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Abstract: An interface crack between two semi-infinite piezoelectric/piezomagnetic spaces under out-of-plane mechanical load  
and in-plane electrical and magnetic fields parallel to the crack faces is considered. Some part of the crack faces is assumed to be electri-
cally conductive and having uniform distribution of magnetic potential whilst the remaining part of the crack faces is electrically  
and magnetically permeable. The mechanical, electrical, and magnetic factors are presented via functions which are analytic in the whole 
plane except the crack region. Due to these representations the combined Dirichlet-Riemann and Hilbert boundary value problems  
are formulated and solved in rather simple analytical form for any relation between conductive and permeable zone lengths. Resulting  
from this solution the analytical expressions for stress, electric and magnetic fields as well as for the crack faces displacement jump  
are presented. The singularities of the obtained solution at the crack tips and at the separation point of the mention zones are investigated 
and the formulas for the corresponding intensity factors are presented. The influence of external electric and magnetic fields upon  
the mechanic, electric and magnetic quantities at the crack region are illustrated in graph and table forms. 
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1.  INTRODUCTION 

Piezoelectromagnetic materials are often used as functional 
parts of different engineering systems including sensors, trans-
ducers and actuators. However, existing micro-defects and partic-
ularly interface cracks can strongly reduce their strength. For this 
reason, interface cracks in piezoelectric and piezoelectomagnetic 
materials have been actively studying in the last several decades. 
A certain attention in this period was devoted to plane interface 
crack problem. Particularly, concerning piezoelectomagnetic ma-
terials this problem was developed in paper by Fan et al., (2009) 
and Feng et al., (2010). Different variants of electrical and mag-
netic conditions at the crack faces of an interface crack with a 
contact zone in a magnetoelectroelastic bimaterial under mechan-
ical, electric and magnetic loads were considered by Herrmann et 
al., (2010), Feng et al., (2011, 2012), and Ma et al., (2012). Addi-
tional accounting of thermal flux for an interface crack in a magne-
toelectroelastic bimaterial were performed in papers of Ma et al., 
(2011) and Feng et al., (2012). Modelling of the pre-fracture zone 
for an interface crack between two dissimilar magnetoelectroelas-
tic materials was done by Ma et al., (2013). The electrically im-
permeable and magnetically permeable conditions at the crack 
faces were considered in this paper. 

It is known (Parton and Kudryavtsev, 1988) that an in-plane 
electric or magnetic field induces the out-of-plane deformation for 
piezoelectric and piezoelectomagnetic material with certain direc-
tions of polarization. On this reason an investigation of such kind 

of deformation, particularly the mode III cracks, is more important 
for the mentioned materials than for electrically and magnetically 
passive ones. The mode III interface crack problem for dissimilar 
piezo-electromagneto-elastic bimaterial media with taking into 
account the electro-magnetic field inside the crack was investigat-
ed by Li and Kardomateas (2006) for impermeable and permeable 
crack models. A closed-form solution for anti-plane mechanical 
and in-plane electric and magnetic fields for a crack between two 
dissimilar magnetoelectroelastic materials was obtained in papers 
by Wang and Mai (2006, 2008) for the two extreme cases of an 
impermeable and a permeable crack. The anti-plane deformation 
of the multilayered piezomagnetic/piezoelectric composite with 
periodic interface cracks, subjected to in-plane magnetic or elec-
tric fields, was studied by Wan et al., (2012a) and Wan et al., 
(2012b) analyzed the mode III crack crossing the magnetoelectro-
elastic bimaterial interface under concentrated magnetoelectro-
mechanical loads. The behaviour of two collinear and also parallel 
symmetry and non-symmetric interface cracks in magneto–
electro–elastic materials under an anti-plane shear stress loading 
was by studied by Zhou et al., (2004, 2007a, 2009) with use of 
Schmidt method. The solutions of a limited-permeable crack or 
two collinear limited-permeable cracks in piezoelectric/ piezomag-
netic materials subjected to a uniform tension loading were inves-
tigated in paper by Zhou et al., (2007b) using the generalized 
Almansi’s theorem. Anti-plane problem for an impermeable 
or permeable interface crack between two dissimilar magneto-
electroelastic plates subjected to anti-plane mechanical and in-
plane magneto-electrical loads was investigated by Su and 
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Feng  (2008). Multiferroic interface fracture of piezomagnetic/ 
piezoelectric composite under magnetic and electric loadings was 
considered by Li and Lee (2010). Shi et al., (2013) investigated 
arc-shaped interface cracks between a functionally graded mag-
neto-electro-elastic layer and an orthotropic elastic substrate un-
der anti-plane shear load. Single and periodic mode-III cracks 
moving along the interface of piezoelectric-piezomagnetic bi-
material were considered by Chen et al., (2012) and Yue and Wan 
(2014), respectively. Also the case of a moving interface crack 
between magnetoelectroelastic and functionally graded elastic 
layers was studied by Hu and Chen (2014). An exact analytic 
solution to the anti-plane problem for a non-homogeneous bimate-
rial medium containing closed interfacial cracks, which faces can 
move relatively to each other with dry friction under the action of 
arbitrary single loading and also cyclic loading was considered by 
Sulym et al., (2015a, 2015b). A more detailed review of anti-plane 
crack problem investigation in piezoelectric/piezomagnetic bimate-
rials is presented in Govorukha et al., (2016). 

