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Abstract: In this study, non-Newtonian pseudoplastic fluid flow equations for 2-D steady, incompressible, the natural convective heat 
transfer are solved numerically by pseudo time derivative. The stability properties of natural convective heat transfer in an enclosed cavity 
region heated from below under magnetic field effect are investigated depending on the Rayleigh and Chandrasekhar numbers. Stability  

properties are studied, in particular, for the Rayleigh number from 𝟏𝟎𝟒 to 𝟏𝟎𝟔 and for the Chandrasekhar number 3, 5 and 10. As a result, 

when Rayleigh number is bigger than 𝟏𝟎𝟔 and Chandrasekhar number is bigger than 10, the instability occurs in the flow domain.  

The results obtained for natural convective heat transfer problem are shown in the figures for Newtonian and pseudoplastic fluids. Finally, 
the local Nusselt number is evaluated along the bottom wall. 

Key words: Natural convective heat transfer, Rayleigh number, Chandrasekhar number, pseudo time derivative, Newtonian fluids,  
                    pseudoplastic fluids 

1. INTRODUCTION 

The stability and thermal convection in an enclosure have 
been subject of theoretical research since the time of Rayleigh 
(1916). Although the study of internal convection flows is more 
complicated than external flows, there has recently been a con-
siderable interest in convection flows within closed geometries 
such as squares or rectangles. Thermal convection in enclosures 
occurs in many industrial applications such as building insulation, 
solar energy, and the electrical and nuclear industries. There are, 
for example, applications in heat transfer across double glazing 
windows and in sterilization of foods. Such flows are also of inter-
est in geophysics so that several important examples can be 
applied in the circulation of the atmosphere and of magma in the 
Earth’s upper mantle. Reviews of the literature for two-
dimensional free convection of rectangular enclosures have been 
reported by Gebhart et al. (1988) and Siginer and Valenzuela-
Rendon (1994). 

The vertical cavity, with two vertical walls at different tempera-
tures, is probably the most studied configuration due to its simplic-
ity and importance. In a horizontal cavity, with heating from below, 
we have thermal instability. The other important phenomena in 
both cases are the buoyancy term involved in the flow equation. In 
thermal convection, the fluid density is no longer constant and 
depends on temperature in buoyancy term. Therefore, in such a 

region, the temperature of the cold wall 𝑇0 is used as a reference 
to give the buoyancy term as 𝜌𝛽(𝑇 − 𝑇0), where β is the con-

stant coefficient of thermal expansion, ρ is the density of the fluid 

and T is the temperature (Tennehil et al., 1997). 
Although many fluids encountered in various industries exhibit 

non-Newtonian behaviour, there are very few studies reported in 
the literature for thermal convection problems. Two surveys by 
Shenoy (1988) and Gebhart et al. (1988) mention only two studies 
on natural convection in enclosures. 

Newtonian free convection has been extensively studied by 
Batchelor (1956), Elder (1965), Wilkes and Churchill (1966) and 
De Vahl Davis (1983). Emery et al. (1971) experimentally deter-
mined a correlation for the case of one wall at a constant tempera-
ture and a condition of constant heat flux at the other vertical wall 
for several pseudoplastic power law fluids. 

Numerical methods are frequently used for two dimensional 
steady incompressible Newtonian flow problems. Due to the 
simplicity of cavity geometry, numerical methods can be applied 
very easily and effectively to this type of flow problems and results 
are very satisfactory. 

For such studies, Benjamin and Denny (1979) have used 
a method that is relaxed by means of ADI methods using a non-
uniform iteration parameter. Full converged solutions at Reynolds 
number up to 104 with three different grid mesh sizes (maximum 

being 101 × 101) are generated in order to resolve basic ques-
tions on the nature of the flow and to explore convergence proper-
ties of the method. 

