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Abstract: A characteristic feature of the description of physical phenomena formulated by an appropriate boundary or initial-boundary val-
ue problem and occurring in microstructured materials is the investigation of the unknown field in the form of decomposition referred to as 
micro-macro hypothesis. The first term of this decomposition is usually the integral average of the unknown physical field. The second term 
is a certain disturbance imposed on the first term and is represented in the form of a finite or infinite number of singleton fluctuations. Men-
tioned expansion is usually referred to as a two-scale expansion of the unknown physical field. In the paper, we purpose to apply two-scale 
expansion in the form of a certain Fourier series as a result of an applying Surface Localization of the unknown field. The considerations 
are illustrated by two examples, which results in analytical approximated solutions to the Effective Heat Conduction Problem for periodic 
composites, including the full dependence on the microstructure length parameter. 
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1. INTRODUCTION 

The procedure that is proposed in this paper can be treated as 
a certain variant of the Tolerance Averaging Technique (TAT) 
(Woźniak and Wierzbicki, 2000; Jędrysiak, 2010; Michalak, 2010; 
Ostrowski, 2017) or as an alternative purpose to the forming of 
two-scale expansions (Ariault, 1983; Bensoussan et al., 2011), 
proposed as a micro-macro representation of the unknown physi-
cal fields (Woźniak and Wierzbicki, 2000; Jędrysiak, 2010; Micha-
lak, 2010; Ostrowski, 2017). Obtained in the subsequent consid-
erations equivalent reformulation of Heat Transfer Equation (HTE) 
uses Fourier expansion as a representation of the temperature 
field and consists of: (1) a single equation for average tempera-
ture as for the first term of the mentioned expansion, (2) infinite 
number of equations for Fourier coefficients (amplitudes), and 3) 
finite number of tolerance amplitudes. Fourier basis taken into 
account in the proposed approach includes the possible changes 
of the composite periodicity along directions perpendicular to the 
periodicity directions. Hence, we can also deal with the FGM-type 
periodicity (Woźniak et al., 2002), similar to the twin but approxi-
mately original tolerance description of composite behaviours 
developed in Woźniak et. al. (2002), and continuators (Woźniak 
and Wierzbicki, 2000; Ostrowski, 2017). The sum of Fourier fluc-
tuating terms (without the first term equal to the average tempera-
ture) can be interpreted as the analytical formula for the error 
made in using the approximate solutions of HTE proposed in TAT 
approach. 

The starting point of considerations is the known parabolic 
heat transfer equation: 

∇𝑇(𝐾∇𝜃) − 𝑐𝜃̇ = 𝑏  (1) 

in which, the region Ω ⊂ 𝑅𝐷, 2 ≤ 𝐷 ≤ 3, occupied by the com-
posite is restricted to the form: 

Ω = Ω𝑑 × Ω𝐷−𝑑  (2) 

in which, 1o Ω𝑑 = (0, 𝐿), Ω𝐷−𝑑 = (0, 𝛿1) × (0, 𝛿2) while 

(𝑑, 𝐷) = (1,3), 2 o Ω𝑑 = (0, 𝐿1) × (0, 𝐿2), Ω𝐷−𝑑 = (0, 𝛿) 

while (𝑑, 𝐷) = (2,3), and 3o Ω𝑑 = (0, 𝐿), Ω𝐷−𝑑 = (0, 𝛿) 
while (𝑑, 𝐷) = (1,2) for 𝐿1, 𝐿2, 𝐿, 𝛿1, 𝛿2, 𝛿 > 0. In (2), 

𝜃 = 𝜃(𝑦, 𝑧, 𝑡), 𝑦 ∈ Ω𝑑 ⊂ 𝑅𝑑 , 𝑧 ∈ Ω𝐷−𝑑 ⊂ 𝑅𝐷−𝑑, 𝑡 ≥ 0, 
denotes the temperature field, 𝑐 is a specific heat and 𝑘 is the 

heat conductivity constant matrix. Moreover, ∇≡ ∇𝑑 + ∇𝐷−𝑑 for 

∇𝑑≡ [∂/ ∂𝑦1, . . . , ∂/ ∂𝑦𝑑 , 0, . . ,0]𝑇 with zeros placed in the last 

𝐷 − 𝑑 positions and ∇𝐷−𝑑≡ [0, . . . ,0, ∂/ ∂𝑧1, . . . , ∂/ ∂𝑧𝐷−𝑑]𝑇 
with zeros placed in the first 𝑑 positions. Both fields 𝑐 = 𝑐(⋅) and 

𝑘 = 𝑘(⋅) take 𝑆 values 𝑐1, …, 𝑐𝑆 and 𝑘1, …, 𝑘𝑆, respectively, 

do not depend on the temperature field 𝜃 and are restricted to Ω𝑑  

of a certain periodic field defined in 𝑅𝑑 . Hence, considerations of 
the paper are restricted to Δ-periodic composites. Diameter 

𝑑𝑖𝑎𝑚(Δ) of repetitive cell is not necessarily small where com-

pared to the characteristic length dimension 𝐿 of the region Ω. 
With dimensionless scale parameter 𝜆 = 𝑑𝑖𝑎𝑚(Δ)/𝐿, we will 
control the analysed equations in the subsequent considerations. 

