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Abstract: Two-dimensional stationary problem of heat conduction and thermoelasticity for infinite elastic body containing periodic system 
of inclusions and cracks is considered. Solution of the problem is constructed using the method of singular integral equations (SIEs). The 
numerical solution of the system integral equations are obtained by the method of mechanical quadrature for a plate heated by a heat flow, 
containing periodic system elliptic inclusions and thermally insulated cracks. There are obtained graphic dependences of stress intensity 
factors (SIFs), which characterise the distribution of intensity of stresses at the tops of a crack, depending on the length of crack, elastic 
and thermoelastic characteristics inclusion, relative position of crack and inclusion. 
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1. INTRODUCTION 

Singular integral equations (SIEs) are often applied in study-
ing the stressed state of bodies with cracks. First, they were used 
only for very simple rectilinear and arcwise cuts. The construction 
of equations of this kind for systems of rectilinear cracks arbitrarily 
located in the elastic plane became a substantial step forward in 
this direction. The results obtained enabled the researchers to find 
the numerical and analytic solutions of the plane and antiplane 
problems of the theory of elasticity, the steady-state problems of 
heat conduction and thermoelasticity and the problems of bending 
of thin plates and gently sloping shells for domains with cuts 
(Panasyuk et al., 1976). Later, these results were generalised to 
the case of curvilinear cuts (cracks) and multiply connected do-
mains with holes and cuts of any configuration (Savruk,1981). 

However, for homogeneous bodies with cracks (cuts), the 
problems of thermoelasticity remain poorly investigated, and, in 
particular, in the available literature, one can find almost no solu-
tion for noncircular (e.g. elliptic) inclusions and especially for 
multicomponent bodies with cracks. 

The two-dimensional problems of thermoelasticity for semi-
infinite bodies with cracks have already been investigated in the 
literature. Thus, in particular, the thermoelastic state of a half 
plane containing an internal rectilinear crack was investigated, 
and different temperature and force conditions imposed on the 
crack lips and on the edge of the half plane were analysed in 
(Sekine, 1975; Tweed and Love, 1979). The method of SIE was 
used for the analysis of the plane thermoelastic state in a half 
space locally heated over a part of its free surface by a heat flow 
and containing an internal arbitrary-oriented rectilinear crack or a 
periodic system of cracks of this sort (Matysiak et al,1999) or 
internal curvilinear crack (Zelenyak and Kolyasa, 2016) . 

The SIE for stationary problems of heat conduction and ther-
moelasticity for infinite and finite (Savruk and Zelenyak,1987) 

piecewise homogeneous planes weakened by curvilinear cracks 
with given temperature or heat flows specified on their lips are 
deduced by the method of integral representations of complex 
temperature and stress potentials. The SIE of heat conduction 
and thermoelasticity with special Cauchy-type kernels for a plane 
with thermally insulated cracks or heat-conducting cuts located in 
a circular foreign inclusion; for a body with thermal cylindrical 
inclusions and crack (Kit and Chernyak,2010); for an infinite body 
with two identical coplanar thermally active circular cracks (Su-
shko, 2013); and for a half space locally heated over a part of its 
free surface by a heat flow and containing an internal rectilinear 
crack (Kit and Ivas’ko, 2013) are deduced by the method of func-
tions of complex variable. The mechanical problem of interaction 
of a curvilinear crack with a circular inclusion in an infinite elastic 
plane is studied in Cheesman and Santare (2000). The distribu-
tion of temperature stresses near the crack tips in three-
component region (i.e. in a plane containing a foreign two-
component inclusion and crack) at a constant temperature was 
studied in Zelenyak (2012). The two-dimensional elastic problem 
in a similar three-component region was presented in (Xiao and 
Chen, 2001). The method of SIEs was used for finding the solu-
tion of two-dimensional problems of thermoelasticity for a three-
layer circular hollow cylinder weakened by a crack (Zelenyak, 
2015). The solutions of the thermoelasticity problem for a plane 
with a crack based on the edge method (Chen et al., 2016) and 
the Fourier integral transform method (Choi et al., 2014) was 
presented. 