Schereiber and Keller (1983) have introduced efficient and re-
liable numerical techniques of high-order accuracy for solving 
problems of steady viscous incompressible flow in the plane with 
these techniques, they obtain accurate solutions for the driven 
cavity. The numerical methods combine an efficient linear system 
solver and an adaptive Newton-like method for nonlinear systems. 

They have obtained solutions at Reynolds number 10000 
on a 180 × 180. 

Hou et al. (1995) have used Lattice Boltzmann Method for the 

simulation of the cavity flow. They have used 256 × 256 grid 
points and presented solutions for Reynolds number Re ≤ 7500. 

Khader (2016) is devoted to introduce a numerical simulation 
with a theoretical study for the flow of a Newtonian fluid over an 
impermeable stretching sheet, which is embedded in a porous 
medium with a power law surface velocity and variable thickness 
in the presence of thermal radiation. 
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Liao and Zhu (1996) have introduced a higher order stream 
function-vorticity boundary element method (BEM) formulation for 
the solution of Navier-Stokes equations. With this, they have 
presented solutions up to Re = 10000 with a grid mesh 

of 257 × 257. 
Ghia et al. (1982) have applied a multi-grid strategy to the 

coupled strongly implicit method developed by Rubin and Khosla 
(1981). They have presented solutions for Reynolds number as 

high as Re = 10000 with meshes consisting of as many as 
257 × 257 grid points. 

Erturk et al. (2005) have introduced an effective numerical 
method for driven cavity flow by using stream function and vortici-
ty formulation. Using a regular grid size of 601 × 601, they have 

solved the Navier-Stokes equations for Re ≤ 21000. 
In the past decades, various numerical approaches have been 

used to solve magnetohydrodynamics (MHD) flows. A mixed finite 
element method has been discussed by Gunzburger et al. (1991). 
In Hasler et al. (2004), a weighted regularization approach has 
been applied to incompressible MHD system. Salah et al. (2001) 
have presented a Galerkin least-square method. Siddheswar et al. 
(2011) have introduced the higher order Rayleigh-Ritz (HORR) 
method, which is used to obtain the eigenvalue of the problem. 
Rudraiah et al. (1995) and Venkatachalappa et al. (2011) have 
used ADI (Alternating Direction Implicit) and SLOR (Successive 
Line Over Relaxation) method. Additionally, Amber and 
O’Donovan (2017) have presented two-dimensional simulations of 
natural convection driven by the absorption of nonuniform concen-
trated solar radiation in a molten binary salt-filled enclosure in-
clined at 0 ≤ φ ≤ 60. 

Recently, three classical iterative algorithms (Stokes iterative 
method, Newton iterative Method and Oseen iterative method) of 
solving 2D/3D Navier Stokes equations have been considered by 
He and Li (2009), Xu and He (2013). 

Motivated by Erturk et al. (2005), this article is mainly focused 
on numerical solutions of natural convective heat transfer in an 
enclosed cavity heated from below. 

2. NUMERICAL METHOD 

The following figures schematically represent the flow in an en-
closed cavity region heated from below under a magnetic field 
effect. 

 

Fig. 1. Physical configuration and description of boundary condition 

In Fig. 1, L is the characteristic length, g is the gravitational 

acceleration, H0 is the applied magnetic field and k̂ is a unit 
vector in the increasing direction of the space variable z. 

We use the stream function (𝜓), vorticity (𝜔) and tempera-

ture (𝑇) formulation of the steady-state incompressible pseudo-
plastic viscous fluid equations in the following form: 
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𝑢ρ
 is the Chandrasekhar number, 𝑞 is the shear rate, 

𝜂(𝑞) is the viscosity, 𝑥 and 𝑦 are the Cartesian coordinates, 𝜇𝑚 
is the magnetic permeability, 𝜎 is the surface tension gradient, 𝑢 

is the velocity component in the x-axis direction and 𝜌 is the 
density. Also, the Rayleigh number can be written as the product 
of the Grashof number, which describes the relationship between 
buoyancy and viscosity within a fluid, and the Prandtl number, 
which describes the relationship between momentum diffusivity 
and thermal diffusivity, that is, Ra = Gr. Pr. Finally, the Cross 
model is used in this work for the modelling of the viscosity func-
tion and this has the following form: 

𝜂(𝑞) = 𝜂(∞) +
(𝜂(0)−𝜂(∞))

1+(𝜆𝑞)1−𝑛  .    