The Δ- periodicity of the composite means that there exists 𝜎-

tuple (𝐯1, . . . , 𝐯𝑑) of independent vectors 𝐯1, . . . , 𝐯𝑑 ∈ 𝑅𝑑de-

termining 𝑑 directions of periodicity such that: (i) points 𝑥 +
𝑘1𝐯1+. . . +𝑘𝑑𝐯𝑑, −0.5 < 𝑘1,  𝑘𝑑 < 0.5, cover for the interior 

of the cell Δ(𝑥), (ii) Δ = Δ(𝑥0) for fixed 𝑥0 ∈ 𝑅3 and (iii) 
𝑐(𝑥 + 𝐯) = 𝑐(𝑥), 𝐾(𝑥 + 𝐯) = 𝐾(𝑥) for an arbitrary 𝐯 ∈
{𝐯1, . . . . , 𝐯𝑑}, 𝑥 ∈ 𝑅3. The averaging 〈𝑓〉(𝑥), 𝑥 ≡ (𝑦, 𝑧), of an 
arbitrary integrable field 𝑓 is defined by : 

〈𝑓〉(𝑥) =
1

|Δ|
∫ 𝑓(𝜉)𝑑𝜉

Δ
 (3) 

and is a constant field provided that 𝑓is Δ-periodic. 
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2. REFORMULATION PROCEDURE 

The investigations are based on the two fundamental assump-
tions. The first modelling assumption is a certain extension of the 
micro-macro hypothesis introduced framework of the tolerance 
averaging technique (Ariault, 1983; Bensoussan et al., 2011; 
Woźniak and Wierzbicki, 2000; Jędrysiak, 2010; Michalak, 2010; 
Ostrowski, 2017). In accordance with that hypothesis, the temper-
ature field 𝜃 can be approximated with an acceptable accuracy by 
formula: 

𝜃𝑀(𝑧) = ϑ(𝑧) + ℎ𝐴(𝑥)𝜓𝐴(𝑧)  (4) 

in which, the slowly varying fields ϑ(⋅) and 𝜓𝐴(⋅) are referred to 
as tolerance averaging of temperature field and amplitude fluctua-
tions fields, respectively. Here and in the sequel, the summation 
convention holds with respect to indices 𝐴 = 1, . . . , 𝑁. Symbols 

ℎA, A = 1, . . . , 𝑁, used in (5) denote tolerance shape functions 
that should be periodic and satisfy conditions: 

ℎ𝐴 ∈ o(𝜆), 𝜆∇𝑦ℎ𝐴 ∈ 𝑜(𝜆), 〈𝑐ℎ𝐴〉 = 0, 〈𝐾ℎ𝐴〉 = 0   (5) 

Usually, RHS of (4) is called Micro-Macro Decomposition of 
the temperature field. For particulars, the reader is referred to 
(Bensoussan et al., 2011; Woźniak and Wierzbicki, 2000; Jędrysi-
ak, 2010). We interpret in (5), 𝜃𝑙𝑜𝑛𝑔 = ϑ and 𝜃𝑠ℎ𝑜𝑟𝑡 =

ℎ𝐴(𝑥)𝜓𝐴(𝑧). The tolerance-micro macro hypothesis can be 
formulated in the form: 

Micro-Macro Hypothesis. The residual part of the tempera-

ture field 𝜃𝑟𝑒𝑠 being the difference between the temperature field 

𝜃 and its tolerance part 𝜃𝑀 given by (4) can be treated as zero, 
𝜃𝑟𝑒𝑠 ≡ 𝜃 − 𝜃𝑀 ≈ 0, that is, it vanish with an acceptable ‘toler-

ance approximation’. The tolerance temperature part 𝜃𝑀 is de-

barked from the temperature field 𝜃 by the micro-macro hypothe-
sis as an approximation of this field leading to the equation for the 
average temperature controlled by the finite number of fluctuation 

amplitudes 𝜓𝐴(⋅). We intend to supplement this micro-macro 
approximation to the complete temperature field 𝜃 interpreting 
decomposition: 

𝜃 ≡ 𝜃𝑀 + 𝜃𝑟𝑒𝑠   (6) 

as a temperature field representation in with 𝜃𝑟𝑒𝑠 adding as the 
error made, while micro-macro decomposition (6) is used as 
tolerance approximation of the temperature field. 

Taking into account the intention of adapting the idea imple-
mented in the theory of signals, where we are dealing with the 
‘overlap’ of many signals controlled by various parameters, we will 
try to impose onto decomposition (6) the interpretation dictated by 
the modified micro-macro hypothesis. 

Modified Micro-Macro Hypothesis. The composite tempera-

ture field 𝜃 awards LS-decomposition onto the sum: 

𝜃 ≡ 𝜃𝐿 + 𝜃𝑆   
(7) 

of the long-wave part 𝜃𝐿 (L-part) and short-wave part 𝜃𝑆 (S-part), 
both sufficiently regular, which determine the disappearing heat 
flux vector component by: 

(𝑞𝑆)𝑛 ≡ 𝑘(∇𝜃𝑆)𝑛 = 0   (8) 

normal to Γ, and hence, corresponding to: 

𝜃Ś(𝑦, 𝑧, 𝑡) ≡ 𝜃(𝑦, 𝑧, 𝑡) − 𝜃𝐿(𝑦, 𝑧, 𝑡) = 𝑎𝑝(𝑧, 𝑡)𝜑𝑝(𝑦, 𝑧) (9) 

as a certain orthogonal Fourier expansion representation of 𝜃𝑆 
independent on thermal, material and geometrical composite 

properties. In restriction (8), allowing the use of the Fourier series 

in the unit vector field 𝑛 = 𝑛(𝑥) is normal to discontinuity surfac-
es Γ in regular points x placed on Γ. Moreover, in (9), summation 

convention holds with respect to positive integer 𝑝. Moreover, 
decomposition (6) has been implemented in various ways. Modi-
fied micro-macro hypothesis will be supplemented with two re-
marks. 
Remark. 1. If the orthogonality of Δ-periodic Fourier basis 𝜑𝑝(𝑥), 

𝑝 = 1,2, … , is related to the scalar product 𝑓1 ∘ 𝑓2 = 〈𝑓1𝑓2〉 =
∑ 𝜂𝑠〈𝑓1𝑓2〉s

S
s=1  using the `averaged values 〈𝑓1𝑓2〉s taken over 

materially homogeneous parts Δs of the repetitive cell Δ ⊂ 𝑅𝑑 , 
then Fourier basis 𝜑𝑝(𝑥) can be treated as independent on the 
material structure of the composite. 
Remark. 2. Tolerance temperature approximation (4) is a certain 

temperature L-part 𝜃𝐿 provided that corresponding L-part 

(𝑞𝑀)𝑛 ≡ 𝑛𝑇𝐾∇𝜃𝑀 of heat flux normal component (𝑞)𝑛 ≡
𝑛𝑇𝐾∇𝜃 is continuous on Γ. In this case, expansion (9) is equal to 
the error made under using 𝜃𝐿 = 𝜃𝑀 as an approximation of 𝜃. 
Moreover, the expansion: 

