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Abstract: By changing the air and water flow relative rates in the two-phase (air-water) flow through a minichannel, we observe aggrega-
tion and partitioning of air bubbles and slugs of different sizes. An air bubble arrangement, which show non-periodic and periodic patterns. 
The spatiotemporal behaviour was recorded by a digital camera. Multiscale entropy analysis is a method of measuring the time series 
complexity. The main aim of the paper was testing the possibility of implementation of multiscale entropy for two-phase flow patterns  
classification. For better understanding, the dynamics of the two-phase flow patterns inside the minichannel histograms and wavelet meth-
ods were also used. In particular, we found a clear distinction between bubbles and slugs formations in terms of multiscale entropy. On the 
other hand, the intermediate region was effected by appearance of both forms in non-periodic and periodic sequences. The preliminary re-
sults were confirmed by using histograms and wavelets. 
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1. INTRODUCTION 

Two-phase dynamics is a common issue in many technical 
minichannel systems of various diameters, ranging from micro- to 
centimetres. Different properties of the flowing phases lead to the 
main problems with pressure and temperature control during 
flows. That problems motivated many works on patterns identifica-
tion of two-phase flow in minichannels from measurements or 
modelling (Zhao and Rezkallah, 1993; Wongwises and 
Pipathattakul, 2006; Chen et al., 2006; Zong et al., 2010; Anjos et 
al., 2014). More advanced studies on flow patterns were conduct-
ed by Wang et al. (2003), who used Hurst and Lyapunov expo-
nents, as well as the correlation dimension. Simultaneous to that 
investigations, Jin et al. (2003) used the correlation dimension 
and, additionally, the Kolmogorov entropy. Later, Mosdorf et al. 
(2005) provided the results of non-linear approaches to the tem-
perature and pressure fluctuations in microchannels. More recent-
ly, recurrence statistics were performed to the two-phase flows 
(Gorski et al., 2015a; 2015b; 2016) by employing a laser-photo-
transistor light transitivity sensor. These investigations enable to 
identify the transitions from bubbles to slugs and churn, and con-
clude on corresponding patterns stabilities. Multiscale character of 
flows were raised by Fan et al. (2013, 2015), who also used the 
data of light transmission through a minichannel. Finally, the 
complex multiscale morphological analysis using electric conduct-
ance signals was proposed by Lian et al. (2016). 

The main aim of the paper was testing the possibility of im-
plementation of multiscale entropy for the two-phase flow patterns’ 
classification. For better understanding, the dynamics of two-
phase flow patterns inside the minichannel histograms and wave-

let methods were also used. The concepts of wavelets and mul-
tiscale entropy applied directly to the digital camera snapshots 
(Rysak et al., 2016). 

2. EXPERIMENTAL SETUP 

We performed the measurements and analysed the related 
data recorded for different flow patterns (water-air at 21°C) in a 
circular channel having a diameter of 2 mm. In Fig. 1, the schema 
of experimental stand is presented. In the conditions of the small 
diameter minichannel, a special generator of mini bubbles was 
designed (8). The proportional pressure regulator (Metal Work 
Regtronic with an accuracy of 1 kPa) was used to maintain the 
constant overpressure in the supply tank (10 – Fig. 1) – the over-
pressure was 50 kPa. Flow patterns were recorded using the 

Phantom v. 1610 digital camera at 5000 fps (1280  64 pixels). 
The amount of air flowing through the minichannel was also 
measured by laser-phototransistor sensor (3). Data from the 
sensors was acquired by the acquisition system (Data translation 
9804, an accuracy of 1 mV for voltages in the range of -10 V to 10 
V), (11) at a sampling rate of 5 kHz. 