Dynamic steady-state growth in 3D of a semi-infinite plane 
brittle crack in a coupled thermoelastic solid is considered. An 
asymptotic solution is obtained in an analytic form and subjected 
to a criterion of the Griffith type for the case of a compressive 
point force (Brock, 2016). The multiple cracks problem in an elas-
tic half-plane is formulated into SIE using the modified complex 
potential with free traction boundary condition. A system of SIEs is 
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obtained with the distribution dislocation function as unknown and 
the traction applied on the crack faces as the right-hand terms 
(Elfakhakhre, 2017). The problem of the stress concentration in 
the vicinity crack tips for a crack of finite length located perpendic-
ular to the interface of two elastic bodies – a half-plane and a strip 
– is considered. Using the method of generalised integral trans-
forms, the problem reduces to the solution of an SIE with a Cau-
chy kernel (Rashidova and Sobol, 2017). Local frictional heating 
of surface of a layered plate with inclusion was investigated in 
Havrysh (2017, 2015). 

The aim of this article is (1) to construct a two-dimensional 
mathematical model of the stationary problems of heat conduction 
and thermoelasticity for infinite elastic body containing periodic 
system inclusions and cracks in the form of system SIE; (2) to 
determine the numerical solutions to SIE (using the method of 
mechanical quadratures) in particular case of periodic system 
elliptic inclusions and thermally insulated cracks. This makes it 
possible to determine stress intensity factors (SIFs) at the tops of 
the crack, which are subsequently used to determine critical val-
ues of the heat flow at which a crack starts to grow. 

2. PROBLEM STATEMENT 

Consider an infinite body consisting of a matrix S and a peri-
odic system of inclusions and cracks, and in the main band of 

periods of width d (along the axis 𝑂𝑥), there are M inclusions, 

bounded by smooth closed contours 𝐿𝑘(𝑘 = 1,𝑀)  and N-M 

curvilinear cracks 𝐿𝑘(𝑘 = 𝑀 + 1,𝑁), located in both the matrix 

and the inclusions. We assume that all contours 𝐿𝑘(𝑘 = 1,𝑁) 

do not have common points. Each contour is connected with a 
local coordinate system 𝑥𝑘𝑂𝑘𝑦𝑘  whose axis 𝑂𝑘𝑥𝑘  forms an 

angle 𝛼𝑘 with the axis 𝑂𝑥, and the points 𝑂𝑘  are determined in 

the coordinate system xOy by complex coordinates 𝑧𝑘
0. Bypass-

ing the contours 𝐿𝑘(𝑘 = 1,𝑀) in a positive direction, the area 

𝑆𝑘  remains to the left (Fig. 1). 

 
Fig. 1. Geometric scheme of the problem 

Consider the problem of heat conduction with the following 
conditions of thermal contact. We will assume that along the 
closed contours, the conditions for an ideal thermal contact (tem-
perature and heat equivalence) are given: 

𝜆𝑘
𝜕𝑇+

𝜕𝑛
= 𝜆

𝜕𝑇−

𝜕𝑛
 , 𝑇+ = 𝑇− 𝑡𝑘 ∈ 𝐿𝑘 , 𝑘 = 1,𝑀,          (1) 

and on the shores of cracks, heat fluxes are given: 

𝜆𝑘
∗ 𝜕𝑇

±

𝜕𝑛
= 𝜏𝑘(𝑡𝑘) ± 𝜇𝑘(𝑡𝑘), 𝑡𝑘 ∈ 𝐿𝑘 , 𝑘 = 𝑀 + 1,𝑁.        (2) 

In this case, the total amount of heat going through the con-

tour 𝐿 = UL𝑘(𝑘 = 𝑀 + 1,𝑁) is zero, that is, 

∑ ∫ 𝜇𝑘(𝑡𝑘)ds𝑘 = 0𝐿𝑘

𝑁
𝑘=𝑀+1 .                                       (3) 