𝜃 = ϑ + 𝜆[𝑔𝐴𝜓𝐴 + 𝑎𝑝(𝑧, 𝑡)𝜙𝑝(𝑦, 𝑧)]                                 (10) 

is a certain temperature representation formed for ℎ𝐴(𝑥, 𝑡) ≡
𝜆𝑔𝐴(𝜆−1𝑥) and 𝜑𝑝(𝑥, 𝑡) ≡ 𝜆𝜙p(𝜆−1𝑥) and for: 

ϑ = 𝑎0 + 𝜃𝑟𝑒𝑠 − 𝜆𝑔𝐴𝜓𝐴                                                        (10)  

together with two additional conditions for: 

〈𝑐ϕ𝑝〉 = 0, 〈𝑘ϕ𝑝〉 = 0, 𝑝 = 1,2, . . . ,

〈𝑐𝑔𝐴〉 = 0, 〈𝑘𝑔𝐴〉 = 0, 𝐴 = 1,2, . . . , 𝑁.
                               (11) 

formulated under Remark 1. 
We are to superimpose on the LS-decomposition a special in-

terpretation in the framework, of which the composite behaviours 
being a direct consequence of the occurrence of the material 
discontinuity surfaces is described exclusively by the second term 
𝜃𝑆 of 𝜃 ≡ 𝜃𝐿 + 𝜃𝑆 in (7) debarked from 𝜃 as supported on the ε-
ribbon surrounding surfaces of material discontinuities of a com-

posite, while the part 𝜃𝐿 of 𝜃 ≡ 𝜃𝐿 + 𝜃𝑆 does not notice the 
presence of a heterogeneous composite structure. Hence, the 

mentioned decomposition includes the natural decomposition of 𝜃 

on a long-wave and a short-wave parts taken with respect to λ 
and localized inside and outside of the thin ε-ribbon surrounding 
surfaces of material discontinuities of a composite, respectively. 

Thus, decomposition 𝜃 ≡ 𝜃𝐿 + 𝜃𝑆 provides the ability to perform 
tolerance modeling procedure with respect to the field u = 〈ϑ〉 as 

the average temperature field, and to the fields 𝜓𝐴(⋅) and 𝑎𝑝(⋅) 

as fluctuation amplitudes referred to as the tolerance and Fourier 
amplitudes, respectively, and also in relation to the new parameter 

𝜀 as well as with respect to the small parameter 𝜆. The aim of the 
paper is to overview the two-scale expansion (10) under its 𝜀-

asymptotic with respect to 𝜀 → 0. As a result, we are to obtain an 
equivalent reformulation of HTE and then discuss the possibility to 
develope on this way the Effective Heat Conduction Equation in 
the form of a single equation for average temperature. 

In order to realize the aim of the paper, we are to show that 
the following hypothesis holds. 

Locality Hypothesis. The L-part 𝜃𝐿 of the temperature field 

can be supported on the 𝜀-ribbon 𝑜𝜀(Γ) surrounding the disconti-
nuity surfaces Γ, that is, 𝜃𝐿(𝑦, 𝑧, 𝑡) ≠ 0 for (𝑦, 𝑧) ∈ 𝑜𝜀(Γ) and 

𝜃𝐿(y, z, t) = 0 for (y, z) ∈ Ω\oε(Γ) with the additional re-

striction ∇θL(y, z, t) = 0 satisfied for (y, z) ∈ Γ ∪ ∂oε(Γ) 
while. 
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Locality hypothesis means that limit passage: 

𝜃𝐿 = (𝜃𝐿)𝜀 → 𝑢                                                                       (12) 

can be properly realized under 𝜀 → 0. Formulating conditions 
sufficient for the average temperature u to coincide with its inte-

gral counterpart 𝑢 = 〈𝜃〉 is an open mathematical problem. This 
remark can be treated as a certain comment to the suggestions to 
compare effective modulus obtained as results of various methods 
of temperature averaging. 

3. SURFACE LOCALIZATION PROCEDURE 

Both L-part and S-part of the temperature 𝜃 depend on the 

parameter 𝜀. In formal representation of the temperature L-part in 
the form of micro-macro  decomposition, we are to adjust as the 
form of difference 〈𝜃𝐿〉(𝑦, 𝑧, 𝑡) − 𝜃𝐿(𝑦, 𝑧, 𝑡) to understanding its 

limit passage behaviour while 𝜀 → 0. To this end, denoted by 

𝜋Γ(𝑦, 𝑧), the orthogonal projection of (𝑦, 𝑧) onto Γ (well defined 
if (𝑦, 𝑧) is placed sufficiently close to Γ). Let symbols 𝑛𝐴, 

𝐴 = 1, . . . . , 𝑆, form the sequence of unit vector fields normal to 

∂Δ𝐴 ⊂ Γ and directed to the interior of Δ𝐴. Hence, 𝑛𝐴(𝑦, 𝑧) =
−nB(𝑦, 𝑧) for (𝑦, 𝑧) ∈ ∂Δ𝐴 ∩ ∂Δ𝐵 provided that ΔA meets ΔB 
along the fragment ∂Δ𝐴 ∩ ∂Δ𝐵 of Γ. Denoted by 𝜋S ⊂
{(𝐴, 𝐵): 𝐴, 𝐵 = 1, . . . , 𝑆, 𝐴 ≠ 𝐵}, the set of all pairs (𝐴, 𝐵) for 

which regions ΔA and ΔB are in contact with the surface panel 
∂ΔA ∩ ∂ΔB ≠ ∅. Bearing in mind that 〈𝜃𝐿〉 = 〈𝜃〉 is a differenti-

able function of ε, we arrive at: 

𝜃(𝑦, 𝑧, 𝑡) = 〈𝜃𝐿〉(𝑧, 𝑡) +
𝑑〈𝜃𝐿〉

𝑑𝜀
𝜀 + 𝜃𝑆 + 𝑜(𝜀)                     (13) 

for sufficiently small 𝜀 > 0. Using decomposition 
∂

∂𝑛𝐴
= 𝑣A

y
∇𝑦 +

𝑣𝐴
𝑧∇𝑧 with respect to the orthogonal directions of y and z varia-

bles and 𝑛𝐴 = 𝑣𝐴
𝑦

𝑛𝑦
𝐴 + 𝑣𝐴

𝑧𝑛𝑧
𝐴 as well as denotations: 

