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Abstract: Buckling and postbuckling behaviour of thin-walled channel section beam made of epoxy-glass composite have been consid-
ered. The beams under analysis was subjected to pure bending. The main aim was check the influence of ply arrangement on buckling 
load and postbuckling behaviour and validate the authors analytical-numerical method by commercial finite element method software. 
Mentioned analytical-numerical method has been developed for more than 25 years in Department of Strength of Materials. This method 
uses asymptotic Koiter theory for conservative systems in the second order approximation modified by Byskov and Hutchinson. Additional-
ly, using the finite element method software the influence of ply arrangement on failure load were checked.  
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1. INTRODUCTION 

The thin-walled structure is a structure which consists of one 
or several thin plates or shells connected together at their com-
mon edges. Among thin-walled structures, plates, girders, beams, 
columns and shells are included. It is almost impossible to draw 
precisely the borderline between thin-walled elements and ele-
ments with average thickness. In the literature, one can find the 
information that the thin-walled rod is the one in which the wall 
thickness is at least 10 times smaller than the smallest cross-
sectional dimension 

Buckling and postbuckling of thin-walled structures subjected 
to static load have been investigated by many authors for more 
than one hundred years. The following scientists: Euler (1910), 
Timoshenko (1961) and Volmir (1967) should be included in the 
group of precursors of the investigations on stability of the thin-
walled structure problem. 

In the world wide literature, papers dealing with nonlinear 
problems of stability of thin-walled structures made of orthotropic 
materials can be found easily. The oldest work on this subject was 
published almost 80 years ago. Seydel (1933), Smith (1944) dealt 
with orthotropic plate buckling. Reissner and Stavsky (1961) 
published a study on the critical stress for anisotropic laminated 
plates with arbitrarily stacked layers. The theoretical background 
for buckling of composite and anisotropic plates was published by 
Lekhnitskii (1947), Ambartsumyan (1970), Ashton and Whitney 
(1970) or Vinson and Chon (1975). In the literature, there are 
many works on anisotropic plates – among them, March's (1942) 
and Thielmann’s (1950) works are worth mentioning. Fraser and 
Miller (1970) established the critical load for orthotropic plates 
using the Ritz method. Mandell (1968) presented the results 
of experimental studies on buckling of anisotropic rectangular 
plates with simply supported or clamped edges. Chailleux et al. 
(1975) delivered the results of experimental studies on the stability 
of columns and square laminate plates. Noor (1975) in his work 
presented a comparison between the classical theory of plates, 
the theory of linear shear and a 3-D theory for elastic stability 
of orthotropic laminated plates. Chandra and Raju (1973) pub-

lished a study on the postbuckling behaviour of orthotropic rec-
tangular plates with simply supported edges. They analysed 
plates subjected to load causing uniform shortening of edges. 
They compared the results of their study with the previously pub-
lished works. A similar problem was solved by Prahakara and 
Chia (1973). They carried out a theoretical analysis of the post-
buckling behaviour of orthotropic, rectangular plates with simply 
supported edges and subjected to biaxial compression. To de-
scribe the deformation, a double Fourier series was used. Massey 
(1971) and Brunelle (1983) looked for areas of instability for ortho-
tropic plates subjected to pure shear. Libove (1983) and Ting with 
co-authors (1987) analysed the unstable behaviour of orthotropic 
plates under biaxial load. 

The employed analytical-numerical method, developed in De-
partment of Strength of Materials of Lodz University of Technolo-
gy, was presented in monograph edited by Kołakowski and Kow-
al-Michalska (1999). In mentioned above monograph the results 
of calculation for plates and beam-columns made of orthotropic 
materials can be found. The analysed structures are made 
of homogeneous orthotropic material. In contrast of that models 
in this publication layered composites were considered. 

The latest work dealing with buckling and postbuckling behav-
iour of thin-walled columns made of epoxy-carbon composite 
subjected to compression was published by Dębski, Kubiak 
and Teter (2013). They compare finite element method, analytical-
numerical method and experimental results. The beam-columns 
made of composite material subjected to bending can be found in 
paper written by Kołakowski and Mania (2013), who introduced 
the semi analytical method for determined the postbuckling be-
haviour of multilayered composite. The same method was also 
used in this paper.  

