ

ξ ξ           (78) 

which has the solution: 

 
 

 

 

 

 

 
 

*

,
exp

,

g

h

α α

S

κ ξ κ ξ ξ

A
π c C κ

A κ ξκ ξ ξ

σ η η
i η ξ dη dη

σ η η

2
1 1 2
2 2

2
44 2

21 2
2 2

31 1 2
1 2

32 1 2

1

4 1

1













 
  
  
    
   
  
 
 

 
      
 

ξ ξ ξ

ξ

ξ ξ      (79) 

Equations (77) and (79) may be substituted into (76) to give: 

   
 

,

S

σ
π c m m f dS33

44 2 1 32









  


ξ
ξ

x
x ξ

                            (80) 

 
    

   

,

S S

S

σ σ x ξ
π t c g dS κ dS

σ x ξ x ξ
κ dS

2
31 31 2 2

3 44 3 3

32 1 1 2 2
3

2






 
 








 




  

 

 




ξ ξ

ξ

ξ ξ
x

x ξ x ξ

ξ

x ξ

(81) 

 
    

   




  








 




  

 

 




,

S S

S

σ σ x ξ
π t c h dS κ dS

σ x ξ x ξ
κ dS

2
32 32 1 1

3 44 3 3

31 1 1 2 2
3

2 ξ ξ

ξ

ξ ξ
x

x ξ x ξ

ξ

x ξ

(82) 

where    
                

                 and    

    is a distance between the field point              and the 
integration point            . Moreover, in deriving the above 
expressions, use has been made of the following integrals 
(Erdelyi, 1954): 

 

   

     

   

exp

exp

α α α

R

α α α

R

i x η ξ π
dξ dξ

x η x η

i x η ξ ξ π x η
dξ dξ

x η x η

2

2

1 2
2 2

1 1 2 2

2
1 2 2

1 23 3
2 2

1 1 2 2

2

2














   

  

    

 
   

 

ξ

ξ

 

     

   

    

   

exp

exp

α α α

R

α α α

R

i x η ξ ξ π x η
dξ dξ

x η x η

i x η ξ ξ ξ π x η x η
dξ dξ

x η x η

2

2

2
2 1 1

1 23 3
2 2

1 1 2 2

1 2 1 1 2 2
1 23 3

2 2
1 1 2 2

2

2















    

 
   

 

      

 
   

 

ξ

ξ

 

                                                                                                   (83) 

Now enforcing the displacement boundary conditions (55) 
and (74), we arrive at the governing singular integral equations 
of Newtonian potential type to determine the interface stresses 

   
           : 

 

   

 ,

S

σ ξ ξ dξ dξ
A u ε ω x ω x

x ξ x ξ

033 1 2 1 2
3 2 1 1 232 2

1 1 2 2











   

  

      (84)  

 

   

 

   

   

   

 

,

,

S

σ ξ ξ x ξ
B κ

x ξ x ξx ξ x ξ

σ ξ ξ x ξ x ξ
κ dξ dξ u ε ω x

x ξ x ξ

2
31 1 2 2 2

2 22 2
1 1 2 21 1 2 2

032 1 2 1 1 2 2
1 2 1 3 213

2 2
1 1 2 2

1













     
        




  
   

 
    

  

  

(85) 
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 

   

 

   

   

   

 

,

,

S

σ ξ ξ x ξ
B κ

x ξ x ξx ξ x ξ

σ ξ ξ x ξ x ξ
κ dξ dξ u ε ω x

x ξ x ξ

2
32 1 2 1 1

2 22 2
1 1 2 21 1 2 2

031 1 2 1 1 2 2
1 2 2 3 123

2 2
1 1 2 2

1













     
        




  
   

 
    

  

  

(86) 

in which   is given by Eqs. (73), and the material constants  ,   
are: 

 