𝜓(𝐴,𝐵)
(𝑦)

(𝑦, 𝑧, 𝑡) ≡ 〈(∇𝑦𝜃𝐿)𝐴〉∂Δ𝐴∩∂Δ𝐵
(𝑦, 𝑧, 𝑡),

𝜓(𝐴,𝐵)
(𝑦)

(𝑦, 𝑧, 𝑡) ≡ 〈(∇𝑧𝜃𝐿)𝐴〉∂Δ𝐴∩∂Δ𝐵
(𝑦, 𝑧, 𝑡),

                       (14) 

for tolerance amplitudes and: 

ℎ(𝑦)
(𝐴,𝐵)

(𝑦, 𝑧)

= −𝜂𝐴(𝑦, 𝑧)𝑣𝐴
𝑦

(𝜋Γ(𝑦, 𝑧))
⟦𝑘⟧(𝐴,𝐵)

𝑘𝐵

| ∂Δ𝐴∩∂Δ𝐵|

| ∂Δ𝐴|
,

ℎ(𝑧)
(𝐴,𝐵)

(𝑦, 𝑧)

= −𝜂𝐴(𝑦, 𝑧)𝑣𝐴
𝑧(𝜋Γ(𝑦, 𝑧))

⟦𝑘⟧(𝐴,𝐵)

𝑘𝐵

| ∂Δ𝐴∩∂Δ𝐵|

| ∂Δ𝐴|
,

                       (15) 

for tolerance shape functions in which ⟦𝑘⟧(𝐴,𝐵) ≡ 𝑘𝐴 − 𝑘𝐵, we 

arrive at: 

〈𝜃𝐿〉(𝑧, 𝑡) − 𝜃𝐿(𝑦, 𝑧, 𝑡) =

= ∑ [ℎ(𝑦)
(𝐴,𝐵)

(𝑦, 𝑧, 𝑡)𝜓(𝐴,𝐵)
(𝑦)

(𝑧, 𝑡) +𝐴,𝐵∈𝜋𝑆

+ℎ(𝑦)
(𝐴,𝐵)

(𝑦, 𝑧, 𝑡)𝜓(𝐴,𝐵)
(𝑦)

(𝑧, 𝑡)] + 𝑜(𝜀)

                              
 
(16) 

Hence (15) becomes Δ-periodic functions and (16) loses de-

pendence of 𝜓(𝐴,𝐵)
(𝑦)

 and 𝜓(𝐴,𝐵)
(𝑦)

 on 𝑦-variable, while 𝜀 → 0. 

Moreover, 𝑣𝐴
𝑧 = 0 for homogeneous periodicity. Cell distribution 

will be restricted to that introduced by the following: 
Cell distribution hypothesis. For any periodic composite 

there exists cell distribution Δ(𝑦, 𝑧), (𝑦, 𝑧) ∈ Ω, for which satu-

rations 𝜂A do not depend on 𝑦-variable. 
Under rescaling: 

𝑔(𝛾)
𝜔 (𝑦, 𝑧) ≡ 𝜆ℎ(𝛾)

𝜔 (𝜆−1𝑦, 𝑧)     𝑓𝑜𝑟     𝛾 = 𝑦, 𝑧                   (17)
 

condition lim
ε↘0

〈𝑣A
y

(𝜋Γ(𝑦, 𝑧))〉 = 0 reduces expansion (16) to: 

𝜃(𝑦, 𝑧, 𝑡) = 〈𝜃𝐿〉(𝑧, 𝑡) + 𝜆[𝑔(𝑧)
𝜔 (𝑦, 𝑧)𝜓𝜔

(𝑧)
(𝑧, 𝑡) +

+𝑎𝑝(𝑧, 𝑡)ϕ𝑝(𝑦, 𝑧)] + 𝑜(𝜀)
        

 
   

 
(18) 

In (18) summation over 𝜔 ≡ (𝐴, 𝐵) ∈ 𝜋S and over positive 

integer 𝑝 holds. Bearing in mind that: 

ϑ = 𝑎0 + 𝜃𝑟𝑒𝑠 − 𝜆𝑔𝐴𝜓𝐴                                                        
(19) 

together with two additional conditions: 

〈𝑐𝜙𝑝〉 = 0, 〈𝑘𝜙𝑝〉 = 0, 𝑝 = 1,2, . . . ,

〈𝑐𝑔𝐴〉 = 0, 〈𝑘𝑔𝐴〉 = 0, 𝐴 = 1,2, . . . , 𝑁.                               
(20) 

we conclude that limit passage: 

𝜃𝐿 = (𝜃𝐿)𝜀 → 𝑢
                                                                      

(21) 

is properly realized under ε → 0. Denote by 𝐻 quadratic matrix 

with components 〈𝑘∇𝑇
𝑦𝑔(𝑦)

𝑣 , 𝑘∇𝑦𝑔(𝑧)
𝜇

〉. By applying orthogonali-

zation procedure, one can arrive at the Surface Localized Heat 
Transfer Model equations (Kula, 2015; Kula and Wierzbicki, 2015, 
Woźniak et al., 2002; Wodzyński et al., 2018): 

〈𝑐〉𝑢̇ − ∇𝑇(𝕜𝑠𝑢𝑟𝑓[∇𝑢] + [𝑘]𝑠𝑢𝑟𝑓
𝑝𝑎𝑝) = −〈𝑏〉

𝜆2(〈𝜙𝑝𝑐𝜙𝑞〉𝑎̇𝑞 − ∇𝑧
𝑇〈𝜙𝑝𝑐𝜙𝑞〉∇𝑧𝑎𝑞) +

 +2𝜆𝑠𝑝𝑞∇𝑧𝑎𝑞 + {𝑘}𝑠𝑢𝑟𝑓
𝑝𝑞𝑎𝑝 = 𝐿𝑎

𝜆 [𝑢]
                  

 