Thin-walled structures especially made of composite materials  
have an ability to form freely the cross-section as well as a ply 
arrangement and, thus, to maximize strength and load carrying 
capacity. Therefore, they have been more and more often used 
in many industries for example they are used in sport and automo-
tive industry and aerospace. As an example of such structural 
elements, a snowboard, a ski or poles can be mentioned, as well 
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as all kinds of crane girders, structural components of automobiles 
(a car body sheathing and all longitudinal members), aircraft 
fuselages and wings. 

It should be remember that the thin-walled structures exhaust 
their carrying capacity not by exceeding allowable stresses but by 
a stability loss. Therefore, not only the critical load but also the 
postbuckling behaviour provides essential knowledge for design-
ers.  

The Authors of this paper decided to adapt previously devel-
oped analytical-numerical method to analyse postbuckling behav-
iour of thin-walled structures made of multilayered fibre compo-
site. As an example of the considerations the multi-layer glass 
fibre composite channel section beam was taken. It was assumed 
that the beam is made of eight-ply laminate, where each can have 
different orientation but finally quasi-isotropic arrangement.  

The main goal of the study was choosing a few ply arrange-
ments that will be used in the samples (channel section profiles) 
to the experimental studies, that in turn will allow to validate the 
results of calculations.  

The epoxy-glass fibre composite have been used as a materi-
al of considered thin-walled channel section beams subjected to 
pure bending. The buckling load and the postbuckling behaviour  
have been analysed.  

2. METHODS OF SOLUTION 

Two method of solution have been employed. The commercial 
software ANSYS® based on finite element method and analytical-
numerical method. The results obtained by two mentioned above 
method was compared.  

The finite element method commercial software (ANSYS®) 
was employed to validate the results obtained from analytical-
numerical method. 

The finite element method have been also used to determine 
the failure load.  

2.1. Analytical-numerical method  

The analytical-numerical method (Kolakowski and Kowal-
Michalska 1999, 2012, Kubiak 2001) have been employed to 
analyse the static buckling, post buckling behaviour of thin-walled 
structures composed of plates made of orthotropic or composite 
materials.   

 
Fig. 1. Geometrical dimensions and local coordinate systems  
            of adjacent plates 

In the employed method the beams under analysis are simply 
supported at loaded ends. The beam’s wall are rectangular and 
can be orthotropic with the principal axes of orthotropy parallel to 
the plate edges or have a quasi-isotropic ply arrangement. It was 
assumed that the considered beams are made of a material that 
governed by Hooks Law. The loaded edges remain straight and 
parallel during loading. Additionally, it is assumed that normal and 
shear forces disappear along the unloaded edges. 

Thin-walled prismatic columns of a length l composed of rec-
tangular plate segments (Fig. 1) interconnected along longitudinal 
edges are considered.  

For the i-th plate component, precise geometrical relationships 
are assumed in order to enable the consideration of both out-of-
plane and in-plane bending of each plate (Kolakowski, Kowal-
Michalska 1999, 2012,  Kubiak 2001): 
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where: ui, vi, wi - displacement components of the middle surface 
of the i-th plate in the xi, yi, and zi directions, correspondingly.  

The differential equilibrium equations (2) have been obtained 
taking into account Lagrange’s description, full Green’s strain 
tensor for thin plates and Kirchhoff’s stress tensor. 
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where N and M are sectional forces and moments. 
After expanding the fields of displacements U and the fields 

of sectional forces N into a power series with respect to the mode 
amplitudes ξ (the dimensionless amplitude of the buckling mode), 
Koiter’s asymptotic theory has been employed (Koiter, 1976): 
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where: λ is the load parameter; U(0), N(0) the pre-buckling state 
fields for i-th wall and U(s), N(s) the buckling mode fields, and U(ss), 
N(ss) are the post-buckling fields (the second order approximation) 
for the i-th plate. The non-linear problem was solved with the 
Byskov and Huchinson (1977) asymptotic theory application. 
By substituting displacements obtained from assumed expansion 
of the fields of displacements (3) into equations of equilibrium (2), 
the junction conditions and the boundary conditions, the boundary 
problems of zero, first and second order could be obtained. 
The first and second order approximations in the middle plate 
plane have been solved with a modified transition matrix method. 
The state vector at the final edge based on the state vector at the 
initial edge has been found by a numerical integration of differen-
tial equations (2) along the transverse direction using the Runge-
Kutta formulae by means of the Godunov orthogonalization meth-
od. The above-mentioned method allows for finding the nonlinear 
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postbuckling coefficients asss and bssss applied in the equation 
describing the postbuckling equilibrium path (Kubiak 2001): 
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where: s is the critical load corresponding to the s-th mode and 
coefficient asss, bssss are: 
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where: L11 is a bilinear operator, L2 is a quadratic operator, and 
σ(s), σ(ss) are stress field tensors in the first and second order. 
The postbuckling static equilibrium paths (4) for the lowest  
(s = 1) uncoupled buckling load λs = λcr has the form: 
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Till now in developed analytical-numerical method the second 
order approximation for multilayer composite plate or beams wall 
is not included. However, Kolakowski  proposed the semi analyti-
cal method allowing to find coefficient b1111, which according to 
(Kołakowski and Kowal-Michalska, 2012; Kołakowski and Mania 
2013) is: 
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2.2. Finite element method 

