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Abstract: This article proposes a new swarm control method using distributed proportional-derivative (PD) control for self-organisation  
of swarm of nonholonomic robots. Kinematics control with distributed proportional-derivative (DPD) controller enables generation  
of desired robot trajectory achieving collective behaviour of a robotic swarm such as aggregation and pattern formation. Proposed method 
is a generalisation of virtual spring-damper control used in swarm self-organisation. The article includes the control algorithm synthesis  
using the Lyapunov control theory and numeric simulations results. 
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1. INTRODUCTION 

The problem of swarm self-organisation is one of the several 
elementary collective behaviours observed in nature. The exam-
ples of swarming behaviours are line formations in ant colonies, 
bird flocks, fish schools and so on. These basic formations enable 
animals to enhance foraging success or give better protection 
from predators. In case of robotic swarms, formation control ena-
bles achieving collective goals in orderly manner, very often more 
efficiently than without behaviours of this type. Area coverage, oil 
plume removal, swarm transport and object manipulation are 
some of the examples in which swarm formation control is widely 
used (Brambilla et al., 2013). 

The self-organisation process allows for pattern creation from 
randomly distributed robots. The robots can establish formation 
using only local information about their neighbouring robots or 
using a global reference if it is required by the control algorithm. 
By self-organisation, we mean the emergence of order in a robotic 
swarm as the result of local interactions amongst robots constitut-
ing the swarm. Existing methods of swarm formation control are 
either bio-inspired, based on physics phenomena, or derived from 
control theory. Bio-mimicking methods were the first to emerge, 
for example, Reynolds study of flocks, herds and schools (Reyn-
olds, 1987) or starlings flocking analysis by Hildenbrandt et al. 
(2010). Rauch et al. (1995) studied class of models for pattern 
formation based on the behaviours of social insects. Similar works 
are presented in Christensen et al.(2009), Hsieh(2008) and Trian-
ni (2008). Physics-inspired methods are also popular, thanks to 
the well-described mathematical equations that are the basis for 
developing a control algorithm. For example, by imagining the 
robots being connected to each other by virtual spring and damp-
er, forcing them to move, the swarm will eventually aggregate to 
one point or, with careful adjustment of virtual parameters, the 
swarm will establish a formation (Balkacem and Foudil, 2016; 
Urcola et al., 2008; Shucker and Bennett, 2005; Spears et al., 

2004; Wiech et al., 2018). Another approach is to develop the 
control algorithm using stability and optimisation theory (Cheah et 
al., 2009). The works of Gazi and Passino (2003, 2004) and Gazi 
(2005) based on artificial potential functions allow for formation 
control, foraging, swarm tracking and so on. In the following work, 
a swarm self-organisation control algorithm was formulated, in-
spired by virtual spring damper method with stability proof using 
the Lyapunov techniques. 

2. DESIRED ROBOT TRAJECTORY GENERATION 

The kinematics control with distributed proportional-derivative 
(DPD) controller will be used for desired trajectory generation for 
each member of a swarm. In case of mentioned physics-based 
method (Fig. 1), the robots were connected by virtual spring 
dampers, which resulted in formation creation. The net virtual 

force exerted on a robot lead the robot to a point in space 𝑅𝑧, 
which can be described as a local stability point. The position of 
𝑅𝑧 is a function of time, and it is related to springs deformations 
between the robot and its neighbours. As generalisation of said 
method, we present an approach different from the virtual spring 
dampers. 

 
Fig. 1. Virtual physics based method 
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2.1. Geometric relations 

The robot R and its neighbouring robots 𝑅𝑠1, 𝑅𝑠2, … , 𝑅𝑠𝑖  are 
minimising the distance differences 𝑒1, 𝑒2, … , 𝑒𝑖 between current 

distances between robots 𝑙1, 𝑙2, … , 𝑙𝑖 and the desired distance 𝛿. 

For this purpose, the differences 𝑒1, 𝑒2, … , 𝑒𝑖 were substituted 
with the distance error 𝑒𝛿 pictured in Figure 2. 