(22)
 

In (22): 

𝕜𝑠𝑢𝑟𝑓 = ⟨𝑘⟩ − 〈𝑘∇𝑇
𝑦𝑔(𝑦)

𝑣 , 𝑘∇𝑦𝑔(z)
𝑣 〉(𝐻−1)𝑣𝜇 [

〈∇𝑦
𝑇𝑔(𝑦)

𝜇
𝑘〉

〈∇𝑦
𝑇𝑔(𝑧)

𝜇
𝑘〉

] ,

[𝑘]𝑠𝑢𝑟𝑓 = 𝑘〈∇𝑇𝜙𝑝〉 −

 −〈𝑘∇𝑇
𝑦𝑔(𝑦)

𝑣 , 𝑘∇𝑦𝑔(z)
𝑣 〉(𝐻−1)𝑣𝜇 [

〈∇𝑦
𝑇𝑔(𝑦)

𝜇
𝑘∇𝑧ϕ𝑞〉

〈∇𝑦
𝑇𝑔(𝑧)

𝜇
𝑘∇𝑧ϕ𝑞〉

] ,

2𝑠𝑝𝑞 = 〈∇𝑦
𝑇𝜙𝑝𝑘𝜙𝑞〉 − 〈∇𝑇𝜙𝑞𝑘𝜙𝑝〉,

{𝑘}𝑝𝑞 = 〈∇𝑦
𝑇𝜙𝑝𝑘∇𝜙𝑞〉,

 

(23)
 

are used as additional denotations. Matrix coefficient 𝕜𝑠𝑢𝑟𝑓 =

𝕜𝑠𝑢𝑟𝑓(z) is referred to as Surface Localized part of Effective 

Conductivity Matrix. The homogenized part: 

𝜆2(〈𝜙𝑝𝑐𝜙𝑞〉𝑎̇𝑞 − ∇𝑧
𝑇〈𝜙𝑝𝑐𝜙𝑞〉∇𝑧𝑎𝑞) +

 +2𝜆𝑠𝑠𝑢𝑟𝑓
𝑝𝑞∇𝑧𝑎𝑞 + {𝑘}𝑠𝑢𝑟𝑓

𝑝𝑞𝑎𝑝 = 0
                           

 
 

(24)
 

of (22)2 describing uninhibited by external influences represented 

by the RHS part La
λ [u] of (22) is usually considered as a model of 

the Boundary Effect Equation. The investigation of the reduction 

of Fourier amplitudes ap from (22)2 leads to the single equation 

for average temperature u referred to as the Effective Conductivi-
ty Equation. Imitating the appropriate procedure, the Effective 
Conductivity Equation without scale effect can be easily realized 
in the form: 

〈𝑐𝑢̇〉 − ∇𝑇(𝕜0[∇𝑧𝑢] + 〈𝜙𝑝∇𝑧
𝑇(𝑘∇𝑧𝑢)〉) = −〈𝑏〉       

      
 

(25)
 

from the asymptotic case of model equations: 
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〈𝑐𝑢̇〉 − ∇𝑇(𝕜0
𝑒𝑓𝑓[∇𝑧𝑢] + [𝑘]𝑠𝑢𝑟𝑓

𝑝𝑎𝑝) = −〈𝑏〉

{𝑘}𝑠𝑢𝑟𝑓
𝑝𝑞𝑎𝑝 = 𝐿𝑎

0 [∇𝑧𝑢]
 

        
      

  (26)
 

for 𝜆 ↘ 0 and for 𝕜0
𝑒𝑓𝑓

 given by: 

𝕜0
𝑒𝑓𝑓[∇𝑧𝑢] = 𝕜𝑠𝑢𝑟𝑓[∇𝑧𝑢] − [𝑘]𝑠𝑢𝑟𝑓

𝑝 ∙

∙ ({𝑘}𝑠𝑢𝑟𝑓
−1)𝑝𝑞(〈∇𝑦

𝑇𝜙𝑞𝑘〉∇𝑧𝑢 + 〈𝜙𝑞∇𝑧
𝑇(𝑘∇𝑧𝑢)〉)

         (27)
 

As the benchmark problem, we are to propose a procedure of 
eliminating Fourier amplitudes from (22)2, which results the deriva-
tion of Effective Conductivity single equation for average tempera-
ture. The investigation will be restricted to the special case for 
𝐷 = 2 and 𝑑 = 1. 

4. PASSAGE TO THE EFFECTIVE CONDUCTIVITY 

Let D = 2, σ = 1. Hence, 𝑘 is a symmetric 2 × 2 positive 
matrix and let 𝑘 = [𝑘𝑦𝑦 , 𝑘𝑦𝑧; 𝑘𝑧𝑦, 𝑘𝑧𝑧], 𝑘𝑦𝑧 = 𝑘𝑧𝑦, and hence, 

we deal with two-dimensional periodic layer. Moreover, denote: 

(𝐿𝑎
𝜆 [

𝑑𝑢

𝑑𝑧
])𝑝 ≡ 〈

𝑑ϕ𝑝

𝑑𝑦
𝑘𝑦𝑧 +

𝑑ϕ𝑝

𝑑𝑧
𝑘𝑧𝑧〉

𝑑𝑢

𝑑𝑧
− 𝜆〈𝜑𝑝𝑏〉

                  

(28)
 

We are to take a stationary case: 

𝑑

𝑑𝑧
(𝕜𝑠𝑢𝑟𝑓

𝑑𝑢

𝑑𝑧
+ [𝑘]𝑝𝑎𝑝) = 〈𝑏〉

〈𝜙𝑝𝑐𝜙𝑞〉
𝑑2𝑎𝑝

𝑑𝑧2 − 2𝜆𝑠𝑝𝑞 𝑑𝑎𝑞

𝑑𝑧
− {𝑘}𝑝𝑞𝑎𝑝 = −𝐿𝑎

𝜆 [𝑢]
             