Here n  is the outer normal to the closed contour 𝐿𝑘(𝑘 =

1,𝑀) or to the left face of the cut 𝐿𝑘(𝑘 = 𝑀 + 1,𝑁); 𝜆(𝜆𝑘)  

is the coefficient of thermal conductivity of the matrix (inclusion 
𝑆𝑘); 𝑇(𝑥, 𝑦) is the temperature; 𝑡𝑘  is the complex coordinates of 

points on the contours 𝐿𝑘  in local coordinate systems; 𝑠𝑘  is the 

arc abscissa of the point; 𝜆𝑘
∗ = 𝜆  if the contour 𝐿𝑘(𝑘 =

𝑀 + 1,𝑁) is located in the matrix and 𝜆𝑘
∗ = 𝜆𝑘  if it lies in the 

inclusion; the plus and minus indices indicate the boundary values 
of the corresponding values on the left and the right of the ap-

proach to the contour 𝐿𝑘 . 
In the problem of thermoelasticity, we assume that on the 

junction lines, the inclusions and the matrices 𝐿𝑛(𝑛 = 1,𝑀) of 

the stress are continuous, and the displacement has a gap: 

[𝑁𝑛(𝑡𝑛) + iT𝑛(𝑡𝑛)]
+ = [𝑁𝑛(𝑡𝑛) + iT𝑛(𝑡𝑛)]

− ,         (4) 

(𝑢𝑛 + i𝑣𝑛)
+ − (𝑢𝑛 + i𝑣𝑛)

− = 𝑔𝑛
∗(𝑡𝑛),𝑡𝑛 ∈ 𝐿𝑛, 𝑛 = 1,𝑀. (5) 

Suppose that the plane is subjected to the action of a station-
ary temperature field 𝑇(𝑥, 𝑦) . Assume that in the process of 
deformation, the crack lips are not in contact and they have a self-
equilibrium load: 

[𝑁𝑛(𝑡𝑛) + iT𝑛(𝑡𝑛)]
± = 𝑝𝑛(𝑡𝑛), 𝑡𝑛 ∈ 𝐿𝑛 , 𝑛 = 𝑀 + 1,𝑁.   (6) 

In relations (4), (5) and (6), 𝑁𝑛(𝑡𝑛) and  𝑇𝑛(𝑡𝑛) are the nor-

mal and tangential components of the load and 𝑢𝑛 ,𝑣𝑛  are the 
components of displacement. 

3. THE PROBLEM SOLUTION 

3.1. The system of integral equations of the problem  
of heat conduction 

We represent the temperature in the form T(x, y) =
Ref(z), z ∈ S  and use the complex temperature potential 
F(z) = f ′(z) (Savruk,1981). 

𝐹(𝑧) = 𝐹0(𝑧) +
1

id
∑ ∫ 𝐻𝑘(𝑡𝑘)ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑧)] dt𝑘𝐿𝑘

𝑁
𝑘=1 ,     (7) 

𝐻𝑘(𝑡𝑘) = 𝛾𝑘
′ (𝑡𝑘) + 𝑖𝜇𝑘(𝑡𝑘)𝑒

−𝑖𝜃𝑘 , 𝛾𝑘
′ (𝑡𝑘) = 0(𝑘 = 1,𝑀) . 

Here f0(z) = ∫ F0(z)dz is the potential that determines the 

temperature field 𝑇0(𝑥, 𝑦) in a continuous homogeneous plane 

without inclusions, and the function 𝑇0(𝑥, 𝑦)  is periodic with 
respect to the coordinate 𝑥 with period 𝑑. 

By satisfying the boundary conditions (1) and (2) with the help 
of the complex temperature potential (7), we obtain in the heat 
conduction problem the system of N SIEs of the first and second 

kinds for the 𝑁  unknown functions 𝜇𝑘(𝑡𝑘)(𝑘 = 1,𝑀)  on the 

contours of inclusions and 𝛾𝑘
′ (𝑡𝑘) (𝑘 = 𝑀 + 1,𝑁) on the con-

tours of cracks: 



DOI 10.2478/ama-2019-0002                                                                                                                                                           acta mechanica et automatica, vol.13 no.1 (2019) 

13 

𝑖𝛿𝑛𝐻𝑛(𝑡𝑛
′ )𝑒𝑖𝜃𝑛

′
−

1

𝑑
∑ ∫ Im[𝐾nk(𝑡𝑘, 𝑡𝑛

′ )𝐻𝑘(𝑡𝑘)dt𝑘]𝐿𝑘

𝑁
𝑘=1 =

= (𝛿𝑛 − 1)𝜏(𝑡𝑛
′ )/𝜆𝑛

∗ + 𝛥𝑛Im[𝐹0(𝑇𝑛
′)𝑒𝑖(𝜃𝑛

′+𝛼𝑛)],

 𝑡𝑛
′ ∈ 𝐿𝑛 , 𝑛 = 1, 𝑁. 