The ANSYS® software based on finite element method was 
used to perform nonlinear buckling analysis and determine the 
postbuckling behaviour of channel sections beams subjected to 
pure bending.  

To solve the nonlinear problem the iterative Newton-Raphson 
method is employed.  

In numerical (FEM) model the four-node shell element with six 
degrees of freedom at each node have been taken to discretisa-
tion the considered channel section beam. The number of ele-
ments has been assumed on the basis of experience (e.g. Ko-
lakowski and Kubiak, 2005) – the mesh density has been as-
sumed in such a way as not to limit the deformation of the beam.  

 
Fig. 2. Assumed boundary conditions 

 
Fig. 3. Assumed boundary conditions 

The assumed boundary conditions are presented in Figs. 2 
and 3.  

It was assumed that bending (the flexural buckling mode) oc-
curred around the axis for which the second moment of area is the 
smallest, thus the FEM model was prepared in such a way that 
nodes in which the displacement in the y direction was set to zero 
were on the neutral axis of ending sections. Straightness of the 
loaded edges of the considered beam-column is provided by 
requiring equal displacements of all nodes lying on the edge of the 
beam-column in the direction normal to its walls. To ensure that 
deformations are compatible with the deflection in bending (the 
global flexural buckling mode), the edges normal to the neutral 
axis remained straight in the plane containing the wall of the 
column. In addition, for all nodes lying on those edges, the con-
stant rotation around the axis parallel to the axis of the neutral 
section was presupposed. 

The bending load was applied as a stress distribution, which 
was modelled in the form of the pressure distribution acting along 
the loaded edges of the structure (Fig. 4).  

      
Fig. 4. Assumed FEM model of load 
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Fig. 5. Postbuckling equilibrium path for the channel section 
50×25×1 beam of the length l = 200 mm  
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It should be noted that the assumed load is non-conservative 
– pressure is always perpendicular to the area to which it is ap-
plied – but for load which are less then two times the buckling load 
the differences in results can be neglected (Fig. 5). 

 
Fig. 6. FEM model for four point bending 

 The assumed FEM model for four point bending test is pre-
sented in Fig. 6. 

3. RESULTS OF CALCULATIONS 

The calculations have been performed using FEM and analyt-
ical-numerical method (ANM). The channel section composite 
beam  (Fig. 7) with different ply arrangement and length l = 80 
mm was considered. The following ply arrangement was taken 
into account: 

 C1: [0/-45/45/90]S; 

 C2: [90/-45/45/0]S; 

 C3: [90/0/90/0]S; 

 C4: [0/90/0/90]S; 

 C5: [45/-45/45/-45]S; 

 C6: [45/-45/45/0]S; 

 C7: [45/-45/90/0]S. 
The initial geometrical imperfection amplitude equals 0.01 

of wall thickness was assumed.  

 
Fig. 7. Load, dimension and exemplary ply arrangement of considered 

channel section beam 

The ply arrangement influence on buckling load and postbuck-
ling behaviour have been analysed. The buckling loads compari-
son are  presented in Tab. 1. The lengths Lcr of beams for which 
the lowest critical moment corresponding to local buckling and 
one half-wave in longitudinal direction have been calculated are 
also listed in Tab. 1. The buckling load obtained by two employed 
method are in very good agreement. 

