
DOI 10.2478/ama-2018-0047                         acta mechanica et automatica, vol.12 no.4 (2018) 

311 

STATISTICAL ANALYSIS OF HUMAN HEART RHYTHM WITH INCREASED INFORMATIVENESS 

Serhii LUPENKO*, Nadiia LUTSYK*, Oleh YASNIY*, Łukasz SOBASZEK** 

*Faculty of Computer Information Systems and Software Engineering, Ternopil Ivan Pul’uj National Technical University, 
46001, Ruska str. 56, Ternopil, Ukraine 

**Institute of Technological Systems of Information, Mechanical Engineering Faculty, Lublin University of Technology,  
ul. Nadbystrzycka 38 D, 20–618 Lublin 

lupenko.san@gmail.com, lutsyk.nadiia@gmail.com, oleh.yasniy@gmail.com, l.sobaszek@pollub.pl 

received 10 July 2018, revised 17 December 2018, accepted 20 December 2018 

Abstract: The new methods of statistical analysis of heart rhythm were developed based on its generalized mathematical model in a form 
of random rhythm function, that allows to increase the informativeness and detailed analysis of heart rhythm in cardiovascular information 
systems. Three information criteria (BIC, AIC and AICc) were used to determine the cumulative distribution functions that best describe  
the sample and to assess the unknown parameters of distributions. The usage of the rhythm function to analyse heart rhythm allows to 
consider much better its time structure that is the basis to improve the accuracy of diagnosis of cardiac rhythm.  
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1. INTRODUCTION 

The study of heart rhythm is one of the most promising non-
invasive methods of diagnosis of the cardiovascular system and 
the adaptive capacity of the human body, since it is a sensitive 
indicator of the degree of concordance and order in the function-
ing of the human body as an integral system (Akaike, 1974; 
Ciucurel et al., 2018; Evaristo et al., 2018; Fumagalli et al., 2018; 
Gadhoumi et al., 2018; Galeotti and Scully, 2018). 

Analysis of heart rhythm allows to perform early diagnostics 
of abnormal fetal, to identify autonomic neuropathy in diabetic 
patients, to assess the risk of death after myocardial infarction, to 
determine the measure of tension of human body regulatory 
process state, etc (Hammad et al., 2018; Isler et al., 2019; 
Koichubekoc et al., 2018; Li et al., 2018; Mustaqeem et al., 2017; 
Napoli et al., 2018; Serrano and Figiola, 2009; Sharma and 
Sunkria, 2018; Shen et al., 2015; Wang et al., 2018). 

In modern cardiovascular information systems, the research of 
heart rhythm is implemented by recording and automated pro-
cessing of cardiointervalogram or rhythmogram (Brandão et al., 
2014).  

Сardiointervalogram is the sequence of values that are equal 
to the time intervals between peak values of R-wave of electro-
cardiogram in the sequential cardiac cycles. Rhythmogram is a 
discrete process that is defined on a finite or on a counTab. set of 
moments of time equal to the moment of time when the peak 
values of electrocardiogram R-wave are recorded and rhythm 
cardiogram values are equal to the time intervals between peak 
values of electrocardiogram R-wave. Rhythmogram is more in-
formative empirical curve related with the analysis of heart rhythm 
as compared with cardiointervalogram because it contains infor-
mation about the moments of time at which the peak values of R-
wave of electrocardiogram are recorded (Bozhokin and Suslova, 
2014). 

However, this kind of curve does not allow to determine more 
detailed features of heart rhythm, since it reflects only changes in 
the duration of the cardiac cycle. Therefore, it does not take into 
account the entire set of time intervals between single-phase 
values of heart cyclic signal for every phase. The latter data ena-
ble to represent the rhythm in completely. 

Cardiointervalogram and rhythmogram have insufficient preci-
sion and informativeness for the heart rhythm analysis (Ko-
tel’nikov et al., 2002). This points out the relevance and prospects 
of developing a new approach to modeling and analysis of heart 
rhythm. This would allow increasing the level of informativeness, 
the growth of reliability of heart rhythm analysis that provide the 
early diagnosis of cardiac diseases and regulatory activity of the 
human body as a whole. 