 

c c cm t m t
A

π c m m π c c t

B
π c t π c c c

11 33 442 2 1 1

44 2 1 44 33

44 3 44 11 12

2 2

1 1

2 2




 



 


                                 (87) 

It is worth mentioning that the results obtained can be used 
in the case of isotropic material (see the relations (16)). Then the 
constants in the governing equations become: 

   

   

λ μ
κ

λ μ ν

λ μ ν
A

π μ λ μ π μ ν

B
πμ

1

2 2 4 1

3 3 4

4 2 8 1

1

2


 

 

 
 

 



                                              (88) 

which are in agreement with those obtained by Silovanyuk (1984). 
After the stresses     acting on the inclusion side    have 

been determined from the solution of the above integral 
equations, the full-space elastic field can be calculated from the 

harmonic potentials       via relations (80)-(83) with the use of 
Eqs. (42)-(48) and (57)-(64). For completeness, the kinematical 
parameters of the inclusion    and    can be found from the 

conditions (33), (39) and (34), (40), respectively. 

For an arbitrary simply connected domain   bounded 
by a smooth contour the governing equations can be solved 
by an analytic-numerical method developed in Kit et al. (1989). 
Explicit solutions are possible for elliptical shapes of   
by assuming polynomial right-hand sides. The typical case 
of a circular anticrack in a uniform normal tension at infinity will be 
considered in the next section. 

4. EXAMPLE 

The stress state of a transversely isotropic space containing 
in the plane of isotropy a sealed circular rigid inclusion (anticrack) 

  {            √    
      

   } is investigated 

by assuming that: 

 
 

 
 

 
 const. ,

t t t
σ σ σ σ333 31 320 0                          (89) 

The displacement solution to the basic equations (7) and (8) 
of 0-problem with conditions (89) is readily obtained as: 

   

   

, , , ,

, ,

α αu x x x Dσ x α

u x x x D σ x

0
1 2 3 3

0
1 2 3 3 3 33

1 2  



                                      (90) 

Where: 

   

   

c
D

c c c c

c c
D

c c c c

13
2

33 11 12 13

11 12
3 2

33 11 12 13

2

2


 




 

                                               (91) 

Now invoking the displacement boundary conditions (see Eqs. 
(27)-(29)), we are dealing with the symmetric part of the perturbed 
problem described by Eqs. (35)-(40) in which  

 , , ,α αu x x Dσ x α1 2 3 1 2                                               (92) 

The exact analytical solution of the governing system (85) and 
(86) with the RHS given by (92) is achieved if we take the un-
known stresses in the form 

 , , ,α α α
α

b b x b x
σ x x α

a r

0 1 1 2 2
3 1 2

2 2
1 2

  
 



                        (93) 

where  , , , , ,jαb j α0 1 2 1 2   are unknown constants.  

Substituting these expressions into Eqs. (85) and (86), 
and next using the formulas for resulting integrals given by Vo-
rovich et al. (1974), the equality of two polynomials of the first 
order is obtained. Equating the terms of the left and right hands 

with the same powers of    and    yields a system of linear 
algebraic equations, solving which we get the following formulas 
for the unknown coefficients     : 

 
  



  

  

, ,

*

α α
c t

b ε α
π κ

b b c t ω
π

b b c DC σ
π

44 3
0

12 21 44 3 3

11 22 44 3

4
1 2

2

4

4

                                                  (94) 

Now the equilibrium conditions provided in (39) and (40) can 
be employed, from which we get (as might be expected): 

ε ε ω1 2 3 0                                                                          (95) 

Thus, expression (93) can be simplified as: 

 
*

, , ,α
α

c DC σ x
σ x x α

π a r

44 3
3 1 2

2 2

4
1 2


  



                            (96) 

From above it follows that the problem in hand is axially sym-
metric.  