Temporary actuators and other electronic devices are often 
constructed with use of thin film electrodes sandwiched between 
piezoelectric layers. Such electrodes are usually prepared of a 
metal powder, conducting polymers etc. and do not change the 
mechanical properties of matrixes (Ru, 2000). Delamination of the 
mentioned electrodes leads to the appearance of conducting inter-
face cracks. For a plane case a conductive interface crack in a 
piezoelectric bimaterial was considered by Beom and Atluri (2002) 
and Loboda et al., (2014) for “open” and contact zone crack mod-
els, respectively. For an out-of-plane conductive interface crack 
the results of the papers Wang and Zhong (2002) and Wang et 
al., (2003) specifying the oscillating singularity at the crack tips are 
valid. However in many cases only some part of the crack faces 
can be conductive because of interface electrode delamination 
while on remaining part some other kind of electrical conditions 
can take place. Accounting of such mixed electrical conditions at 
the crack faces leads to more complicated problem than for uni-
form ones. The crack with mixed (conductive-permeable) condi-
tions at the crack faces was considered for a piezoelectric bimate-
rial by Lapusta et al., (2017). However, for a piezoelectric/ piezo-
magnetic bimaterials this important situation has not been studied 
before and it comprises the main subject of the present paper. In 
spite of this case is more complicated than the piezoelectric one, 
an exact solution of the problem was found. 

2. BASIC FORMULAS FOR PEMM (PIEZO-ELECTRO-
MAGNETIC MATERIAL) FOR ANTI-PLANE CASE 

The constitutive relations for the piezo-electro-magnetic mate-
rial are (Sih and Song, 2003): 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑠𝜀𝑘𝑠 − 𝑒𝑠𝑖𝑗𝐸𝑠 − ℎ𝑠𝑖𝑗𝐻𝑠 , 

𝐷𝑖 = 𝑒𝑖𝑘𝑠𝜀𝑘𝑠 + 𝛼𝑖𝑠𝐸𝑠 + 𝑑𝑖𝑠𝐻𝑠 ,  

𝐵𝑖 = ℎ𝑖𝑘𝑠𝜀𝑘𝑠 + 𝑑𝑖𝑠𝐸𝑠 + 𝛾𝑖𝑠𝐻𝑠 , 

where 𝜎𝑖𝑗 , 𝜀𝑖𝑗  – components of stress and strain tensors,  

𝐷𝑖 , 𝐵𝑖  – components of the electric and magnetic inductions,  
𝐸𝑖, 𝐻𝑖  – intensities of the electric and magnetic fields, 𝑐𝑖𝑗𝑘𝑠 – 

elastic, 𝑒𝑖𝑘𝑠  – piezoelectric, ℎ𝑖𝑘𝑠  – piezomagnetic, 𝑑𝑖𝑠  – electro-
magnetic constants, 𝛼𝑖𝑠, 𝛾𝑖𝑠 – electric and magnetic permeabili-
ties. 