(29)
 

of (22) being in this case the second order ordinary differential 

equations. Let 𝐴𝑘
𝑝𝑞 = 〈𝜙𝑝𝑐𝜙𝑞〉 be elements of quadratic matrix 

A. Moreover, let: 

Δ = 𝑠𝑠𝑢𝑟𝑓
2 + 𝐴{𝑘}𝑠𝑢𝑟𝑓 ,  𝑟± = −𝐴𝑘

−1(√Δ ± 𝑠𝑠𝑢𝑟𝑓), 

𝑅 ≡ 𝑟+ − 𝑟−,                                                                            (30)
 

where: square root is used here for positive quadratic matrix Δ 

and is equal to the unique positive matrix √Δ for which √Δ
2

= Δ 

while 
𝑠𝑠𝑢𝑟𝑓

𝐴𝑘
= 𝑠𝑠𝑢𝑟𝑓 ⋅ 𝐴𝑘

−1 = 𝐴𝑘
−1 ⋅ 𝑠𝑠𝑢𝑟𝑓  for any matrices 

alternating in multiplication.  Similarly, 
√Δ

𝐴𝑘
= √Δ ⋅ 𝐴𝑘

−1 = 𝐴𝑘
−1 ⋅

√Δ for positive matrices Δ and  𝑅. Moreover, let 

ker𝑅(𝜔) = 𝑅−1 ⋅ sh𝑅𝜔, coker𝑅(𝜔) = ch𝑅𝜔
                   

(31)
 

for 𝜔 ∈ {(𝑧 − 𝛿)/𝛿, 𝑧/𝛿}, and consider 𝑎 ≡ [𝑎1, 𝑎2, . . . ]𝑇 =
𝜎ℎ + 𝜎𝑠 as a solution to (29)2 (with respect to Fourier amplitudes 

𝑎𝑝) satisfying 𝑎(0) = 𝑎0 and 𝑎(
𝛿

𝜆
) = 𝑎𝛿  as attached boundary 

conditions. Integral: 

1

2
𝜆𝐴𝑘𝜎𝑠(𝑧) = 𝐼0 ≡ ∫ ker(

𝑧−𝜉

𝜆
)𝐿𝑎

𝜆 [𝑢](𝜉)
𝑧

0
𝑑𝜉

                    
 
(32)

 

is considered as a formula for an arbitrary but fixed solution 𝜎𝑠 of 
(29)2 and: 

𝜎ℎ(
𝑧

𝜆
) =

sinh𝑅
𝑧

𝜆

sinh𝑅
𝛿

𝜆

[𝑎𝛿 − 𝜎𝑠(
𝛿

𝜆
)] −

sinh𝑅
𝑧−𝛿

𝜆

sinh𝑅
𝛿

𝜆

𝑎0

                       
 
(33) 

is a solution to homogeneous part: 

𝜆2〈𝜙𝑝𝑐𝜙𝑞〉
𝑑2𝑎𝑝

ℎ

𝑑𝑧2 − 2𝜆𝑠𝑝𝑞 𝑑𝑎𝑝
ℎ

𝑑𝑧
− {𝑘}𝑝𝑞𝑎𝑝

ℎ = 0
                  

 
(34) 

of (29)2 satisfying 𝑎𝑝
ℎ(0) = 𝑎0 − 𝜎𝑠(0) and 𝑎𝑝

ℎ(𝛿/𝜆) = 𝑎𝛿 −

𝜎𝑠(𝛿/𝜆). Double integration: 

𝐼0 = ∫ ker(
𝑧−𝜉

𝜆
)𝐿𝑎

𝜆 [𝑢](𝜉)
𝑧

0
𝑑𝜉 = 𝜆𝑅−1{𝐿𝑎

𝜆 [𝑢](𝑧) −

−coker𝑅(
𝑧

𝜆
)𝐿𝑎

𝜆 [𝑢](0)} − 𝜆𝑅−1 ⋅ {ker𝑅(𝜉)
𝑑𝐿𝑎

𝜆 [𝑢](0)

𝑑𝑧
+

 + ∫ ker𝑅(
𝑧−𝜉

𝜆
)

𝑑2𝐿𝑎
𝜆 [𝑢](𝜉)

𝑑𝑧2

𝑧

0
𝑑𝜉}

      (35)
 

realized under denotations: 

𝑋2𝑘(𝑧, 𝜉) ≡ ker𝑅(
𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)

𝑌2𝑘(𝑧, 𝜉) ≡ coker𝑅(
𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)
 
                  

 
              

 (36)
 

results formula: 

𝜎𝑠(𝑧) =
𝐴𝑘

2
⋅ ∑  

𝑛

𝑘=0
𝜆2𝑘(𝑅−1)2𝑘−1{𝑌2𝑘(𝑧, 𝑧) − 𝑌2𝑘(𝑧, 0) −

 −(𝜆𝑅−1)[−𝑋2𝑘+1(𝑧, 𝑧) + 𝑋2𝑘+1(𝑧, 0)]} +

 −(−𝜆)2𝑛+1
𝐴𝑘

2
⋅ (𝑅−1)2𝑘 ∫ 𝑋2𝑘+2(𝑧, 𝜉)𝑑𝜉

𝑧

0

 

(37)
 

Let [𝑘]𝑇 ≡ [[𝑘]1, [𝑘]2, . . . ]. Coefficients: 

𝕜2𝑘(𝑧) ≡ [𝑘]𝑇 𝐴𝐾

2
⋅ (𝑅−1)2𝑘−1[𝑘] =

−[𝑘]𝑇 𝐴𝐾

2
⋅ (𝑅−1)2𝑘−1[𝑌2𝑝(𝑧, 𝑧)  − 𝜆𝑅−1𝑋2𝑝+1(𝑧, 𝑧)] =

= [𝑘]𝑇{−
𝐴𝐾

2
⋅ (𝑅−1)2𝑝−1 ⋅ coker𝑅(

𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)  +

+𝜆𝑅−1 ⋅ ker𝑅(
𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)}|𝜉=𝑧

〈𝑏〉2𝑘(𝑧) ≡ −[𝑘]𝑇 𝐴𝐾

2
⋅ (𝑅−1)2𝑘−1[𝑌2𝑘(𝑧, 0)  −

−𝜆𝑅−1𝑋2𝑘+1(𝑧, 0)] =

= [𝑘]𝑇{−
𝐴𝐾

2
⋅ (𝑅−1)2𝑘−1 ⋅ coker𝑅(

𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)  +

+𝜆𝑅−1 ⋅ ker𝑅(
𝑧−𝜉

𝜆
)