On substitution of formulas (96) into Eqs. (81) and (82), we 
find: 

   

   

, , ,

, , ,

*

*

DC σ
g ψ κψ x κψ x

π t

DC σ
h ψ κψ x κψ x

π t

3
3 1 1 2 2 2 2 12

3

3
3 2 2 2 1 1 1 22

3

2

2

  

  

x

x

                   (97) 

Here          are the simple-layer potentials defined by: 

 
   

α
α

S

ξ dξ dξ
ψ

a ξ ξ

1 2

2 22
1 2










  

x

x ξ

                                      (98) 

They can be expressed in elementary functions by utilizing 
the results of Fabrikant (1989, 1991) as: 
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 
 

 


 

     
   

sinα α
a l aa

ψ π x
l l

2 2
21

2
2 2

x                              (99) 

where         ,l r a x r a x
2 22 2

2 3 30 5
 

      
 

. 

Having the above explicit expressions, a complete solution 
to the problem under study is available. Since the resulting formu-
las are lengthy, we omit them here to save the space of the paper. 
To investigate the singular behavior of anticrack-border stresses, 
however, the shear radial and normal stresses in the plane 

      are calculated as follows: 

 
,

,

,

r

r

β σ r
r a

σ r π a r

r a

3

2 2
3

0
0

0




 

  




                                 (100) 

 
,

,

sin ,

β σ r a

σ r
β σ a a

r a
π rr a

3 3

33
13 3

2 2

1
0

2
0




  


            

       (101) 

in which       are given by: 

 

     
r

c c c c c c c c c c c
β

c c c c c c c

13 11 44 11 33 13 44 13 44 11 33

2
33 11 12 13 11 33 44

4 2 2

2

   
 


   
  

(102) 

 
     

c c c c c
β

c c c c c c c

13 44 11 33 13
3 2

33 11 12 13 11 33 44

4

2



   
  

               (103) 

These results reveal that the stresses near the anticrack front 

    have the classical singularity       as in the fracture 
mechanics of conventional elastic materials. Strictly speaking, 
singularities in     occur at the points on the edge of the disc 

where     , and in       at the points exterior to the disc 

where     . It indicates that there are two major mechanisms 
controlling the material cracking around the inclusion front: 
‒ exfoliation of the material from the surface of the inclusion 

described by the stress singularity coefficients: 

    lim , /r r
r a

S π a r σ r β σ a πII 3 32 0


 


           (104) 

‒ mode I fracture in the immediate vicinity of the edge of the 
disc characterized by the stress intensity factor: 

    lim , /
r a

K π r a σ r β σ a πI 33 3 32 0


                 (105) 

The above-mentioned parameters can be used in conjunction 
with a suitable failure criterion. 

Finally, in the special case of isotropy (see (16)), we arrive 
at the solution in which the constants       become: 

 

  

 

  
r

λ λ μ ν ν
β

λ μ λ μ ν ν

4 2 8 1

3 3 2 1 3 4

 
 

   
                                    (106) 

  

 

  

ν νλμ
β

λ μ λ μ ν ν
3

4 1 24

3 3 2 1 3 4


 

   
                              (107) 

in complete agreement with Kassir and Sih (1968).  

5. CONCLUSIONS 

In the present paper we have studied the elastostatic three-
dimensional problem of an anticrack of arbitrary shape embedded 
in a transversely isotropic space and subjected to external loads. 
Using the method of potential functions, the mixed boundary-value 
problems in the antisymmetric and symmetric statement have 
been reduced to some mixed problems of potential theory. Fur-
ther, the governing boundary integral equations were obtained 
with the unknown stress jumps across the rigid inclusion. 
As an illustration, a closed-form solution was given and discussed 
for a circular rigid inclusion subjected to normal tension at infinity. 
The analytical expressions of stress fields in the anticrack plane 

show the characteristic       singular behaviour near the edge 
of the disc and indicate that either the matrix fractures near the 
inclusion according to mode I or the mechanism of shear fracture 
acts (separation of the material from the inclusion surface). 
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