The equilibrium equations in the absence of body forces and 

free charges are: 

𝜎𝑖𝑗,𝑗 = 0, 𝐷𝑖,𝑖 = 0, 𝐵𝑖,𝑖 = 0.  

The expressions for the deformation, electric and magnetic 
fields have the form: 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖), 𝐸𝑖 = −𝜙,𝑖, 𝐻𝑖 = −𝜓,𝑖,  

where 𝑢𝑖 – the components of the displacement vector, 𝜙, 𝜓 – 
the electric and magnetic potentials, comma means differentiation 
on the respective coordinate. 

In an anti-plane case we have:  

𝑢1 = 𝑢2 = 0, 𝑢3 = 𝑢3(𝑥1, 𝑥2),  

𝜙 = 𝜙(𝑥1, 𝑥2), 𝜓 = 𝜓(𝑥1, 𝑥2). 

Then, the constitutive relations take the form: 

(

𝜎3𝑖

𝐷𝑖

𝐵𝑖

) = 𝐑 (

𝑢3,𝑖

−ϕ,𝑖

−𝜓,𝑖

), 𝐑 = (

𝑐44 𝑒15 ℎ15

𝑒15 −𝛼11 −𝑑11

ℎ15 −𝑑11 −𝛾11

), 

where 𝑖 = 1,2. 
Introducing the vectors: 

𝐮 = [𝑢3, 𝜙, 𝜓]𝑇, 𝐭 = [𝜎32, 𝐷2, 𝐵2]𝑇 ,    (1) 

one can write 

𝐭 = 𝐑𝐮,2. (2) 

As the functions 𝑢3, 𝜙 and 𝜓 are harmonic, then taking into 
account (2), the following presentations are valid: 

𝐮 = Ф(𝑧) + Ф̅(𝑧̅), 

𝐭 = 𝐁Ф′(𝑧) + 𝐁̅Ф̅′(𝑧̅),  (3) 

where: Ф(𝑧) = [Ф1(𝑧), Ф2(z), Ф3(𝑧)]T – an arbitrary analyti-
cal vector-function of the complex variable 𝑧 = 𝑥1 + 𝑖𝑥2, 
𝐁 = 𝑖𝐑. 

3. FORMULATION OF THE PROBLEM AND BASIC 
FORMULAS FOR A BIMATERIAL COMPOUND 

Assume that the crack is located in the interval [𝑐, 𝑏] of the 
material separation line (Fig. 1). Suppose also that the section 
[𝑐, 𝑎] of the crack faces is covered with electrodes, which, more-
over, maintain a constant distribution of the magnetic field. It 
means that the conditions on this section can be written in the 
form: 

𝜎32
(1)

= 𝜎32
(2)

= 0, 𝐸1
(1)

= 𝐸1
(2)

= 0, 

𝐻1
(1)

= 𝐻1
(2)

= 0 for 𝑐 < 𝑥1 < 𝑎. (4) 

The remaining part of the crack is assumed to be free from 
electrodes. Therefore, because of the absence of the crack open-
ing in 𝑥2 direction this part of crack faces should be considered as 
electrically and magneto permeable. Thus, one gets the following 
conditions: 

𝜎32
(1)

= 𝜎32
(2)

= 0, ⟨𝐷2⟩ = 0, ⟨𝐵2⟩ = 0, 

⟨𝐸1⟩ = 0, ⟨𝐻1⟩ = 0 for 𝑎 < 𝑥1 < 𝑏, (5) 

where ⟨•⟩ means the jump of the function via material interface. 
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Fig. 1. A crack between two piezoelectromagnetic materials 