 (8) 

Here 𝛿𝑛 = 1  for 𝑛 = 1,𝑀  and 𝛿𝑛 = 0  for 𝑛 = 𝑀 + 1,𝑁 , 

𝑇𝑛
′ = 𝑡𝑛

′ 𝑒𝑖𝛼𝑛 + 𝑧𝑛
0, 

𝐾nk(𝑡𝑘, 𝑡𝑛
′ ) =

𝛥𝑛

𝑖
ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′)] 𝑒𝑖(𝜃𝑛
′+𝛼𝑛), 

𝛥𝑛 = ((𝜆𝑛 − 𝜆) (𝜆𝑛 + 𝜆)⁄ − 1)𝛿𝑛 + 1. 

The solution of system (8) must satisfy the conditions 

∫ 𝛾𝑛
′(𝑡𝑛)dt𝑛 = 0𝐿𝑛

, 𝑛 = 𝑀 + 1,𝑁,            (9) 

guaranteeing continuity of temperature in traversing the contours 
of cracks. Under condition (9), the system of integral equations (8) 
for its arbitrary right-hand side has a unique solution in the class 

of the functions (Savruk, 1981) 𝛾𝑘
′ (𝑡𝑘) ∈ 𝐻 , 𝑡𝑘 ∈ 𝐿𝑘  (𝑘 =

1,𝑀) and 𝛾𝑘
′ (𝑡𝑘) ∈ 𝐻

∗, 𝑡𝑘 ∈ 𝐿𝑘  (𝑘 = 𝑀 + 1,𝑁). 

Note that the choice of the complex potential in form (7) en-
sures the identical satisfaction of the second equality in condition 
(1) based on such a choice of analytic continuation from the ma-
trix region into the inclusion region, in which for the approach to 
the left and right of the contour of inclusion temperatures are 
equal. 

3.2. The system of integral equations of the problem  
 of thermoelasticity 

Complex stress potentials can be represented in the form 
(Savruk,1981): 

𝛷(𝑧) =
1

2𝑑
∑ ∫ 𝑄𝑘(𝑡𝑘)ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑧)] 𝑒

𝑖𝛼𝑘dt𝑘 ,𝐿𝑘

𝑁
𝑘=1          (10) 

𝛹(𝑧) =
1

2𝑑
∑ ∫ 𝑄𝑘(𝑡𝑘)ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑧)] 𝑒

−𝑖𝛼𝑘dt𝑘 −
𝐿𝑘

𝑁

𝑘=1
 

−{
ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑧)] +

−
𝜋

𝑑
(𝑇𝑘 − 𝑇𝑘 + 𝑧)cosec

2 [
𝜋

𝑑
(𝑇𝑘 − 𝑧)]

}𝑄𝑘(𝑡𝑘)𝑒
𝑖𝑎𝑘𝑑𝑡𝑘, 

where: 

𝑄𝑘(𝑡𝑘) = {
𝑔𝑘(𝑡𝑘), 𝑡𝑘 ∈ 𝐿𝑘 , 𝑘 = 1,𝑀;

𝑔𝑘
′ (𝑡𝑘) +

𝑖𝛽∗
1 + 𝜒∗

[𝑓+(𝑡𝑘) − 𝑓
−(𝑡𝑘)], 𝑡𝑘 ∈ 𝐿𝑘,

 

𝑘 = 𝑀 + 1,𝑁. 