The measurement results are presented in Fig. 2 (camera 

snapshots) for changing air volume flow rate 𝑞𝑎  0:00632, 0.1 
l/min and changing water volume flow rate 𝑞. Note that air bub-
bles were produced with different shapes depending on the airflow 
qa. In the limit of small 𝑞𝑎  and large 𝑞 (Fig. 2a), the air bubbles 
are of fairly small and variable sizes. Their sizes are increasing 

with decreasing 𝑞 (Fig. 2d). On the other hand, for larger (𝑞𝑎), 
decreasing q leads to stabilizing of air slugs (elongated bubbles) 
– see Figs. 3a–d. 
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Fig. 1. Experimental setup: 1 – vertical minichannel with a diameter of 3 

mm, 2 – pressure sensors (MPX12DP), 3 – laser-phototransistor 
sensor, 4 – Phantom v. 1610 camera, 5 – lighting, 6 – pumps  
(air or water), 7 – flow meters, 8 – mini bubbles generator, 9 – air 
tank, 10 – automatic valve to maintain a constant pressure in the 
tank 9, 11 – data acquisition station (DT9800), 12 – computer,  
13 – water tank, 14 – air tank 

 
Fig. 2. Photos of the selected flow cases with increasing water volume 

flow rate q [l/min]: 0.234 (a), 0.173 (b), 0.091 (c), and 0.027 (d),  
respectively. The air volume flow rate was fixed  
to 𝑞𝑎 = 0:00632 l/min. 

 
Fig. 3. Photos of the selected flow cases with increasing water volume 

flow rate q [l/min]: 0.216 (a), 0.145 (b), 0.071 (c), and 0.012 (d),  
respectively. The air volume flow rate was fixed to 𝑞𝑎 = 0.1 l/min. 

Following the pioneering image processing techniques (Otsu, 
1979; Haralick et al., 1987), we explore the digital camera signal 
obtained from the bubbles and slugs contours passing through the 

cross-sectional gate observation (Rysak et al., 2016). Note that in 
the previous attempts of digital conversion, the contrast was 
introduced between different phases (Mydlarz-Gabryk et al., 2014; 
Riano et al., 2015; Ansari and Azadi, 2016). Here, we present the 
alternative and simpler way with processing pixels of contours 
between two flowing phases. 

 
Fig. 4. The digital camera signal was obtained from the bubbles and 

slugs contours passing through the cross-sectional gate observa-
tion G2 (Rysak et al., 2016). Note difference in the horizontal axis 
orientation. 

The contour frames were obtained by converting filtered im-
ages to 0–1 values matrices. One of the captured image frames of 
the two-phase flow is shown in the upper part in Fig. 4. The mid-
dle figure shows its contour frame representation. The red line on 
the right hand side indicates the gate G2, where pixels are count-
ed. The movement of the mixture takes place to the right (arrow). 
With the laps of time, the structures of the gas flowing through the 
gate G2 build a time series (as shown in the bottom image in Fig. 
4). Consequently, we observe the time series in terms of photo 
pixels passing through the defined gate. 

3. DIGITAL TIME SERIES ANALYSIS 

The results of the resulting time series corresponding to the 
cases presented in Figs. 2 and 3 are presented in Figs. 5 and 6, 
respectively. Note that 𝑞𝑎  = 0 would correspond to single phase 
(water) flow. Most of the time series looks random (Fig. 5). How-
ever, the pattern is changing from single lines representing small 
bubbles in Fig. 5a and 5b to longer slugs in Fig. 5d. On the way, 
in Fig. 5c, there is a mixture of these formations, which looks like 
a chaotic transient (Sen et al., 2008). On the other hand, the 
longest stable level of 10 pixels corresponds to the slug flow (as 
shown in Fig. 6 at the lower panel [b]). 

Interestingly, one can observe the interesting periodic intermit-
tent (water-air) flow (see Fig. 6 at the middle panels). This is 
a spatio-temporal self-organization phenomenon of the flow de-
termined by the air-water mixture of fluid and the flow conditions 
(see Fig. 6c): the flow rates, their viscosity, and the geometry 
of minichannel. I believe it should be well imitated, which corre-
sponds to a convergence in the bubbles sizes. However, the 
phase variations (Fig. 6c) confirm that the periodic tendencies are 
not fully developed and the time series are characterised by only 
short time correlations. 
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Fig. 5. Time series in terms of number of pixels xi passing through  

the gate in the central cross-section of the camera view (Fig. 1). 
The cases presented downward correspond to (a)–(d) in Fig. 2. 