The crack described above may arise due to a soft multi-
layered electrode exfoliation, made of ferro-magnetic material, 

situated at the interval [𝑐, 𝑎], with the additional exfoliation of the 

interval [𝑎, 𝑏] of the non-electroded interface. Electric and mag-
netic conditions used in (4), (5) can be considered as a certain 
approximation of real conditions taking place at the interface crack 
faces in piezoelectromagnetic bimaterials. However in many cas-
es these conditions model electric and magnetic state at these 

faces with sufficient accuracy Wang and Mai (2008). It's also 

assumed, that the vector 𝑃∞ = [𝜎32
∞ , 𝐸1

∞, 𝐻1
∞]𝑇 is given at infini-

ty. 
Introducing the vectors: 

𝐯′ = [𝑢3′, 𝐷2, 𝐵  2
 ]𝑇 , 𝐏 = [𝜎32, 𝜙′, 𝜓′]𝑇  (6) 

(the derivatives in (6) are implicit on 𝑥1), on the basis of (3) we 
have: 

𝐯′ = 𝐌Ф′(𝑧) + 𝐌̅Ф̅′(𝑧̅), (7) 

𝐏 = 𝐍Ф′(𝑧) + 𝐍̅Ф̅′(𝑧̅), (8) 

where the matrixes 𝐌 and 𝐍 have the structure: 

𝐌 = (
1 0 0
𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33

), 𝐍 = (
𝐵11 𝐵12 𝐵13

0 1 0
0 0 1

). 

For a bimaterial compound the relations (7), (8) can be written 
in the form: 

𝐯′(𝑘) = 𝐌(𝑘)Ф′(𝑘)(𝑧) + 𝐌̅(𝑘)Ф̅′(𝑘)(𝑧̅), (9) 

𝐏(𝑘) = 𝐍(𝑘)Ф′(𝑘)(𝑧) + 𝐍̅(𝑘)Ф̅′(𝑘)(𝑧)̅, (10) 

where 𝑘 = 1 for the area 1 and 𝑘 = 2 for the area 2; 𝐌(𝑘) and 

𝐍(𝑘) are the matrixes 𝐌 and 𝐍 for the areas 1 and 2, respective-

ly; Ф(𝑘)(𝑧) are arbitrary vector-functions, analytic in the areas 
1 and 2, respectively. 

Next we require that the equality 𝑃(1) = 𝑃(2) holds true on 

the entire axis 𝑥1. Then it follows from (10): 

𝐍(1)Φ′(1)(𝑥1 + 𝑖0) + 𝐍̅(1)Φ′̅̅ ̅(1)(𝑥1 − 𝑖0) = 

= 𝐍(2)Φ′(2)(𝑥1 − 𝑖0) + 𝐍̅(2)Φ′̅̅ ̅(2)(𝑥1 + 𝑖0). (11) 

Here we have used the designation 𝐹(𝑥1 ± 𝑖0) = 𝐹±(𝑥1), 
which means the limit value of a function 𝐹(𝑧) at 𝑥2 → 0 from 
above or below, respectively. 

The equation (11) can be written as: 

𝐁(1)Ф′(1)(𝑥1 + 𝑖0) − 𝐁̅(2)Ф̅′(2)(𝑥1 + 𝑖0) = 

= 𝐁(2)Ф′(2)(𝑥1 − 𝑖0) − 𝐁̅(1)Ф̅′(1)(𝑥1 − 𝑖0). 

The left and right sides of the last equation can be considered 
as the boundary values of the functions: 

𝐍(1)Ф′(1)(𝑧) − 𝐍̅(2)Ф̅′(2)(𝑧) 

and: 

𝐍(2)Ф′(2)(𝑧) − 𝐍̅(1)Ф̅′(1)(𝑧), (12) 

which are analytic in the upper and lower planes, respectively. But 

it means that there is a function 𝛱(𝑧), which is equal to the men-
tioned functions in each half-plane and is analytic in the entire 
plane. 