We will assume that unknown functions gk
′ (tk) are sought in 

the class of the Hölder functions with integrable singularities at the 

tips of cracks: 𝑔𝑘(𝑡𝑘) ∈ 𝐻(𝑘 = 1,𝑀) , 𝑔𝑘
′ (𝑡𝑘) ∈

𝐻∗(𝑘 = 𝑀 + 1,𝑁) . The functions f±(tk)  are the boundary 

values of the potential f(z). 
By satisfying the boundary conditions (5) and (6) with the help  

of the complex potentials (10), we obtain in the problem of ther-
moelasticity, the system of N SIEs of the first and second kinds for 

the N unknown functions 𝑄𝑘(𝑡𝑘) on the contours of inclusions 

(k = 1,M) and cracks (k = M + 1, N): 

𝐴𝑛𝑄𝑛(𝑡𝑛
′ ) +

1

2𝑑
∑ ∫ [

𝐾nk(𝑡𝑘, 𝑡𝑛
′ )𝑄𝑘(𝑡𝑘)dt𝑘 +

+𝐿𝑛𝑘(𝑡𝑘, 𝑡𝑛
′ )𝑄𝑘(𝑡𝑘)𝑑𝑡𝑘

]
𝐿𝑘

𝑁
𝑘=1   

= 𝑅𝑛(𝑡𝑛
′ ), 𝑡𝑛

′ ∈ 𝐿𝑛, 𝑛 = 1, 𝑁,        (11) 

where 

𝐾nk(𝑡𝑘, 𝑡𝑛
′ ) = 𝑒𝑖𝛼𝑘

{
 

 𝐵𝑛ctg [
𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′)] −

−𝐷𝑛
𝑑𝑡𝑛

′

𝑑𝑡𝑛
′
ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′)] 𝑒−2𝑖𝛼𝑛
}
 

 

, 

𝐿nk(𝑡𝑘, 𝑡𝑛
′ )

= −𝐷𝑛𝑒
−𝑖𝛼𝑘

{
  
 

  
 (1 −

𝑑𝑡𝑛
′

𝑑𝑡𝑛
′
) ctg [

𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′)]

−
𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′ + 𝑇𝑛
′ − 𝑇𝑘)

×
𝑑𝑡𝑛

′

𝑑𝑡𝑛
′
cosec2 [

𝜋

𝑑
(𝑇𝑘 − 𝑇𝑛

′)] e−2𝑖αn
}
  
 

  
 

, 

𝐴𝑛 = 𝑖𝛿𝑛 [1 + 𝜒𝑛 + 𝛤𝑛(1 + 𝜒)] 2⁄ ,  𝐵𝑛 = (𝜒𝑛 − 𝛤𝑛𝜒 −
1)𝛿𝑛 + 1,  𝐷𝑛 = (2 − 𝛤𝑛)𝛿𝑛 − 1, 𝛤𝑛 = 𝐺𝑛 𝐺⁄ , 

𝑅𝑛(𝑡𝑛
′ ) = [𝛤𝑛𝛽

+𝑓−(𝑇𝑛
′) − 𝛽𝑛

𝑡𝑓+(𝑇𝑛
′) + 2𝐺𝑛𝑔𝑛

 ′(𝑡𝑛
′ )]𝛿𝑛 +

(1 − 𝛿𝑛)𝑝(𝑡𝑛
′ ). 

Here is the designation 𝜒 = (3 − 𝜇) (1 + 𝜇)⁄ ,  
𝛽𝑡 = 𝛼𝑡𝐸(1 + 𝜇) , (𝜒𝑛 = (3 − 𝜇𝑛) (1 + 𝜇𝑛)⁄ ,  𝛽𝑛

𝑡 = 𝛼𝑛
𝑡   

𝐸𝑛 (1 + 𝜇𝑛)⁄  for a plane stressed state; 𝛼𝑡 ,𝐺 ,𝐸 (𝛼𝑛
𝑡 , 𝐺, 𝐸𝑛)  

is the coefficient of linear thermal expansion, shear modulus, 
Young’s modulus; 𝜇(𝜇𝑛) is Poisson’s ratio material of the matrix 
(respectively, inclusion). 