The sampling time step was 0.2  10-3 s. Number of points  
(range of horizontal axis) was 800. 

4. PIXEL STATISTICAL DISTRIBUTIONS – HISTOGRAMS 

Distributions of pixels registered by the digital camera can be 
investigated by histograms. Interestingly, we observe the evolu-
tion from the system of air bubbles’ deficiency to larger bubbles, 
and finally the elongated bubbles – slugs. In case of the low 
amount of air flow 𝑞𝑎  = 0.00632 l/min, the small air bubbles are 
noticeable in a large water space (Fig. 2a–b). 

 
Fig. 6. Time series in terms of number of pixels xi passing through the 

gate in the central cross-section of the camera view (Fig. 1).  
The cases presented downward correspond to (a)–(d) in Fig. 3, 

respectively. The sampling time step was 0.2  10-3 s. Number  
of points (range of horizontal axis) was 800. 

 

Fig. 7. Histograms for the cases presented in Fig. 2 

 
Fig. 8. Histograms for the cases presented in Fig. 3 

Consequently, these cases are accompanied by a fairly large 
maximum in histograms with 0 pixel (Figs. 7a, b), which is clearly 
visible. By decreasing the water flow, we observe two maxima in 
histograms (Figs. 7c, d) with continued domination of 0 pixel peak. 
Finally, for higher amount of air flow, the 0 pixel probability peak is 
strongly reduced (Figs. 8a–8d). Additionally, the cases in Figs. 8c, 
d, with the strong increase in the longer length occurrence fre-
quency of pixel numbers, reflects the presence of slugs. 

5. WAVELET ANALYSIS 

A statistical approach of the pixels counting presented in the 
last section gave the idea of the distribution of bubbles and slugs 
in terms of the appearance of their characteristic lengths. On the 
other hand, bubbles and slugs can appear in a random way or 
with a given periodicity. To clarify this point, we decided to use 
continuous wavelets, which can distinguish the short interval 
periodic self-organizing structures. This is an alternative method 
to the earlier proposed recurrence studies (Gorski et al., 2015b), 
which were conducted for laser-photoresistor transitivity data 
(Gorski et al., 2015b). 

In the current study, to show the emerging periods, we pre-
sent the wavelet analysis of the results. We study the time series 
of pixels Np(t) given by the continuous wavelet transformation 
(CWT) (Kumar and Foufoula-Georgiou, 1997; Torrence and Com-
po, 1998; Lonkwic et al., 2017). The corresponding continuous 

wavelet transform with respect to the wavelet function 𝜓(. ) is 
defined as follows: 

𝑊𝑠,𝑛(𝑁𝑝) = ∑
1

𝑠

𝑁
𝑖=1 𝜓 (

𝑖−𝑛

𝑠
)

(𝑁𝑝(𝑡𝑖)−⟨𝑁𝑝⟩)

𝜎𝑁𝑝

,   (1) 

where: ⟨𝑁𝑝⟩ and 𝜎𝑁𝑝  are the averages and standard devia-
tions of pixel number registered, respectively. Finally, the wavelet 

𝜓 (.) is referred to as the mother wavelet, and the letters 𝑠 and 

𝑛 denote the scale and the time indices, respectively. The wave-
let power spectrum (WPS) of the 𝑁𝑝 time series is defined as the 
square modulus of the CWT: 

𝑃𝑤 = |𝑊𝑠,𝑛|
2
.       (2) 

In the present calculations, we used a complex Morlet wavelet 
as the mother wavelet. The Morlet wavelet consists of a plane 
wave modulated by a Gaussian function and it is described by: 