Assuming 𝛱(𝑧)|𝑧→∞ → 0, on the basis of the Liouville theo-

rem we find that each of the functions (12) is equal to 0 for each 𝑧 
from the corresponding half-plane. Hence, we obtain: 

Ф̅′(2)(𝑧) = (𝐍̅(2))
−1

𝐍(1)Ф′(1)(𝑧) for 𝑥2 > 0, (13) 

Ф̅′(1)(𝑧) = (𝐍̅(1))
−1

𝐍(2)Ф′(2)(𝑧) for 𝑥2 < 0. (14) 

Further we find the jump of the following vector function: 

⟨𝐯′(𝑥1)⟩ = 𝐯′(1)(𝑥1 + 𝑖0) − 𝐯′(1)(𝑥1 − 𝑖0), (15) 

when passing through the interface. Finding from the formula (9): 

𝐯′(𝑘)(𝑥1 ± 𝑖0) = 𝐌(𝑘)Ф′(𝑘)(𝑥1 ± 𝑖0) + 𝐌̅(𝑘)Ф̅′(𝑘)(𝑥1 ∓ 𝑖0) 

and substituting in (15), one gets: 

⟨𝐯′(𝑥1)⟩ = 𝐌(1)Ф′(1)(𝑥1 + 𝑖0) + 𝐌̅(1)Ф̅′(1)(𝑥1 − 𝑖0) − 

−𝐌(2)Ф′(2)(𝑥1 − 𝑖0) − 𝐌̅(2)Ф̅′(2)(𝑥1 + 𝑖0). 

Determining further: 

Ф′(2)(𝑥1 − 𝑖0) = (𝐍(2))
−1

𝐍̅(1)Ф̅′(1)(𝑥1 − 𝑖0) 

from (14) and substituting this expression together with (13), at 

𝑥2 → +0, into the latest formula, leads to: 

⟨𝐯′(𝑥1)⟩ = 𝐃Ф′(1)(𝑥1 + 𝑖0) + 𝐃̅Ф̅′(1)(𝑥1 − 𝑖0), (16) 

where: 𝐃 = 𝐌(1) − 𝐌̅(2)(𝐍̅(2))
−1

𝐍(1). 

Introducing a new vector-function: 

 
   
 

 

1
2

1
2

 ,     0,

,      0

z x
z

z x



 

 





DΦ
W

DΦ
 (17) 

the expression (16) can be written as: 

⟨𝐯′(𝑥1)⟩ = 𝐖+(𝑥1) − 𝐖−(𝑥1). (18) 

From the relations (10) we have: 

𝐏(1)(𝑥1, 0) = 

𝐍(1)Ф′(1)(𝑥1 + 𝑖0) + 𝐍̅(1)Ф̅′(1)(𝑥1 − 𝑖0). (19) 

Taking into account that on the base of (17): 

Ф′(1)(𝑥1 + 𝑖0) = 𝐃−1𝐖(𝑥1 + 𝑖0), 

Ф̅′(1)(𝑥1 − 𝑖0) = −(𝐃̅−1)−1𝐖(𝑥1 − 𝑖0), 

and substituting these relations into (19), leads to: 

𝐏(1)(𝑥1, 0) = 𝐒𝐖+(𝑥1) − 𝐒̅𝐖−(𝑥1), (20) 
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where: 𝐒 = 𝐍(1)𝐃−1. From the last relations it follows that: 

𝐒 = [𝐌(1)(𝐍(1))
−1

− 𝐌̅(2)(𝐍̅(2))
−1

]
−1

. 

The representations (18) and (20) can be used for solving of 
anti-plane problems for bimaterials with cracks at the interface. 
However, we transform further these representations to the form, 
which is more convenient for the solution of the formulated prob-
lem. 