𝑑2𝑘𝐿𝑎
𝜆 [𝑢]

𝑑𝑧2𝑘 (𝜉)}|𝜉=0

 (38)
 

are amplitudes of corrections: 

𝕜𝑠(𝑧) = ∑ (−1)𝑘−1𝜆2𝑘𝕜2𝑘(𝑧)+∞
𝑘=1

〈𝑏〉𝑠(𝑧) ≡ ∑ (−1)𝑘−1𝜆2𝑘〈𝑏〉2𝑘(𝑧)+∞
𝑘=1

                   
 
         

    (39)
 

imposed on Effective Conductivity 𝕜𝑒𝑓𝑓(𝑧) and the average 

sources 〈b〉 in formulas 𝕜λ
eff(𝑧) ≡ 𝕜eff(𝑧) + 𝕜s(𝑧) as well as 

〈𝑏〉𝜆
𝑒𝑓𝑓

≡ 〈𝑏〉 + 𝕜s(0) − 𝜎ℎ𝑜𝑚(𝑧) for Effective Conductivity 

and Effective Sources, respectively, depends of 𝜆. Formula: 

𝑟𝑒𝑠2𝑛+1[𝑢](𝑧) =

(−1)𝑛+1𝜆2𝑛+1 𝐴𝑘

2
⋅ (𝑅−1)2𝑛 ∫ 𝑋2𝑛+2(𝑧, 𝜉)𝑑𝜉

𝑧

0
                   

(40)
 

represents error made while 𝕜𝑠(𝑧), 𝕜s(0) are replaced by: 

𝕜(2𝑁)
𝑠(𝑧) = ∑ (−1)𝑛−1𝜆2𝑘𝕜2𝑘(𝑧)2𝑁

𝑛=1

〈𝑏〉(2𝑁)
𝑠(𝑧) ≡ ∑ (−1)𝑛−1𝜆2𝑘〈𝑏〉2𝑘(𝑧)2𝑁

𝑛=1
               

 
         

 (41)
 

of (39). Modulus of (39) can be formally estimated by the supre-

mum of modulus of the RHS side of (40) proportional to 𝜆2𝑛+1. 
That is why, 𝜆 < 1 is a sufficient condition for convergence of 

RHS of (40) to zero, while 𝑛 → ∞. Finally, we obtain: 

𝑑

𝑑𝑧
(𝕜𝜆

𝑒𝑓𝑓
(𝑧)

𝑑𝑢

𝑑𝑧
) = 〈𝑏〉𝜆

𝑒𝑓𝑓

                                                       
(42)

 

instead of (29). 
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5. FURTHER APPROXIMATIONS  
OF THE EFFECTIVE CONDUCTIVITY EQUATION 

Effective Conductivity problem will be examined as a bounda-
ry value problem for 2𝑁-th order ordinary differential equation: 

𝑑

𝑑𝑧
{𝕜𝑒𝑓𝑓(𝑧)

𝑑𝑢

𝑑𝑧
+ ∑ (−1)𝑛+1𝜆2𝑛𝕜2𝑛(𝑧)𝑁

𝑛=1
𝑑2𝑛−1𝑢

𝑑𝑧2𝑛−1} =

 = 〈𝑏〉𝑒𝑓𝑓 + ∑ (−1)𝑛+1𝜆2𝑛〈𝑏〉2𝑛(𝑧)+∞
𝑛=0        

(43)
 

in which: 

𝕜(2𝑁)
𝑠(𝑧) = ∑ (−1)𝑛−1𝜆2𝑛𝕜2𝑛(𝑧)

𝑑2𝑛𝑢

𝑑𝑧2𝑛
2𝑁
𝑛=1

                        
(44)

 

The following uniqueness conditions: 

𝑑𝑛−1𝑢

𝑑𝑧𝑛−1 (0) = 𝑢0
𝑛−1, 𝑛 = 1, . . . , 𝑁,

          
 
         

 
             

 
       

 (45)
 

will be attached. Formulated Cauchy problem is considered as 
2𝑁th order approximation of Effective Conductivity problem. 

Asymptotic approximation is considered as 𝑁 = 0. Now, 
mentioned Cauchy problem simplifies to: 

{
𝑑𝑢

𝑑𝑧
{𝕜𝑒𝑓𝑓(𝑧)

𝑑𝑢

𝑑𝑧
} = 〈𝑏〉𝑒𝑓𝑓

𝑢(0) = 𝑢0,     𝑢(𝛿) = 𝑢𝛿                                                      
(46)

 

leads to the solution: 

𝑢 = 𝑢0 + ∫  
𝑧

0

Q(𝜉)

𝕜𝑒𝑓𝑓(𝜉)
𝑑𝜉, Q = Q0 + ∫  

𝑧

0
〈𝑏〉𝑒𝑓𝑓(𝜉)𝑑𝜉

          
(47)

 

for the average heat flux Q. For homogeneous periodicity, (47) 
reduces to the form: 

𝑢(𝑧) = 𝑢0 +
1

𝕜𝑒𝑓𝑓 (Q0 + 𝑧〈𝑏〉𝑒𝑓𝑓),

Q0 = 𝕜𝑒𝑓𝑓(𝑢𝛿 − 𝑢0) − 𝛿〈𝑏〉𝑒𝑓𝑓
                                       

(48)
 

Approximate solutions to the considered Cauchy problem can 
be interpreted as subsequent overlaps on the unscaled average 

temperature approximation (48) valid for 𝑁 = 0. Denote: 

𝑓(𝑧) ≡ 𝛿(0) + ∫  
𝜍=𝑧

𝜍=0

𝑑𝜍
1

𝕜𝑒𝑓𝑓(𝜍)
[𝛽0 + ∫  

𝜉=𝜍

𝜉=0

〈𝑏〉𝜆
𝑒𝑓𝑓(𝜉)𝑑𝜉]

 
(49)

 
For: 

𝛽0 ≡ 𝕜𝑒𝑓𝑓(0)
𝑑𝑢(0)