2. METHODOLOGY 

2.1. New approach for the analysis of heart rhythm  

The growth of reliability and informativeness of heart rhythm 
analysis can be achieved by statistical analysis of not only RR-
intervals which define the duration of the cardiac cycle but also by 
identifying statistical patterns for the greater amount of time inter-
vals that separate the single-phase intervals of electrocardiogram. 

The electrocardiogram as a registered electrocardiosignal 𝜉(𝜔, 𝑡) 
is convenient to be treated theoretically as a deterministic function 

𝜉𝜔(𝑡) of real argument (𝑡 ∈ 𝑅). For example, the following sin-
gle-phase counting of electrocardiogram may be the starts of P-
wave, Q-wave, R-wave, S-wave, T-wave, U-wave. That is, the 
object of the statistical analysis of rhythm is a set of sequences of 
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time intervals between single-phase counting of electrocardio-

gram, namely, the sequences 𝑇𝑇(𝑡𝑇,𝑛), 𝑃𝑃(𝑡𝑃,𝑛), 𝑄𝑄(𝑡𝑄,𝑛), 

𝑅𝑅(𝑡𝑅,𝑛), 𝑆𝑆(𝑡𝑆,𝑛) determined by the formulae: 

𝑃𝑃(𝑡𝑃,𝑛) = 𝑃(𝑡𝑃,𝑛) − 𝑃(𝑡𝑃,𝑛−1) 

𝑄𝑄(𝑡𝑄,𝑛) = 𝑄(𝑡𝑄,𝑛) − 𝑄(𝑡𝑄,𝑛−1) 

𝑅𝑅(𝑡𝑅,𝑛) = 𝑅(𝑡𝑅,𝑛) − 𝑅(𝑡𝑅,𝑛−1)   

𝑆𝑆(𝑡𝑆,𝑛) = 𝑆(𝑡𝑆,𝑛) − 𝑆(𝑡𝑆,𝑛−1)                                              (1) 

𝑇𝑇(𝑡𝑇,𝑛) = 𝑇(𝑡𝑇,𝑛) − 𝑇(𝑡𝑇,𝑛−1) 

𝑈𝑈(𝑡𝑈,𝑛) = 𝑈(𝑡𝑈,𝑛) − 𝑈(𝑡𝑈,𝑛−1); 𝑛 = 2, 𝑁̅̅ ̅̅ ̅, 

where: 𝑃(𝑡𝑃,𝑛), 𝑄(𝑡𝑄,𝑛), 𝑅(𝑡𝑅,𝑛), 𝑆(𝑡𝑆,𝑛), 𝑇(𝑡𝑇,𝑛), 𝑈(𝑡𝑈,𝑛) 

are the time moments of start of P-wave, Q-wave, R-wave, S-
wave, T-wave, U-wave, respectively, 𝑛 is a number of cardiac 
cycles. 

Under this approach, the more informative discrete function is 
constructed. Theoretically, it can be as dense as necessary and 

can be transformed into a function of real argument 𝑇(𝑡), 𝑡 ∈ 𝑅 . 
This function is called the rhythm function of cyclic process [18]. In 
this case, the electrocardiosignal is such a cyclic process. 

The formation of the above sequences and rhythm function 
from electrocardiogram is schematically presented in Fig. 1. 

 
Fig. 1. Scheme of formation sequences of time intervals  
            between single-phase counting of electrocardiogram 

There were performed 20 experiments on the processing of 
electrocardiograms based on the presented above approach to 
the analysis of heart rhythm with a purpose of its verification. For 
example, let’s present the results of one of these experiments. 
Namely, the electrocardiogram of male was registered. His age 
was 58 years. The graph of several cycles of registered electro-
cardiogram is shown in Fig. 2. 