In the class of the functions 𝑔𝑘(𝑡𝑘) ∈ 𝐻(𝑘 = 1,𝑀) , 

𝑔𝑘
′ (𝑡𝑘) ∈ 𝐻

∗(𝑘 = 𝑀 + 1,𝑁), the system integral equation (11) 

has a unique solution for its arbitrary right-hand side under the 
conditions 

∫ 𝑔𝑛
′ (𝑡𝑛)dt𝑛 = 0

𝐿𝑛
, 𝑛 = 𝑀 + 1,𝑁.                        (12) 

Condition (12) ensures the uniqueness of displacements in 
traversing the contours of cracks. 

We note that the choice of complex potentials in equation (10) 
ensures the identical satisfaction of the boundary condition (4) on 
the contours of inclusions based on such a choice of an analytic 
continuation from the matrix region into the inclusion region,  
in which the stresses are continuous, and the displacements have 
a gap (for the approach to the contours of inclusions left and right). 
It should also be noted that condition (3) provides the limitation on 
the infinity of the function𝑓(𝑧) and the stress component. 

The SIFs 𝐾𝐼  and 𝐾II at the crack tips are found according to 
formulas (Savruk,1981). 

𝐾𝐼
± − iKII

± = ∓ lim
𝑡𝑘→𝑙𝑘

±
[√2𝜋|𝑡𝑘 − 𝑙𝑘

±|𝑄𝑘(𝑡𝑘)] ,        (13) 

 𝑘 = 𝑀 + 1,𝑁,   

where the lower signs correspond to the beginning of the crack 
(𝑙𝑘
−) and the upper ones correspond to the end of the crack (𝑙𝑘

+). 
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4. THE NUMERICAL ANALYSIS 

Let in the band of periods of width d (along the axis 𝑂𝑥), there 
is an elliptic inclusion with semi axes a and b, bounded by closed 
contour 𝐿1 and an unloaded thermally insulated rectilinear crack 

𝐿2(𝑝2(𝑡2) = 𝜏2(𝑡2) = 𝜇2(𝑡2) = 0) with a length 2𝑙 . We will 

assume that along the closed contour 𝐿1 , the conditions for an 
ideal mechanical contact (𝑔1

∗(𝑡1) = 0) are given, 
The crack is located along the axis 𝑂𝑥 (𝑧2

0 = 𝑑1 ,𝛼2 = 0), 
and its center is at the point (𝑑1, 0). At an infinitely distant point, 

a temperature field 𝑇∞(𝑥, 𝑦) = 𝑞(𝑥cos𝛾 + 𝑦sin𝛾) + 𝑇0  is 

given, where 𝑇0 is the constant temperature and q is the homoge-

neous heat flux at an angle 𝛾 to the axis 𝑂𝑥 (Fig. 2). 

 
Fig. 2. A periodic system of elliptic inclusions and rectilinear cracks 

The solution of the problem consists in solving the system of 
two integral equations (8) and (9) of the heat conduction problem 
with respect to functions 𝜇(𝑡1),  𝛾

′(𝑡2) and substituting them into 
the system of two equations (11) and (12) of the thermoelasticity 

problem for the determination of functions 𝑄𝑘(𝑡𝑘), 𝑘 = 1, 2 . 

Then we calculate the SIFs 𝐾𝐼
±, 𝐾𝐼𝐼

±, which are the real quantities 

that characterise the stress-deformed state in the vicinity of the 
crack tips, according to formula (13). The numerical solution of the 
system of equations (8), (9), (12) and (13) is found using the 
method of mechanical quadrature (Erdogan et. el.; 1973). The 

dimensionless SIFs 𝐾𝐼
±/𝐾0 , 𝐾𝐼𝐼

±/𝐾0  where 𝐾0 = 𝑞𝛽
𝑡𝑙√𝜋𝑙 

/ (1 + 𝜒)are obtained for different values of the thermal, me-
chanical and geometric parameters of the problem  

for 𝜒 = 𝜒1 = 2 . In this case, if the heat flow g is directed  

perpendicularly to the line of cracks (𝛾 = 𝜋/2), then 𝐾𝐼
± = 0,  

𝐾II
± ≠ 0; if parallelly (γ = 0), then 𝐾𝐼

± ≠ 0, 𝐾II
± = 0. 