 
Fig. 2. Distances in the swarm 

The value of the distance error 𝑒𝛿 is defined as follows: 

𝑒𝛿 = √∑ 𝑒𝑦𝑖
𝑛
𝑖=1

2
+ ∑ 𝑒𝑥𝑖

𝑛
𝑖=1

2
, (1) 

where 𝑒𝑥𝑖 = 𝑒𝑖 cos 𝛾𝑖 and 𝑒𝑦𝑖 = 𝑒𝑖 sin 𝛾𝑖 

The distance difference 𝑒𝑖 is described using equations: 

𝑒𝑖 = 𝑙𝑖 − 𝛿, (2) 

𝑒𝑖 = √𝑒𝑦𝑖
2 + 𝑒𝑥𝑖

2. (3) 

All robots are equipped with distance sensors with limited 
range. Sensor range determines how many robots are detected. 
In order to detect only the nearest neighbours, the sensing range, 
SR, has to meet the inequality: 

𝛿√3 > 𝑆𝑅 > 𝛿. (4) 

If we set the range SR = 1.2𝛿, the swarm will form the equi-
lateral triangle formation. Geometric interpretation of SR value is 
depicted in Figure 3. 

 
Fig. 3. Robot sensor range for sensing only nearest neighbours 

2.2. Stability analysis of the algorithm generating  
the desired trajectory 

Each member of the swarm calculates the distance error 𝑒𝛿 

and an angle 𝜓 between robot heading and 𝑒𝛿 based on the 
position of its neighbouring robots (Fig. 4). In the following equa-
tions, the index i was omitted. 

a) b)  

Fig. 4.(a) Robot R in relation to point 𝑅𝑧 and (b) projections of 𝑒𝛿  

The value of 𝑒𝛿 is defined using equation (1), whereas 𝜓 is 
calculated using the following formula: 

𝜓 = 𝑎𝑟𝑐𝑡𝑔 (
𝑒𝛿𝑦

𝑒𝛿𝑥
) − 𝛽, (5) 

where 𝑒𝛿𝑥 and 𝑒𝛿𝑦 are the projections of 𝑒𝛿 on the axes x and y  

(Fig. 4b). 
The kinematics equations of the mobile robot in relation to the 

goal position 𝑅𝑧 in polar coordinate system are 

�̇�𝛿 = −𝑣𝐴 𝑐𝑜𝑠 𝜓 ,

�̇� = 𝑣𝐴
𝑠𝑖𝑛 𝜓

𝑒𝛿
− �̇�.

 (6) 

Error vector 𝒒𝒑 in polar coordinates is defined as 

𝒒𝒑 = [𝑒𝛿 , 𝜓]. (7) 

Differentiating the error vector yields the following equations: 

�̇�𝛿 = −𝑢𝑣 𝑐𝑜𝑠 𝜓 ,

�̇� = 𝑢𝑣
𝑠𝑖𝑛 𝜓

𝑒𝛿
− 𝑢𝛽 ,

 (8) 

where 𝑢𝑣 and 𝑢𝛽 are the generated velocities 𝑣𝐴 and �̇�, 

respectively. 

To determine the control law 𝒖𝑩 = [𝑢𝑣, 𝑢𝛽]
𝑇

 allowing the 

calculation of robot motion parameters 𝑣𝐴 and �̇�, the Lyapunov 
stability theory was used. We consider the following positive 
definite function: 

𝑉 = 𝑉1 + 𝑉2 =  
1

2
𝑒𝛿

2 +
1

2
𝜓2 . (9) 

By differentiating the function 𝑉, we obtain 

�̇�1 = 𝑒𝛿�̇�𝛿 = −𝑒𝛿𝑢𝑣 𝑐𝑜𝑠 𝜓, (10) 

�̇�2 = 𝜓�̇� = 𝜓 (
𝑢𝑣 𝑠𝑖𝑛 𝜓

𝑒𝛿
− 𝑢𝛽). (11) 

Using the DPD controller in the form 

𝑢𝐷𝑃𝐷 = 𝑘𝐷𝑃𝑒𝛿 + 𝑘𝐷𝐷�̇�𝛿 , (12) 

where 𝑘𝐷𝑃 and 𝑘𝐷𝐷 are the proportional and derivative 
distributed controller gain coefficients, respectively. 
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The linear velocity control 𝑢𝑣 is defined as 

𝑢𝑣 =  𝑢𝐷𝑃𝐷 𝑐𝑜𝑠 𝜓. (13) 

From equations (8), (12) and (13), we have 

𝑢𝑣 =
𝑘𝐷𝑃𝑒𝛿 𝑐𝑜𝑠 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
. (14) 

Whilst the angular velocity control 𝑢𝛽 is calculated from the 

equation 

𝑢𝛽 = 𝑢𝐷𝑃𝐷
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓

𝑒𝛿
+ 𝜆𝜓, (15) 

where 𝜆 is the angular proportional gain coefficient. 