 
Fig. 2. The graph of registered electrocardiogram 

The lengths of 𝑃𝑃, 𝑇𝑇, 𝑄𝑄, 𝑅𝑅, 𝑆𝑆 intervals were estimated 
for every cardiac cycle of registered electrocardiogram by meth-
ods available in literature [19]. The plots of obtained sequences 
𝑇𝑇(𝑡𝑇,𝑛), 𝑃𝑃(𝑡𝑃,𝑛), 𝑄𝑄(𝑡𝑄,𝑛), 𝑅𝑅(𝑡𝑅,𝑛), 𝑆𝑆(𝑡𝑆,𝑛) are shown 

in Fig. 3. 

Fig. 3. Time intervals between a single-phase countings of ECG: 

            a) 𝑇𝑇(𝑡𝑇,𝑛), b) 𝑃𝑃(𝑡𝑃,𝑛), c) 𝑄𝑄(𝑡𝑄,𝑛), d) 𝑅𝑅(𝑡𝑅,𝑛),  

            e) 𝑆𝑆(𝑡𝑆,𝑛) 

It is necessary to explain the mathematical model of the above 
mentioned sequences, in order to perform the statistical estima-
tion of their stochastic characteristics. As in the case of mathemat-
ical models of rhythm cardiogram, these models of the above-
indicated sequences can be both stationary and non-stationary 
random sequences. Therefore, the first step in explanation of the 
mathematical model as the foundation of statistical analysis of 
random sequences is the stationarity test, which can be done by 
applying the method of Foster-Stewart [8]. This method allows to 
check for trend components in the mathematical expectation 
(mean) and variance of the studied random sequences. Statistics 
of the criteria are as follows: 

𝐾 = ∑ 𝐾𝑖
𝑛
𝑖=2                                                                               (2) 

𝑑 = ∑ 𝑑𝑖
𝑛
𝑖=2                                                                                (3) 

where: 𝑑𝑖 = 𝑢𝑖 − 𝑙𝑖 , 𝐾𝑖 = 𝑢𝑖 + 𝑙𝑖, 
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𝑢𝑖 = {
1, if the ith observation is an upper record 

0, otherwise.
          (4) 

𝑙𝑖 = {
1, if the ith observation is an lower record 

0, otherwise.
           (5) 

The K statistics is used to check the trend in the variance of 
the random sequence, and the d statistics is employed to identify 
a trend in its mathematical expectation. It is obvious, that 

0 ≤ 𝐾 ≤ 𝑛 − 1 and −(𝑛 − 1) ≤ 𝑑 ≤ 𝑛 − 1.                      (6) 

In the absence of trend, the random variables 

𝑡 =
𝑑

𝑓
 and 𝑡̃ =

𝑡−𝑓2

𝑙
, where 𝑙 = √2 ln 𝑛 − 3.4253, 𝑓 =

√2 ln 𝑛 − 0.8456 are distributed according to Student distribu-

tion with 𝑣 = 𝑛 degrees of freedom. 

If |𝑡|, |𝑡̃| > 𝑡1+𝛼

2

, then the null hypothesis of the absence of 

trend is rejected with the confidence level of 𝛼. 

3. RESULTS 

The values of corresponding statistics for different sequences 
𝑇𝑇(𝑡𝑇,𝑛), 𝑃𝑃(𝑡𝑃,𝑛), 𝑄𝑄(𝑡𝑄,𝑛), 𝑅𝑅(𝑡𝑅,𝑛), 𝑆𝑆(𝑡𝑆,𝑛) are pre-

sented in Tab. 1. 