Tab. 1. Buckling load Mcr and critical length Lcr corresponding  
             to local buckling mode 

 

ply arrangements 

ANM  

 

Mcr [kNm] 

FEM  

 

Mcr [kNm] 

length of one 
half-wave  

Lcr [mm] 

C1: [0/-45/45/90]S 6.2 6.2 80 

C2: [90/-45/45/0]S 6.3 6.2 52 

C3: [90/0/90/0]S 6.2 6.2 67 

C4: [0/90/0/90]S 6.1 6.1 71 

C5: [45/-45/45/-45]S 6.9 7.2 63 

C6: [45/-45/45/0]S 6.9 7.1 63 

C7: [45/-45/90/0]S 6.9 7.2 60 

The postbuckling equilibrium paths obtained with analytical-
numerical method are shown in Fig. 8. There are three groups of 
ply arrangements (1st: C2 and C3; 2nd: C4, C6 and C7; 3rd: C1 
and C5) and in each of these the course of equilibrium paths are 
similar. Taking above into account further calculation was made 
for ply arrangement denoted as C1, C2 and C4. 
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Fig. 8. Postbuckling equilibrium paths for channel section beam  

 with different ply arrangement 

The comparison of courses of postbuckling equilibrium paths 
for different ply arrangement denoted by C1, C2 and C4 obtained 
with FEM and ANM for beams of length L = 80 mm are presented 
in Fig. 9. The differences in dimensionless load M/Mcr for given 
dimensionless deflection w/h = 1 reach as much as 20% 
for beams with ply arrangement C2. These differences growing 
with increasing dimensionless deflection w/h. Taking above into 
account and knowing that the Koiter approach does not take into 
account stiffening the structure associated with the fact that part of 
the section is tensed it was decide to check the influence of ten-
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sile stress on beam stiffness - checking the change of course of 
postbuckling paths. The differences depending on approach are 
presented in Fig. 10. 
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Fig. 9. FEM and ANM results comparison for channel section beam  

  with different ply arrangement 
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Fig. 10. Postbuckling equilibrium paths obtained with Koiter or authors 

approach 

Taking into account the stiffening beams caused by sectional 
tension forces the differences between results obtained with 
analytical-numerical method and finite element method are great-
er than presented in Fig. 9 - the results comparison for beam 
of length L = 150 mm with layers arrangement C2 are shown 
in Fig. 11. First of all it should be noted that the results obtained 
with analytical-numerical method correspond to local buckling, 
so for easier comparison the curve denoted by “FEM local” was 
obtained for beam with length L = Lcr = 52mm (see Tab.1). 
The beam deflection corresponding to local and global buckling 
mode and obtained for dimensionless load M/Mcr = 2.4 are pre-
sented in Fig. 12.  

As it is presented in Fig. 13 the postbuckling equilibrium paths 
depend not only on the length of the beam but also depend on the 
chosen point in which the displacement for increasing load are 
collected. The curve denoted by number from 1 to 3 correspond to 
point presented in Fig. 12 in which the displacements are meas-
ured.  
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Fig. 11. Postbuckling equilibrium paths for channel section beam with ply 

arrangement C2 obtained with ANM and FEM 

    
Fig. 12. Deflection obtained with FEM for beam of length L =150 mm 

corresponding to global mode (a) and for beam with L =52 mm 
corresponding local mode (b) 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5

w/h

M/Mcr

1

2

3

 
Fig. 13. Comparison postbuckling equilibrium paths for channel section 

beam with ply arrangement C2 obtained with FEM 

Observing the coarse of the postbuckling equilibrium paths, 
especially the curve denoted by 1 (Fig. 13) it can be said that 
considered beam are bended – edge does not remain straight. 
Displacement of point 1 (Fig. 12) are in opposite direction than the 
edge of the channel section. When the displacement measured on 
the middle of the web (point 1 in Fig 12a) starts grows the collect-
ed displacement decrease for increasing load (curve 1 - Fig. 13) – 
it happens for load corresponding to buckling load  
M/Mcr = 0.9 for channel section beam with geometrical imperfec-
tion.   
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4. CONCLUSIONS 

The results of calculation obtained using employed methods 
differ even about 20%. Such a big differences shows that the 
experimental tests are necessary for numerical model validation. 

The results show that the critical load for all analysed beams 
are similar, and their behaviour after the loss of stability depends 
strongly on the layers arrangement. 

Differences in the results obtained with both employed meth-
ods depend on assumptions and because the prebuckling bend-
ing have not been taken into account in the analytical-numerical 
method.  

The one of the aims of presented investigation was to choose 
the ply arrangement of produced channel sections samples which 
will be used in experimental tests.  

The results of calculations for  beams with seven different ply 
arrangements shows, that is enough to choose only three of them 
for which the postbuckling equilibrium paths differ in the most. 
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