Consider the matrix 𝐋 = [𝐿1, 𝐿2, 𝐿3] and the composition: 

𝐋𝐏(1)(𝑥1, 0) = 𝐋𝐒𝐖+(𝑥1) − 𝐋𝐒̅𝐖−(𝑥1). (21) 

Denoting 𝐘 = [𝑌1, 𝑌2, 𝑌3] = 𝐋𝐒, we introduce the function: 

𝐹(𝑧) = 𝐘𝐖(𝑧). (22) 

Let's assume that 𝐋𝐒̅ = −𝛾𝐋𝐒 and transpose last equation for 
convenience. It gives: 

(𝛾𝐒𝑇 + 𝐒̅𝑇)𝐋𝑇 = 0. (23) 

This is an eigenvalue problem for finding an eigenvalue 𝛾 and an 

eigenvector 𝐋𝑇. The eigenvalues are the roots of the equation: 

det(𝛾𝐒𝑇 + 𝐒̅𝑇) = 0, (24) 

which we denote as 𝛾1, 𝛾2, 𝛾3. Eigenvectors Lj
T =

[𝐿j1, 𝐿j2, 𝐿j3]
T

 (𝑗 = 1,2,3), which correspond to the eigenval-

ues 𝛾j are found from the system (23). 

Denoting: 

𝐘𝑗 = 𝐋𝑗𝐒, (25) 

we obtain from (21): 

𝐋𝑗𝐏(1)(𝑥1, 0) = 𝐘𝑗𝐖+(𝑥1) + 𝛾𝑗𝐘𝑗𝐖−(𝑥1), 

or, taking into account (22), one gets: 

𝐋𝑗𝐏(1)(𝑥1, 0) = 𝐹𝑗
+(𝑥1) + 𝛾𝑗𝐹𝑗

−(𝑥1), (26) 

where: 

𝐹𝑗(𝑧) = 𝐘𝑗𝐖(𝑧). (27) 

Because 𝐅+(𝑥1) = 𝐅−(𝑥1) = 𝐅(𝑥1) for 𝑥1 ∉ (𝑐, 𝑏),  
we obtain from (26) the following condition at infinity: 

𝐹𝑗(𝑧)|
𝑧→∞

=
1

1+𝛾𝑗
(𝐿𝑗1𝜎32

∞ + 𝐿𝑗2𝐸1
∞ + 𝐿𝑗3𝐻1

∞). (28) 

It should be noted that for the considered class of piezoelec-

tric/piezomagnetic materials the matrix 𝐒 has the following struc-
ture: 

𝐒 = (

𝑖 𝑠11 𝑠12 𝑠13

𝑠21 𝑖 𝑠22 𝑖 𝑠23

𝑠31 𝑖 𝑠32 𝑖 𝑠33

), (29) 

where all 𝑠𝑘𝑙  (𝑘, 𝑙 = 1,2,3) are real. In this case the eigenvalues 
of the system (23) are: 

𝛾1 = 1, 𝛾2 =
𝛿+1

𝛿−1
, 𝛾3 =

𝛿−1

𝛿+1
, (30) 

where 𝑡1 = 𝑠21𝑠32𝑠13 + 𝑠12𝑠23𝑠31 − 𝑠31𝑠22𝑠13 − 𝑠12𝑠21𝑠33, 

𝑡2 = 𝑠11𝑠22𝑠33 − 𝑠23𝑠32𝑠11, 𝛿 = √𝑡2/𝑡1.  

The eigenvectors, corresponding to these eigenvalues are 
found from the system (23) and can be presented in the form: 

𝐋1 = [0,1, 𝜔13], 𝐋2 = [1, 𝑖𝜔22, 𝑖𝜔23], 

𝐋3 = [1, 𝑖𝜔32, 𝑖𝜔33], (31) 

where: 𝜔13 = −
𝑠21

𝑠31
, 𝜔22 =

𝜔

𝐷0
(𝑠12𝑠23 − 𝑠13𝑠32), 𝜔23 =

𝜔

𝐷0
(𝑠22𝑠13 − 𝑠23𝑠12), 𝜔32 = −𝜔22, 𝜔33 = −𝜔23, 𝜔 =

𝛾2+1

𝛾2−1
,  𝐷0 = 𝑠22𝑠33 − 𝑠23𝑠32. 