In this Cross Model, 𝜂(∞) represents the infinite shear vis-
cosity for very large deformation rates and 𝜂(0) represents the 
zero shear rate viscosity for very small rates of shear. Assuming 

𝑛 = 0.5 , 𝜆 = 1 , 𝜂(0) = 1 and 0 ≤ 𝜂(∞) ≤ 1, we obtain 
shear-thinning or the so-called pseudoplastic behaviour. 

The first order pseudo time derivatives are now introduced so 
that the equations (1), (2) and (3) take the following form: 

∂𝜔

∂𝑡
= −

∂𝜓

∂𝑦

∂𝜔

∂𝑥
+

∂𝜓

∂𝑥

∂𝜔

∂𝑦
+

1

Re𝜂(𝑞)
{

∂

∂𝑥
(𝜂2(𝑞)

∂𝜔

∂𝑥
)

+
∂

∂𝑦
(𝜂2(𝑞)

∂𝜔

∂𝑦
)} +

1

Re
{−4

∂2𝜓

∂𝑥 ∂𝑦

∂2𝜂(𝑞)

∂𝑥 ∂𝑦

− (
∂2𝜓

∂𝑦2
−

∂2𝜓

∂𝑥2
) (

∂2𝜂(𝑞)

∂𝑦2
−

∂2𝜂(𝑞)

∂𝑥2
) +

𝐺𝑟

Re

∂𝑇

∂𝑥
− 𝑄𝜔}

                  (5) 

∂𝜓

∂𝑡
=

∂2𝜓

∂𝑥2
+

∂2𝜓

∂𝑦2
+ 𝜔             (6) 

∂𝑇

∂𝑡
= −

∂𝜓

∂𝑦

∂𝑇

∂𝑥
+

∂𝜓

∂𝑥

∂𝑇

∂𝑦
+

1

PrRe
∇2𝑇             (7) 



DOI 10.2478/ama-2019-0004                                                                                                                                                          acta mechanica et automatica, vol.13 no.1 (2019) 

25 

Using forward difference approximation for the time deriva-
tives in equations (5), (6) and (7), we obtain the following equa-
tions (Smith, 1978): 
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In the event of reaching a steady state, we have: 

𝜓𝑛+1 = 𝜓𝑛 ,           (11) 

𝜔𝑛+1 = 𝜔𝑛 ,          (12) 

and 

𝑇𝑛+1 = 𝑇𝑛 .          (13) 

Using this result in the right hand side of equations (8), (9) and 
(10), we may write: 
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The solution method for the equations (14), (15) and (16) in-
volves a two-level updating. First, the stream function equation 

is solved. For equation (15), the variable 𝑓 is introduced such 
that: 
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In equation (18), 𝑓 is the only unknown and is first solved at 
each grid point. Following this, the stream function variable(𝜓) is 
advanced into the new time level using equation (17). Next, the 
vorticity and energy equations are solved in a similar fashion. 

The local Nusselt number (Nu) has been evaluated along the 
bottom wall with the expression: 

𝑁𝑢 =
∂𝑇

∂𝑦
| 𝑦=0 

where, 𝑇 is the dimensionless temperature. 

3. RESULTS AND DISCUSSION 

We use the symmetry for , 𝜓 and 𝑇 at spurious points outside 
the boundaries. On the boundaries, the values of vorticity are 
chosen from the nine-point compact finite difference. 
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We use the same algorithm with Erturk et al. (2001), but our 
convergence criterion is different. The convergence criterion that 
was used was based on the relative-error criterion (Demir, 2005): 

max {
|𝜓𝑛+1 − 𝜓𝑛|

1 + |𝜓𝑛|
} < 10−6 , ∀𝑛 ,

max {
|𝜔𝑛+1 − 𝜔𝑛|

1 + |𝜔𝑛|
} < 10−6 , ∀𝑛 ,

max {
|𝑇𝑛+1 − 𝑇𝑛|

1 + |𝑇𝑛|
} < 10−10 , ∀𝑛 .