With equations (8), (12) and (15), 𝑢𝛽 is described as 

𝑢𝛽 =
𝑘𝐷𝑃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
+ 𝜆𝜓. (16) 

Using equations (10),(11), (15) and (16), we can determine 

the sign of �̇�: 

�̇�1 = −𝑒𝛿𝑢𝑣 𝑐𝑜𝑠 𝜓 = −
𝑘𝐷𝑃𝑒𝛿

2 𝑐𝑜𝑠2 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
, (17) 

�̇�2 = 𝜓 (
𝑢𝑣 𝑠𝑖𝑛 𝜓

𝑒𝛿
− 𝑢𝛽) =

𝜓 (
𝑘𝐷𝑃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
−

𝑘𝐷𝑃 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
− 𝜆𝜓) = −𝜆𝜓2, (18) 

�̇� = �̇�1 + �̇�2 = −
𝑘𝐷𝑃𝑒𝛿

2 𝑐𝑜𝑠2 𝜓

1+𝑘𝐷𝐷 𝑐𝑜𝑠2 𝜓
− 𝜆𝜓2 < 0 ∀ 𝑘𝐷𝐷 >

0, 𝑘𝐷𝑃 > 0, 𝜆 > 0. (19) 

Thus the derivative of the proposed function (9) satisfies the 

inequality �̇� < 0, which means that the function 𝑉 is the 
Lyapunov function, and we can conclude the asymptotic stability 
of the equilibrium point 𝑞𝑝 = [0,0]. 

2.3. Robot control algotrithm 

We consider a swarm of N two-wheel mobile robots (Fig.4a) 
whose dynamics of the ith robot can be described as (Giergiel and 
Żylski, 2005) 

𝑀�̈� + 𝐶(�̇�)�̇� + 𝐹(�̇�) = 𝜏, (20) 

where 𝑞 = [𝛼1, 𝛼2]𝑇 is the vector of generalised coordinates 
(rotation angles of both wheels), 𝑀 is the inertia matrix, 𝐶(�̇�)�̇� is 

the vector of Coriolis and centripetal forces, 𝐹(�̇�) is the wheels 

friction vector, 𝜏 = [𝜏1, 𝜏2]𝑇 denotes the control inputs and 𝜏1, 𝜏2 
are driving torques. 

The desired angular kinematic parameters �̇�𝑑= [�̇�1𝑑 , �̇�2𝑑]𝑇of 
a robot are calculated from the following equations (Giergiel and 
Żylski, 2005): 

�̇�1𝑑 =
𝑢𝑣

𝑟
+ 𝑢𝛽

𝑙

𝑟
, �̇�2𝑑 =

𝑢𝑣

𝑟
− 𝑢𝛽

𝑙

𝑟
, (21) 

where �̇�1𝑑  and �̇�2𝑑 are the desired wheels angular velocities, 
respectively; r is the wheel radius; l is the half of the length of the 

drive axle (Fig. 5); 𝑢𝑣 is the linear velocity of the point A; and 𝑢𝛽 

is the angular velocity of the robot frame. 
Desired trajectory generation schematics is shown in Figure 6. 
For tracking the desired trajectory generated by the DPD 

controller by a point 𝐴𝑖 of the ith robot, the following proportional-
derivative (PD) controller is used [9,12]: 

𝑢 = 𝑘𝑃𝑒𝑡 + 𝑘𝐷�̇�𝑡 , (22) 

where 𝑘𝑃 is the proportional tracking controller gain, 𝑘𝐷 is the 

derivative tracking controller gain, 𝑒𝑡 = 𝑞𝑑 − 𝑞 is the trajectory 

tracking error and �̇�𝑡 = −�̇� is the derivative of the trajectory 
tracking error. 