The numerical values in the numerator corresponding to 
𝐾II
−/𝐾0 (left tip of the crack), and in the denominator correspond-

ing to 𝐾II
+/𝐾0 (right tip of the crack) are given in Table 1. The 

values of SIFs in the left tip of the crack are greater (or lesser) 

than those in the right tip of the crack when 𝜆1/𝜆 < 1  

(or 𝜆1/𝜆 > 1) for different ratio 𝛼1
𝑡/𝛼𝑡. 

We plotted the dependences of dimensionless SIFs KI
±/K0 

on the half-length of the crack δ = l/a  for γ = 0 ,
d1

a
= 2 and 

d a⁄ = 6  (Figs. 3 and 4). Curve 1 correspond to the value  

of 𝛤1 = 2; curve 2 to that of  𝛤1 = 0.5 for 𝜆1/𝜆 = 0.5, 𝛼1
𝑡/𝛼𝑡 =

4 ; curves 3 to that of 𝛤1 = 2;  curves 4 to that of 𝛤1 = 0.5  

for λ1/λ = 4, 𝛼1
𝑡/𝛼𝑡 = 4. 

Tab. 1. The dimensionless numerical values KII
±/K0 for γ = π/2, 

             b/a = 0.5, l/a = 0.8, d1/a = 2 depending on the relative  

            values Γ1 = G1/G and different values of the parameters λ1/λ,  

             α1
t /αt, d/a 

Γ1
= G1/G 

𝜆1 𝜆⁄ = 0.5  𝛼1 𝛼⁄ = 4 𝑑 𝑎⁄ = 6 

𝑑 𝑎⁄ = 6 𝑑 𝑎⁄ = 12 
𝜆1 𝜆 =⁄ 4 

𝛼1
𝑡/𝛼𝑡 = 4 

𝜆1 𝜆 =⁄ 0.5 

𝛼1
𝑡/𝛼𝑡 = 0.5 

0.2 −1.740/0.916 −1.879/0.863 −0.812/0.907 −1.584/0.905 

0.5 −1.754/1.006 −2.181/0.984 −0.710/0.969 −1.401/0.974 

2 −2.216/1.175 −3.726/1.283 −0.583/1.086 −1.164/1.023 

5 −2.921/1.348 −5.795/1.601 0.509/1.223 −1.078/0.971 

20 −3.844/2.044 −9.556/2.388 0.145/1.903 −1.192/0.558 

The solid lines correspond to the SIF 𝐾I
+/𝐾0  at the right 

crack tip and the dashed lines correspond to the SIF 𝐾I
−/𝐾0 at 

the left crack tip (closer to the inclusion). In this case, when the 

heat flux is directed in parallel (𝛾 = 0) to the cracks and large 
axes of the elliptic inclusions (𝑏 < 𝑎), the values of the SIFs at 
both tips of the crack are larger for the harder ones than the ma-

trix (𝐺1 > 𝐺 ) inclusions compared with the case of less rigid 

(𝐺1 < 𝐺) inclusions when 𝛼1
𝑡/𝛼𝑡 > 1 (Fig. 3). This means that 

the strength of the body increases with a decrease in the rigidity of 
inclusion in terms of fracture mechanics. If the large axes of the 
elliptic inclusions are perpendicular to the cracks and the heat flux 
(𝑏 > 𝑎), then, on the contrary, the strength of the body decreases 
with a decrease in the stiffness of the inclusion (Fig. 4). 

 

Fig. 3. Dependences of dimensionless SIFs 𝐾𝐼
±/𝐾0  

           on the half-length of the crack 𝛿 = 𝑙/𝑎 for 𝑏/𝑎 = 0.5 

 

Fig. 4. Dependences of dimensionless SIFs 𝐾𝐼
±/𝐾0  

           on the half-length of the crack 𝛿 = 𝑙/𝑎 for 𝑏/𝑎 = 2 

If the large axes of the inclusions are perpendicular to the di-
rection of the heat flux and the cracks (𝑏 > 𝑎), then the values of 
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the SIF 𝐾𝐼>0 when 𝜆1/𝜆 > 1 (Fig. 4). If the large axes of inclu-

sions are parallel (𝑏 < 𝑎) to the direction of the heat flow, then 
the 𝐾𝐼>0 for different values of the ratio 𝜆1/𝜆 (Fig. 3). 