Taking into account the presentation (31) the relation (26) for 

𝑗 = 1,2 can be written in the form: 

𝐸1
(1)(𝑥1, 0) + 𝜔13𝐻1

(1)(𝑥1, 0) = 𝐹1
+(𝑥1) + 𝐹1

−(𝑥1), (32) 

𝜎32
(1)(𝑥1, 0) + 𝑖𝜔22𝐸1

(1)(𝑥1, 0) + 𝑖𝜔23𝐻1
(1)(𝑥1, 0) = 

= 𝐹2
+(𝑥1) + 𝛾2𝐹2

−(𝑥1). (33) 

From the equations (6), (18) and (27) one gets: 

𝑌𝑗1⟨𝑢3′(𝑥1, 0)⟩ + 𝑌𝑗2⟨𝐷2(𝑥1, 0)⟩ + 𝑌𝑗3⟨𝐵2(𝑥1, 0)⟩ = 

= 𝐹𝑗
+(𝑥1) − 𝐹𝑗

−(𝑥1). (34) 

It follows from analysis of (29) and (31) that for the considered 

class of materials 𝑌11 = 0, 𝑌𝑗𝑘  are real and 𝑌1𝑘 , 𝑌𝑗1 are pure 

imaginary. Therefore, introducing the following designations 

𝜂1𝑘 = −𝑖𝑌1𝑘 , 𝜂𝑗1 = −𝑖𝑌𝑗1, 𝜂𝑗𝑘 = 𝑌𝑗𝑘  (𝑗, 𝑘 = 2,3) the Eq. (34) 

for 𝑗 = 1,2 can be written in the form: 

𝑖𝜂12⟨𝐷2(𝑥1, 0)⟩ + 𝑖𝜂13⟨𝐵2(𝑥1, 0)⟩ = 𝐹1
+(𝑥1) − 𝐹1

−(𝑥1), (35) 

𝑖𝜂21⟨𝑢3′(𝑥1, 0)⟩ + 𝜂22⟨𝐷2(𝑥1, 0)⟩ + 𝜂23⟨𝐵2(𝑥1, 0)⟩ = 

= 𝐹2
+(𝑥1) − 𝐹2

−(𝑥1). (36) 

It's important that all 𝜔𝑖𝑗  and 𝜂𝑖𝑗  in Eqs. (32), (33) and (35), 

(36) are real. 

4. FORMULATION AND SOLUTION OF THE PROBLEMS  
OF LINER RELATIONSHIP 

Satisfying the conditions (14) with use of (33), one gets: 

𝐹2
+(𝑥1) + 𝛾

2
𝐹2

−(𝑥1) = 0 for 𝑐 < 𝑥1 < 𝑎. (37) 

Satisfying further the conditions (15) by using (33) and (36), 
we obtain: 

Re[𝐹2
+(𝑥1) + 𝛾2𝐹2

−(𝑥1)] = 0, 

Re[𝐹2
+(𝑥1) − 𝐹2

−(𝑥1)] = 0 for 𝑎 < 𝑥1 < 𝑏. 

The last equation can be written in the form: 

Re𝐹2
±(𝑥1) = 0   for 𝑎 < 𝑥1 < 𝑏.         (38) 

The equations (37), (38) form the combined Dirichlet-Riemann 
boundary value problem. To solve this problem we introduce the 
following substitution: 

𝐹2 (𝑧) = 𝑖Φ2(𝑧)          (39) 

and Eqs. (37), (38) attain the form: 

Φ2
+(𝑥1) + 𝛾

2
Φ2

−(𝑥1) = 0, 𝑐 < 𝑥1 < 𝑎, 

ImΦ2
+(𝑥1) = 0, 𝑎 < 𝑥1 < 𝑏. (40) 
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On the base of (28) and (39) the conditions at infinity can be 
presented in the form:  

Φ2(𝑧)|𝑧→∞ = 𝐸̃2 + 𝐻2 − 𝑖𝜎̃32
(1)

, (41) 

where 𝐸̃2 =
𝜔22

1+𝛾2
𝐸1

∞, 𝐻2 =
𝜔23

1+𝛾2
𝐻1

∞, 𝜎̃32
(2)

=
𝜎32

∞

1+𝛾2
. 