Control schematics of trajectory tracking is shown in Figure 7. 

 
Fig. 5. Scheme of a two-wheeled robot 

 
Fig. 6. Scheme of desired trajectory generation 

 
Fig. 7. Scheme of desired trajectory tracking 

2.4. Stability analysis of robot trajectory tracking algorithm 

To prove the stability of trajectory tracking, the introduction of-
servomotor equation is necessary. The servomotor dynamics is 
described by the equation (Spong and Vidyasagar, 1989) 

𝐽𝑘�̈�𝑘 + (𝐵𝑘 + 𝐾𝐷𝐾𝑀/𝑅)�̇�𝑘 = 𝐾𝑀/𝑅𝑉𝑘 − 𝑟𝑘𝜏𝑘 , (23) 

where k = 1,2, 𝐽𝑘 is the sum of the actuator and gear inertias, Θ𝑘  
is the rotor position [rad], 𝐵𝑘  is the viscous friction coefficient, 𝐾𝐷 

is the back emf constant, 𝐾𝑀  is the torque constant, 𝑅 is the 

armature resistance, 𝑉𝑘  is the armature voltage and 𝑟𝑘  is the gear 
ratio. 

Using the relation between the rotor position and wheel 

position Θ𝑘 = 𝛼𝑘/𝑟𝑘 , the equation (23) will become 

1

𝑟𝑘
2 𝐽𝑘�̈�𝑘 +

1

𝑟𝑘
2

(𝐵𝑘 + 𝐾𝐷𝐾𝑀/𝑅)�̇�𝑘 =
𝐾𝑀

𝑟𝑘𝑅
𝑉𝑘 − 𝜏𝑘 . (24) 

Substituting 𝐵𝑘 +
𝐾𝐷𝐾𝑀

𝑅
= 𝐵 and 

1

𝑟𝑘
2 𝐽𝑘 = 𝐽, we have 

𝐽�̈�𝑘 + 𝐵�̇�𝑘 =
𝐾𝑀

𝑟𝑘𝑅
𝑉𝑘 − 𝜏𝑘 . (25) 

Combining equations (23) and (20), the robot dynamics with 
servomotor dynamics in matrix notation will be of the form 



DOI 10.2478/ama-2019-0018              acta mechanica et automatica, vol.13 no.2 (2019) 

133 

[𝑀 + 𝐽]�̈� + [𝐶(�̇�) + 𝐵]�̇� + 𝐹(�̇�) = 𝑢, (26) 

where 𝑢 = [𝑢1, 𝑢2]𝑇 and 𝑢𝑘 =
𝐾𝑀

𝑟𝑘𝑅
𝑉𝑘 for k=1,2,. 

For control signal 𝑢, we propose PD controller described by 
equation (22) that can be rewritten as 

𝑢 = 𝑘𝑃𝑒𝑡 − 𝑘𝐷�̇�. (27) 

We consider the following positive definite function: 

𝑉 =  
1

2
�̇�𝑇[𝑀 + 𝐽]�̇� +

1

2
𝑒𝑡

𝑇𝑘𝑃𝑒𝑡 . (28) 

The derivative of function 𝑉 is 

�̇� =  �̇�𝑇[𝑀 + 𝐽]�̈� − �̇�𝑇𝑘𝑃𝑒𝑡 . (29) 

From equations (26) and (29), we have 

�̇� =  �̇�𝑇[𝑢 − 𝐵�̇� − 𝐹(�̇�) − 𝑘𝑃𝑒𝑡]�̈� − �̇�𝑇𝐶(�̇�)�̇�. (30) 

From robot dynamics, we know that the matrix 𝐶(�̇�) is a skew 
symmetric. Substituting equation (27) into equation (30), we will 
have 

�̇� = −�̇�𝑇[𝑘𝐷 + 𝐵 + 𝐹(�̇�)]�̇�. (31) 

To prove stability, we use LaSalle’s theorem [18]. Suppose 

�̇� ≡  0. Then equation (31) implies that �̇� ≡  0 and, hence, 

�̈� ≡  0. From equations (26) and (27), we have 

[𝑀 + 𝐽]�̈� + [𝐶(�̇�) + 𝐵]�̇� + 𝐹(�̇�) = 𝑘𝑃𝑒𝑡 − 𝑘𝐷�̇�. (32) 

Substituting �̇� ≡  0 and �̈� ≡  0 and knowing that 𝐹(0) = 0, 
we obtain 

0 = −𝑘𝑃𝑒𝑡 , (33) 

which implies that 𝑒𝑡 =  0. LaSalle’s theorem then implies that 
the equilibrium is asymptotically stable. 