 

Tab. 1 tabulates the maximum stream function value, the vor-
ticity value at the centre of the primary vortex and also the centre 

location of the primary vortex for Newtonian fluid at Re = 1000 
along with similar results found in the literature are compared. In 
Tab. 1, among the most significant results, Erturk et al. (2005) 
have solved the cavity flow on three different grid meshes 
(401 × 401 , 513 × 513 , 601 × 601) for Re = 1000. 

Looking back to Tab. 1, for Re = 1000, our results are in 
very good agreement with the results of Schreiber and Keller 
(1983), Hou et al. (1995) and Erturk et al. (2005). From all these 
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comparisons, we can conclude that even for Re = 1000, higher 
order approximations together with the use of fine grids are nec-
essary for accuracy. 

Stream and temperature lines corresponding to Q = 0 and 

Q = 5, Ra = 104, Ra = 105 and Ra = 106 are given for 
Newtonian, pseudoplastic fluids and pseudoplastic fluids under 
the magnetic field effect in the following figures, respectively. Also, 

all the figures are presented in xy plane. 

Tab. 1. Comparison of the properties of the primary vortex; the maximum 
stream function value, the vorticity value and the location  
of the centre, for Newtonian fluid at Re = 1000 

Reference Grid 𝜓 𝜔 𝑥 𝑦 

Erturk et 
al. (2005) 

401 401
 

0.118585 2.062761 0.5300 0.5650 

513 513
 

0.118722 2.064765 0.5313 0.5645 

601 601
 

0.118781 2.065530 0.5300 0.5650 

 

Schreiber 
and Keller 

(1983) 

121 121  0.11492 2.0112 - - 

141 141  0.11603 2.0268 0.52857 0.56429 

Ghia et al. 
(1982) 

129 129
 

0.117929 2.04968 0.5313 0.5625 

Hou et al. 
(1995) 

256 256
 

0.1178 2.0760 0.5333 0.5647 

Liao et al. 
(1996) 

129 129
 

0.1160 2.0234 0.5313 0.5625 

Benjamin 
et al. 

(1979) 
101 101  0.1175 2.044 - - 

Present 

128 128
 

0.115952 2.02482 0.5313 0.5625 

256 256
 

0.118182 2.05677 0.5313 0.5664 

401 401
 

0.118626 2.06322 0.5312 0.5661 

 

 

(a) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 5 

   
Fig. 2. Streamline contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect at 𝑅𝑎 = 104, respectively 

(a) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 104, 𝑄 = 5 

   
Fig. 3. Temperature contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect  

at 𝑅𝑎 = 104, respectively 
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 (a) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 5 

   
Fig. 4. Streamline contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect at 𝑅𝑎 = 105, respectively 

 (a) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 105, 𝑄 = 5 

   
Fig. 5. Temperature contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect at 𝑅𝑎 = 105, respec-

tively 

(a) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 5 

   
Fig. 6. Streamline contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect at 𝑅𝑎 = 106, respectively 
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(a) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 0  (b) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 0  (c) 128 × 128, 𝑅𝑎 = 106, 𝑄 = 5 