𝜓(𝜂) = 𝜋−1/4ei𝜃0𝜂e−𝜂2/2,     (3) 

where: 𝜃0 is the centre frequency, also referred to as the order of 
the wavelet, and 𝜂 is a renormalized time variable. Namely, 𝜃0 
defines the number of oscillations in the wavelet and thus controls 

the time/frequency resolutions. In our analysis, we used 𝜃0 = 6, 
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which provides a good balance between the time and frequency 
resolutions. Also, for the a.m. choice, the scale is approximately 
equal to the period, and therefore, the terms scale and period can 
be interchanged for interpreting the results. For general discus-
sion, see: Kumar and Foufoula-Georgiou (1997), Torrence and 
Compo (1998) and Lonkwic et al. (2017). The corresponding 
results of CWT as the wavelet power spectra are presented in 
Figs. 9 and 10. Using these techniques, it was possible to select 
the regions of periodic formations. On the logarithmic colour scale, 
these regions are shown by the dark red–brown colour. For in-
stance, Figs. 10b and 10c show clear periods with around 35 
sampling times. A less spectacular period of about 80 sampling 
times is also visible in Fig. 9d. Other cases are more random 
showing much shorter periods. 

 
Fig. 9. Wavelets for the cases presented in Fig. 2. Colours, from blue  

to red, corresponds to increase in the wavelet power. The black  
U-like curve limit the internal region of importance. 

 
Fig. 10. Wavelets for the cases presented in Fig. 3. Colours, from blue  

to red, corresponds to increase in the wavelet power. The black 
U-like curve limit the internal region of importance. 

6. MULTISCALE ENTROPY 

To improve the understanding of the behaviour of complex 
systems that manifest themselves in non-linear behaviour, the 
multiscale entropy (Costa et al., 2003; 2005) analysis is becoming 
increasingly more popular (see: Borowiec et al., 2010; Litak et al., 
2011; Wu et al., 2013, Borowiec et al., 2014). This method pro-
vides, for measured signals, a relative level of complexity of finite 
length time series. Unfortunately, there is no consensus of the 
complexity definition, but it is combined with ‘meaningful structural 
richness’ (Grassberger, 1991) contained over multiple spatio-
temporal correlations. 

The concept of multi-scale entropy (MSE) (Costa et al., 2003, 
2005) is based on the coarse-graining procedure that uses a 
coarse-grained time series, as an average of the original data 
points within non-overlapping windows by increasing the scale 

factor τ according to the following formula (see the cases 𝜏 = 2 
and n in Fig. 11): 

𝑥𝑗

(𝜏)
=

1

𝜏
∑ 𝑥𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1 ,      (4) 

where xi is a raw one-dimensional acceleration time series 

𝑥 =  𝑥1 , 𝑥2 , … , 𝑥𝑁 . In this approach for each scale factor 𝜏, 
the MSE calculation based on the time series of the coarse-

grained 𝑥𝑗 
(𝜏): 

MSE(𝑥, 𝜏, 𝑛, 𝑟) = 𝑆𝑎𝑚𝑝𝐸𝑛(𝑥(𝜏), 𝑚, 𝑟),   (5) 

where 𝑚 = 2 is the pattern length and r is the similarity 

(tolerance) criterion and is usually chosen to be 𝑟 <  𝜎(𝑥),[25] 
here σ(x) is the standard deviation of the original time series and 

𝑥(1)𝑖 = 𝑥𝑖. 

 
Fig. 11. Schema of multiscale entropy calculation. Here, Xi denotes the 

i-th value on the time series shown in Fig. 5. 

To estimate SampEn( 𝑥(𝜏), 𝑚, 𝑟 ) from Eq. 6 (see also  

Fig. 11), we count the number of vector pairs denoted by 𝑥(𝜏)
𝑖 

and 𝑥(𝜏)
𝑗  in the time series of length m  and 𝑚 + 1  having 

distance d[𝑥(𝜏)
𝑖 , 𝑥(𝜏)

𝑗]  <  𝑟 . We denote them by 𝑃𝑚  and 

𝑃𝑚+1, respectively. Finally, we define the sample entropy to be 
Richman and Moorman (2000): 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑥(𝜏), 𝑚, 𝑟) = −log
𝑃𝑚+1

𝑃𝑚
.    (6) 

Strictly speaking, it is the minus of the logarithm of the condi-
tional probability that the two sequences with a tolerance r form 

points that remain within r of each other at the next point. Con-
tinuing the research activity, Wu et al. (2013) introduced the con-
cept of a composite multi-scale entropy (CMSE), which for higher 
scale factor provides entropy more reliably than the usual multi-
scale entropy by including multiple [k] combinations of neighbour 
points. The prescribed algorithm for CMSE calculations is the 
following formula: 