Tab. 1. The values of calculated statistics for sequences 𝑃𝑃, 𝑇𝑇, 𝑄𝑄,  

           𝑅𝑅, 𝑆𝑆 of ECG (Fig. 3) 

Intervals |𝑡| |𝑡̃| 𝒕𝟎.𝟗𝟕𝟓 

TT 0 0.1966 1.9679 

PP 0.6154 0.1989 1.9679 

QQ 0.3076 1.2626 1.9679 

RR 0 0.9068 1.9679 

SS 0.3076 0.5550 1.9679 

The verification of stationarity hypotheses confirmed that the 

mentioned above random sequences 𝑇𝑇(𝑡𝑇,𝑛), 𝑃𝑃(𝑡𝑃,𝑛), 

𝑄𝑄(𝑡𝑄,𝑛), 𝑅𝑅(𝑡𝑅,𝑛), 𝑆𝑆(𝑡𝑆,𝑛) do not contradict the hypothesis 

of stationarity. 
The informative characteristics of heart rate analysis and 

methods of their study were determined. The significant character-
istics of random sequences are their mathematical expectation, 
variance, probability density and cumulative distribution functions. 
Tab. 2 provides the values of mathematical expectation and vari-
ance of the given sequences. 

Tab. 2. The mathematical expectation and variance  
             of sequences TT, PP, QQ, RR, SS 

Intervals Expected 
value 

Variance 

TT 0.794 1.97e-3 

PP 0.795 2e-3 

QQ 0.795 1.9e-3 

RR 0.795 1.95e-3 

SS 0.795 1.94e-3 

Three information criteria were used to determine the cumula-
tive distribution functions that best describe the sample and the 

unknown parameters of distributions. These criteria are Akaike 
information criterion (AIC), Bayesian information criterion (BIC) 
and Akaike information criterion with a correction for finite sample 
sizes (AICc). 

Tab. 3. The best fit distributions and their parameters obtained  

             for sequences 𝑃𝑃, 𝑇𝑇, 𝑄𝑄, 𝑅𝑅, 𝑆𝑆 

Interval Inform.criter. Name of 
distribution 

Parameters of 
distribution 

PP AIC 

 

 

BIC 

 

 

AICc 

GEV 

 

 

GEV 

 

 

GEV 

𝜉 = −0.299 

𝜇 = 0.0448 

𝜎 = 0.7793  

𝜉 = −0.2802 

𝜇 = 0.0435 

𝜎 = 0.7787  

𝜉 = −0.299 

𝜇 = 0.0448 

𝜎 = 0.7793 

QQ AIC 

 

 

BIC 

 

 

AICc 

GEV 

 

 

GEV 

 

 

GEV 

𝜉 = −0.2819 

𝜇 = 0.0433 

𝜎 = 0.779 

𝜉 = −0.2819 

𝜇 = 0.0433 

𝜎 = 0.779 

𝜉 = −0.2819 

𝜇 = 0.0433 

𝜎 = 0.779 

RR AIC 

 

 

BIC 

 

 

AICc 

GEV 

 

 

GEV 

 

 

GEV 

𝜉 = −0.283 

𝜇 = 0.0435 

𝜎 = 0.779 

𝜉 = −0.283 

𝜇 = 0.0435 

𝜎 = 0.779 

𝜉 = −0.283 

𝜇 = 0.0435 

𝜎 = 0.779 

SS AIC 

 

 

BIC 

 

 

AICc 

GEV 

 

 

GEV 

 

 

GEV 

𝜉 = −0.2938 

𝜇 = 0.0436 

𝜎 = 0.7792 

𝜉 = −0.2938 

𝜇 = 0.0436 

𝜎 = 0.7792 

𝜉 = −0.2938 

𝜇 = 0.0436 

𝜎 = 0.7792 

 

TT AIC 

 

 

BIC 

 

AICc 

GEV 

 

 

Birnb.-
Saund. 

GEV 

𝜉 = −0.2802 

𝜇 = 0.0435 

𝜎 = 0.7787 

𝛼 = 0.7932 

𝛽 = 0.0558 

𝜉 = −0.2802 

𝜇 = 0.0435 

𝜎 = 0.7787 

The values of AIC information criterion can be found by the 
following formula (Akaike, 1974): 

AIC = 2 ln 𝐿𝑚𝑎𝑥 + 2𝑘,                                                            (7) 
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where: 𝐿𝑚𝑎𝑥  is the maximum of likelihood function, k is the num-
ber of parameters of distribution. The best model is the one that 
minimizes the value of AIC. This criterion is obtained by the ap-
proximate minimization of Kullback-Leibler information entropy. It 
is a measure of the difference between the true distribution of data 
and the distribution of the model (Liddle, 2007). 
The values of BIC information criterion can be determined by the 
following formula (Schwarz, 1978): 