It should also be noted that this does not take into account the 
possible contact of the shore of the crack. Therefore, in some 
cases, SIF 𝐾𝐼 < 0. Such a result can be used to obtain a solution 
of the problem using the method of superposition for the action, in 
addition to the given temperature field, other temperature or force 
factors, which together do not cause the contact of the shores of 
the crack. 

In the considered problem, do not cause the contact of the 
shores of the crack if the heat flux is parallel to the large axes of 

the elliptic inclusions (b < a) and the crack line and also when 
the flow is perpendicular (b > a) for λ1/λ > 1. Then, according 

to the σθ-criterion (based on the hypothesis of the initial growth of 
the crack) from equations of the boundary equilibrium (Panasyuk 
et al., 1976), it is possible to find the critical values of the heat flux 

qcr at which the growth of the crack begins and the local destruc-
tion of the body, according to the formula: 

 𝑞cr = 𝐾𝑞
𝐾1𝐶

cos3
𝜃∗
2
(𝑘1
±−3𝑘2

±tg
𝜃∗
2
)
, 𝐾𝑞 =

1+𝜒

𝛼𝑡El√𝜋𝑙
 ,   (14) 

where 𝐾1𝐶  is the constant of a material that characterises the 
resistance of the material to the destruction and is determined 

experimentally; 𝜃∗ = 2arctg
𝑘1
±−√(𝑘1

±)
2
+8(𝑘2

±)
2

4𝑘2
±  – angle of initial 

growth of the crack, 𝑘1
± = 𝐾𝐼

±/𝐾0, 𝑘2
± = 𝐾𝐼𝐼

±/𝐾0. 
In the partial case, when the heat flux is directed parallelly to 

the cracks (𝛾 = 0) for 𝜆1/𝜆 = 4, 𝛼1
𝑡/𝛼𝑡 = 4, 𝛿 = 𝑙/𝑎= 0.6, 

with 𝑏/𝑎 = 0.5 , obtained: if 𝛤1 = 2 , then  𝑞cr = 0.86𝐾𝑞𝐾1𝐶 ;  

if 𝛤1 = 0,5, then 𝑞cr = 1.04𝐾𝑞𝐾1𝐶 ; when 𝑏/𝑎 = 2, received: if 

𝛤1 = 2 , then  𝑞cr = 0.54𝐾𝑞𝐾1𝐶 ; if 𝛤1 = 0.5 , then  𝑞cr =

0.44𝐾𝑞𝐾1𝐶 . 

On the basis of the analysis of the obtained critical values of 
the heat flow, it follows that a more rigid than an elliptic inclusion 

matrix with a large axis parallel to the heat flux (𝑏 < 𝑎) deter-

mines a less critical value of the heat flux  𝑞cr  (at which the 
growth of the crack in the left tip begins) when compared with less 
tough inclusion. If the large axis of elliptic inclusions is perpen-

dicular to the heat flux (𝑏 > 𝑎), then, on the contrary, it causes an 
increase. A similar situation is observed for the right tip of the 
crack. 

5. CONCLUSIONS 

Two-dimensional mathematical models of the problems of sta-
tionary heat conductivity and thermoelasticity for an infinite elastic 
plane with a periodic system of curvilinear inclusions and cracks in 
the form of system SIEs of the first kind on the contours of cracks 
and the second kind on the contours of inclusions are constructed. 
This approach allows to obtain a numerical solution of system SIE 
by applying the method of mechanical quadrature . 

A numerical solution of system SIE in the partial case of a 
plane with a periodic system of elliptic inclusions and rectilinear 
thermally insulated cracks in the action of a given heat flux is 
obtained. On the basis of this solution, SIF at the crack tips are 
calculated, which in the future are used to determine the critical 
values of the heat flux for which the crack begins to grow. 
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