𝐶𝑀𝑆𝐸(𝑥, 𝜏, 𝑚, 𝑟) =
1

𝜏
∑ 𝑆𝑎𝑚𝑝𝐸𝑛(𝑥(𝜏)[𝑘], 𝑚, 𝑟)𝜏

𝑘=1 . (7) 

The results of the complexity measure in terms of CMSE es-
timations for all the time series of our consideration (Figs. 5a, b) 

are presented in Fig. 12 for smaller 𝑞𝑎  and in Fig. 13 for larger 
𝑞𝑎 . All of the results indicate rather non-periodic character of the 
flow phenomenon. However, comparing the results (Figs. 13a–
13c) with the associated photos (see Figs. 3a–3c) and time series 
in Figs. 6a–6c), we can draw conclusions that complexity  
(expressed by turbulence flow) level is the highest at Fig. 13b. 
This is the intermediate region of coexistence of bubbles and 
slugs. Note also that Figs 12a–12d show a similar structure with 

shifted maximum to the right hand side for decreasing 𝑞𝑎 . This 
change is related to the size of bubbles (and possibly their veloci-
ties) appearing in the flow (Fig. 2). In contrast, Figs. 13a–13d 
show a spectacular transition, which is also visible in Fig. 3. The 
bubble like flow is experiencing qualitative metamorphosis and the 
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bubbles flow is changing to the slugs flow. In the entropy picture, 
this leads to the change of negative to positive inclination (com-
pare Figs. 13a to 13d). Such an inclination could be a signal of 
oversampling (Borowiec et al., 2010); however, in our case, this 
effect is of physical origin – the increasing correlation time due to 
appearance of long slugs (see Fig. 3d). 

 
Fig. 12. The Multiscale entropy for the cases presented in Fig. 2.  

Colours corresponds to different similarity factors: red curve – 
𝑟 =  0.25𝜎(𝑥), black curve – 𝑟 =  0.5𝜎(𝑥), blue curve – 

𝑟 =  1.0𝜎(𝑥) (where 𝜎(𝑥) denotes the corresponding stand-

ard deviation of the original time series). 

 
Fig. 13. The Multiscale entropy for the cases presented in Fig. 3.  

Colours corresponds to different similarity factors: red curve – 
𝑟 =  0.25𝜎(𝑥), black curve – 𝑟 =  0.5𝜎(𝑥), blue curve – 

𝑟 =  1.0𝜎(𝑥) (where 𝜎(𝑥) denotes the corresponding stand-

ard deviation of the original time series). 

7. CONCLUSIONS 

Analysis of time series and further application of the multiscale 
entropy made possible to distinguish the particular patterns of 
bubbles and slugs creations on the basis of multiscale entropy. 
The changes in patterns were caused by the stability of larger size 
air bubbles or slugs, which was increased for various values of 
flow rates of air (𝑞𝑎) and water (q). In the limit of small air volume 

flow rate 𝑞𝑎 , there was a disturbed noisy flow of water with small 

bubbles. Moreover, in this limit, the bubbles were characterized by 
different sizes and velocities. 

For larger 𝑞𝑎 , we identified aggregation of air bubbles of dif-
ferent sizes to create stable air slugs. Formation of bubbles and 
slugs was clearly signalled by the histograms. By means of wave-
let analysis, we observed the conditions of periodic interchange in 
the flow of water-air mixture. Finally, slugs’ appearance was ac-
companied by the change of negative to positive inclination in 
entropy. The present results based on the digital camera data are 
much more transparent as compared to our previous attempts, 
where we used the laser transmittivity time series (Gorski et al., 
2015). In the previous case, increasing the scattering of the laser 
light occurred by passing through the owing corrugated surfaces 
of elongated bubbles. In this article, we focused on an automatic 
two-phase flow identification and related bifurcations in shape 
formations. Therefore, the identification of bubbles of 3D shapes 
(Mukin, 2016) is beyond this study. 
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