   
Fig. 7. Temperature contours for (a) Newtonian, (b) pseudoplastic fluids and (c) pseudoplastic fluids under the magnetic field effect at 𝑅𝑎 = 106,  

 respectively 

For all fluids considered, as shown in Fig. 2, it has found one 

cell filled whole cavity at 𝑅𝑎 = 104. The corresponding tempera-
ture profiles are shown in Fig. 3. For Newtonian, pseudoplastic 
fluids without any magnetic field effect and pseudoplastic fluids 
under the magnetic field effect, warm fluid rises near the left wall 
with the colder fluid falling near the opposite wall. As shown in Fig. 
4, the Newtonian fluid solution consists of two counter rotating 
cells and they are not symmetric; one vortex dominates the other 
vortex, whereas for pseudoplastic fluid without any magnetic field 
effect and pseudoplastic fluids under the magnetic field effect, we 
have two mirror image counter rotating the cells. Fig. 5 indicates 
that it is almost symmetric horizontally and warm fluid rises near 
the bottom while colder fluid is located near the top wall. As 
shown in Fig. 6, for Newtonian, pseudoplastic fluids without any 
magnetic field effect and pseudoplastic fluids under the magnetic 
field effect, streamline contours have two mirror image counter 
rotating cells. And finally in Fig. 7, temperature distribution is 
dense only near the wall and temperature contours are symmetric. 
Consequently, when Ra increases, streamline and temperature 
contours consist of two counter rotating cells, which are symmet-
ric. As shown in all the figures, for pseudoplastic fluids, under the 
magnetic field effect, the intensity of the streamlines is decreased. 

 
Fig. 8. Effect of local Nusselt number for Newtonian fluids 

Fig. 8, 9 and 10 are respectively the plots of the local Nusselt 
number (Nu) evaluated along the bottom wall for Newtonian, 
pseudoplastic fluids without any magnetic field effect and pseudo-
plastic fluids under the magnetic field effect. As shown in Fig. 8, 

for 𝑅𝑎 = 104 and 𝑅𝑎 = 105, the local Nusselt number has high 

values on the right wall, but it has low values for 𝑅𝑎 = 106 on 
the same wall. In Fig. 9, for 𝑅𝑎 = 104, the local Nusselt number 

has increased, but for 𝑅𝑎 = 105, it has decreased, and on the 
right wall, there is almost no convective heat transfer. For 

𝑅𝑎 = 106, the local Nusselt number has reached up to a maxi-
mum level, and on the right and left walls, there is low convective 
heat transfer. Finally, in Fig. 10, the local Nusselt number results 
under the magnetic field effect are similar to the results obtained 
for Newtonian fluids without any magnetic field effect. As seen in 
Fig. 10, the magnetic field has made some effects for only 

𝑅𝑎 = 106. 

 
Fig. 9. Effect of local Nusselt number for pseudoplastic fluids  
            without any magnetic field effect 

 

Fig. 10. Effect of local Nusselt number for pseudoplastic fluids  
              under the magnetic field effect 
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4. CONCLUSIONS 

This paper mainly consisted of the computer simulation and 
the analysis of the streamline and temperature structures of 2D 
steady-state, incompressible fluid flow in an enclosed cavity re-
gion heated from below under the magnetic field effect. For Ray-

leigh number up to 𝑅𝑎 = 106 and Chandrasekhar number up to 
10, the results have been presented and documented for the first 
time. The flow equations in stream function, vorticity and tempera-
ture formulation for pseudoplastic fluids were solved computation-
ally using the numerical method described. In this numerical 
approach, the stream function, vorticity and energy equations 
were solved separately by using pseudo time derivative. For each 
equation, the numerical formulation required the solution of two 
tridiagonal systems, which allowed the use of large grid meshes 

easily and we used a fine grid mesh of 128 × 128. The method 
proved to be very effective on flow problems that required high 
accuracy on very fine grid meshes (Ertruk and Corke, 2001; Ertruk 
et al., 2004). 

Our computations showed that fine grid mesh was necessary 
in order to obtain a steady solution, and when 𝑅𝑎 and Q in-
creased, streamline and temperature contours consisted of two 
counter rotating cells, which were symmetric. As a result, we 

obtained that when Rayleigh number is bigger than 106 and 
Chandrasekhar number is bigger than 10, instability occurs in the 
flow domain. 
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