𝑑𝑧
+ ∑ (−1)𝑛𝜆2𝑛+2𝕜2𝑛(0)

𝑁

𝑛=0

𝑑2𝑛+1𝑢(0)

𝑑𝑧2𝑛+1
,

𝛿0 ≡ 𝑢(0) + ∑ (−1)𝑛𝜆2𝑛+2
𝕜2𝑛+2(0)

𝕜𝑒𝑓𝑓(0)

𝑁

𝑛=0

𝑑2𝑛𝑢(0)

𝑑𝑧2𝑛

 

(50)
 

Double integration of (43) leads from (43) to the 2𝑁th order 
ordinary differential equation: 

−𝑢 + ∑ (−1)𝑛𝜆2𝑛𝑁
𝑛=1

𝕜2𝑛+2(𝑧)

𝕜𝑒𝑓𝑓(𝑧)

𝑑2𝑛𝑢

𝑑𝑧2𝑛 = 𝑓(𝑧)                        (51)
 

with: 

−1 + ∑ (−1)𝑛𝜆2𝑛𝑁
𝑛=1

𝕜2𝑛+2(𝑧)

𝕜𝑒𝑓𝑓(𝑧)
𝑟2𝑛 = 𝑓(𝑧)                          (52)

  

as a characteristic equation. 

4th order approximation will be considered as 𝑁 = 2. In this 
case and for homogeneous periodicity related approximate solu-
tion to the Effective Conductivity Problem can be written as: 

𝑢(𝑧) = −
𝑘𝑒𝑓𝑓

𝜆4𝑘6

[𝑢(0)𝑧𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧) +

 +𝑢′(0)𝑧2𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)] +

 −
𝑘4

𝜆2𝑘6

[𝑢(0)(𝑓𝑐
+(𝑧) ∗ 𝑓𝑠

−(𝑧) + 𝜅𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)) +

 +𝑢′(0)𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧) +

 +𝑢(2)(0)𝑧𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧) + 𝑢(3)(0)𝑧2𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)] −

 −[(𝐴𝑐ℎ(𝑓𝑐
+(𝑧) + 𝑓𝑐

−(𝑧)) +

 +𝐵𝑠ℎ(𝑓𝑠
+(𝑧) − 𝑓𝑠

−(𝑧)))𝑢(0) +

 +𝑢(1)(0)(𝑓𝑐
+(𝑧) ∗ 𝑓𝑐

−(𝑧) + 𝜅2𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧))

 +𝑢(2)(0)(𝑓𝑐
+(𝑧) ∗ 𝑓𝑠

−(𝑧) − 𝜅𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)) +

 +𝑢(3)(0)𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧) +

 +𝑢(4)(0)𝑧𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧) + 𝑢(5)(0)𝑧2𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)] −

 −
〈𝑏〉(𝑧)

𝜆4𝑘6

𝑓𝑠
+(𝑧) ∗ 𝑓𝑠

−(𝑧)

 

(53)
 

in which the convolution integral 𝑓1(𝑧) ∗ 𝑓2(𝑧) is used for: 

𝑓𝑐
+(𝑧) = 𝑒𝜅

𝑧−𝛿

𝜆 cos 𝜔
𝑧

𝜆
, 𝑓𝑠

+(𝑧) = 𝑒𝜅
𝑧−𝛿

𝜆 sin 𝜔
𝑧

𝜆
,

𝑓𝑐
−(𝑧) = 𝑒−𝜅

𝑧−𝛿

𝜆 cos 𝜔
𝑧

𝜆
, 𝑓𝑠

−(𝑧) = 𝑒−𝜅
𝑧−𝛿

𝜆 sin 𝜔
𝑧

𝜆
.           

 

(54)
 

and for not vanishing roots ± 𝜅 ± i 𝜔, 𝑖2 = −1 , 𝜅, 𝜔 > 0,  
of algebraic equation (52) for 𝑁 = 2. Constant coefficients 𝐴𝑐ℎ 

and 𝐵𝑠ℎ  in (53) should satisfy:  

[

𝜔+2𝜅

 (𝜔+2𝜅)2+𝜔2 +
1

 2𝜔

1

 (𝜔+2𝜅)2+𝜔2 −
1

 2𝜔2

1

 2𝜔
+

𝜔+2𝜅

 (𝜔−2𝜅)2+𝜔2

1

 2𝜔2 −
1

 (𝜔−2𝜅)2+𝜔2

] ⋅

⋅ [
𝐴𝑐ℎ

𝐵𝑠ℎ
] = [

𝜔+2𝜅

 (𝜔+2𝜅)2+𝜔2 +
1

 2𝜔

1

 2𝜔
+

𝜔+2𝜅

 (𝜔−2𝜅)2+𝜔2

]
                          

 

(55)
 

Hence, (53) are the basic formulas constituting the departure point 
for the prediction of the control form of the average temperature of 
the microstructural parameter. We intend to formulate an appro-
priate hypothesis for the case determined by 𝐷 = 2 and 𝑑 = 1 
considered in this section. 

6. FINAL HYPOTHESIS 

In order to arrive at the main thesis of the paper, we will now 
generalize the results of the last section, resulting in the predicted 
distribution of the average temperature as a solution to the Effec-
tive Heat Conductivity problem controlled by the microstructural 

parameter λ. We formulate the following hypothesis: 
Final Hypothesis. The sequence of subsequent solutions of 

2𝑁th approximations of the Effective Conductivity problem can be 

written as a sum of terms of the form (54), where 𝜅 and 𝜔 run 
over all pairs corresponding to the collection of not vanishing roots 

±𝜅 ± 𝜔i of characteristic equation (52). Coefficients of this sum 

are uniquely determined by the initial values 𝑢(𝑛)(0), 𝑛 =
0,1,2,3, . ... 

However, limit formulas of this approximated solutions to the 
Effective Conductivity equation, developed while 𝜆 → 0, exist in a 
weak sense. It is also worth emphasizing that the interpretation of 
the first component of the Fourier expansion (19) as the average 
temperature is obtained as the integration effect of the infinite 
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function series and thus uses as the assumption that the various 
limit operations which are applied are alternating. 
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