BIC = −2 ln 𝐿𝑚𝑎𝑥 + 𝑘 ln 𝑁,                                                   (8) 

where: 𝑁 is the sample size. 
While using BIC, the researcher suggests that the elements of 

the sample are independent and identically distributed. The appli-
cation of AIC and BIC criteria usually shows good agreement 
between the conclusions about the best model (Liddle, 2007). 

In the case when the sample size is insignificant, it is advisa-
ble to use the AICc. The value of this criterion is calculated using 
the formula (Sugiura, 1978): 

AICc = AIC+2k(k+1)/N-k-1.                                              (9) 

As a result of the use of information criteria, it was found that 

these samples of different intervals (𝑃𝑃, 𝑇𝑇, 𝑄𝑄, 𝑅𝑅, 𝑆𝑆) are 
best described by two distribution functions − generalized extreme 
values function (Fisher-Tippett distribution) and Birnbaum-
Saunders distribution (see Tab. 3). 

Recall that generalized extreme values (GEV) function has the 
following form: 

𝐺(𝑧) = exp {− [1 + 𝜉 (
𝑧−𝜇

𝜎
)]

−
1

𝜉
}.                                       (10) 

where: 𝜉, 𝜇, 𝜎 are the parameters of distribution (Coles, 2001). 
The Birnbaum-Saunders (Birnb.-Saund.) distribution is de-

scribed by the following expression: 

𝐹(𝑥; 𝛼, 𝛽) = Φ (
1

𝛼
[(

𝑥

𝛽
)

1

2
− (

𝛽

𝑥
)

1

2
]).                                     (10) 

where: Φ(𝑥) is the cumulative function of normal distribution, 𝛼, 

𝛽 are the parameters of distribution (Coles, 2001). 
The probability density function and cumulative distribution 

function of TT and PP intervals are shown in Fig. 4. 

 
Fig. 4. The probability density function and cumulative distribution 
            function of intervals a) TT interval, b) PP interval 

It was found that the random sequences 𝑇𝑇(𝑡𝑇,𝑛), 𝑃𝑃(𝑡𝑃,𝑛), 

𝑄𝑄(𝑡𝑄,𝑛), 𝑅𝑅(𝑡𝑅,𝑛), 𝑆𝑆(𝑡𝑆,𝑛) are the stationary random pro-

cesses. Their probabilistic characteristics, such as mathematical 
expectation, variance, probability density function and cumulative 
density function were estimated. The calculated mathematical 
expectation and variance are practically identical for every random 
sequence. This is also true for the estimated parameters of distri-
butions. These sequences can be described well enough by 
Fisher–Tippett distribution. 

4. CONCLUSIONS 

Three information criteria (BIC, AIC and AICc) were used to 
determine the cumulative distribution functions that best describe 
the sample and to estimate the unknown parameters of distribu-
tions. It was found that the samples of different intervals (𝑃𝑃, 𝑇𝑇, 

𝑄𝑄, 𝑅𝑅, 𝑆𝑆) are well enough described by next distribution 
functions − generalized extreme values function (Fisher-Tippett 
distribution) and Birnbaum-Saunders distribution. Also, it was 
determined that the mentioned above random sequences are the 
stationary random processes. Their probabilistic characteristics, 
such as the mathematical expectation, variance, probability densi-
ty function and cumulative density function were estimated. For 
this case, the calculated mathematical expectation and variance 
are practically identical for every random sequence. The mathe-
matical expectation of samples was approximately equal to 0.795 
s, and the variance is around 0.2 s2. This is also true for the esti-
mated parameters of distributions. 

In general, the use of the rhythm function to analyze heart 
rhythm allows considering much better its time structure that is the 
basis to improve the accuracy of diagnosis of cardiac rhythm. 
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