 
3. SIMULATIONS 

As per the performance evaluation, two simulations were per-
formed with swarm having 21 constituting robots. The robots were 
initially randomly distributed with random headings (triangles in 
swarm centre). The final positions and heading of robots are 

depicted by equally distributed triangles with 𝛿 = 1.5m. The con-

trol algorithm parameters were set experimentally as follows: 𝑘𝐷𝑃 

= 2.4, 𝑘𝐷𝐷 = 1.3, 𝜆 = 10,𝑘𝑃 =  [
3 0
0 3

], 𝑘𝐷 = [
0.2 0
0 0.2

]. 

3.1. Swarm formation 

The desired distance 𝛿 between robots was set to 1.5m, 
which leads to dispersion of robots and establishing a formation. 
The formation is shown in Figure 8; the change in velocity and the 
distance of robot no. 5 is depicted in Figure 9. 

The simulation shows that the swarm self-organise into for-
mation consisting mostly of equilateral triangles of length equal 
1.5m. In Figure 8, we can see that some of the distances between 
robots on the outer edge of the formation are smaller than 1.5m, 

which could be avoided by setting different values for 𝑘𝐷𝑃 and 

𝑘𝐷𝐷. 
The maximum velocity 𝑣𝐴 the robot can reach is 0.3 m/s. The 

velocity change at the robot acceleration faze was approximated 

by a smooth ramp seen in Figure 9a. The distance difference 𝑒𝛿 

reaches 0 after 12s, whereas heading difference 𝜓 reaches 0 in 
finite time. 

 
Fig. 8. Self-organisation of 21 robot swarm: trajectories  

and final formation: robots initial positions depicted in red and 
final positions in blue 

 
Fig. 9. Simulation results for robot no. 5: (a) linear velocity 𝑣𝐴,  

(b) frame angular velocity �̇�, (c) distance difference 𝑒𝛿  and 
(d) heading difference 𝜓 

3.2. Swarm aggregation 

Swarm aggregation can be achieved by setting the desired 

distance 𝛿 to 0. All robots would converge to single point. Real 
robots are constrained by their size; to avoid collisions, the de-
sired distance 𝛿 was set to 0.15m, which is equal to the robot 
diameter (Fig. 10). The velocities and distance differences are 
shown in Figure 11. 

 

 
Fig. 10. Swarm aggregation: robots initial positions depicted in red and     

   the final positions in blue 
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Fig. 11. Simulation results for robot no. 5 in swarm aggregation process:  

(a) linear velocity 𝑣𝐴, (b) frame angular velocity �̇�, (c) distance  

difference 𝑒𝛿 and (d) heading difference 𝜓 

4. SUMMARY 

In this article, the method of self-organisation of nonholonomic 
robotic swarm using DPD controller was presented. Numerical 
simulations show that using this method, a robotic swarm is able 
to achieve equilateral triangle formation as well as reach the 
desired neighbourhood of the aggregation point. 

Owing to high amplitudes of robots acceleration, it was neces-
sary to introduce a smooth velocity ramp and a proximity zone in 
which the robot will stop, if it is reached. The proximity zone is a 
zone of small radius from the equilibrium point, introduced be-

cause of the requirement eδ ≠ 0 from equation (6). 
The shape of the formation depends on the correctly set DPD 

parameters as well as the parameters of PD controller used for 
trajectory tracking. The lower the tracking error is, the faster and 
more accurate is the swarm self-organisation. It could be benefi-
cial to substitute the PD controller with more precise control meth-
od such as adaptive neural control or neural dynamic program-
ming. 

It is of interest in future works to address the problem of gen-
erating the optimal desired robot trajectories and finding the opti-
mal values of control parameters. Moreover, future works will 
address swarm leader following and obstacle avoidance. 
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