Considering the results of Nahmein and Nuller (1986) and 

Kozinov et al., (2013) the solution of the problem (40) under the 
conditions at infinity (41) has the following form: 

Φ2(𝑧) = 𝑃(𝑧)𝑋1(𝑧) + 𝑄(𝑧)𝑋2(𝑧), (42) 

where: 𝑃(𝑧) = 𝐶1𝑧 + 𝐶2, 𝑄(𝑧) = 𝐷1𝑧 + 𝐷2, 𝑙 = 𝑏 − 𝑐, 

𝑋1(𝑧) =
𝑖𝑒𝑖𝜒(𝑧)

√(𝑧 − 𝑐)(𝑧 − 𝑏)
, 𝑋2(𝑧) =

𝑒𝑖𝜒(𝑧)

√(𝑧 − 𝑐)(𝑧 − 𝑎)
, 

𝜒(𝑧) = 2𝜀2ln
√(𝑏−𝑎)(𝑧−𝑐)

√𝑙(𝑧−𝑎)+√(𝑎−𝑐)(𝑧−𝑏)
, 𝜀2 =

1

2𝜋
ln𝛾2, 

𝐶1 = −𝜎̃32cos𝛽 − (𝐸̃2 + H̃2)sin𝛽, 𝐶2 = −
𝑐+𝑏

2
𝐶1 − 𝛽1𝐷1, 

 𝐷1 = (𝐸̃2 + H̃2)cos𝛽 − 𝜎̃32sin𝛽, 𝐷2 = 𝛽1𝐶1 −
𝑐+𝑎

2
𝐷1. 

In the above relations: 

𝛽 = 𝜀2ln
1−√1−𝜆

1+√1−𝜆
, 𝛽1 = 𝜀2√(𝑎 − 𝑐)(𝑏 − 𝑐), 𝜆 = (𝑏 − 𝑎)/𝑙. 

Using presentation (33) one can write: 

𝜎32

(1)(𝑥1, 0) + 𝑖𝜔22𝐸1

(1)(𝑥1, 0) + 𝑖𝜔23𝐻1

(1)(𝑥1, 0) = 

= 𝑖[Φ2
+(𝑥1) + 𝛾2Φ2

−(𝑥1)]. (43) 

The stress 𝜎32
(1)(𝑥1, 0) can be found from (43), however only 

the combination of 𝐸1
(1)(𝑥1, 0) and 𝐻1

(1)(𝑥1, 0) can be obtained 

as imaginary part of this expression. To find the mentioned values 
separately consider the expressions (32) and (35). 

Satisfying with use of (32) to second and third boundary con-
ditions of (4) one arrives at the following equation: 

𝐹1
+(𝑥1) + 𝐹1

−(𝑥1) = 0 for 𝑐 < 𝑥1 < 𝑎.              (44) 

Due to second and third boundary conditions of (5) the func-

tion 𝐹1(𝑧) is analytic in the whole plane except the segment 
[𝑐, 𝑎]. Taking this fact into account, the solution of Eq. (44) can 
be presented in the form Muskhelishvili (1977): 

𝐹1(𝑧) =
𝑐0+𝑐1𝑧

√(𝑧−𝑐)(𝑧−𝑎)
, 

where 𝑐0 and 𝑐1 are arbitrary constants. Determining these con-

stants from the condition at infinity 𝐹1(𝑧)|𝑧→∞ = 0.5(𝐸1
∞ +

𝜔13𝐻1
∞), which follows from (32), and from the requirement of 

single valuedness of displacements, one gets: 

𝐹1(𝑧) = (𝐸1
∞ + 𝜔13𝐻1

∞)
𝑧−(𝑎+𝑐)/2

2√(𝑧−𝑐)(𝑧−𝑎)
. (45) 

Using the solutions (42), (45) and the presentations (35), (36), 

we get the following system for 𝑢3, 𝐷2, 𝐵2 determination at 

𝑥1 ∈ (𝑐, 𝑎): 

𝑖𝜂21⟨𝑢′3(𝑥1, 0)⟩ + 𝜂22⟨𝐷2(𝑥1, 0)⟩ + 𝜂23⟨𝐵2(𝑥1, 0)⟩ = 

= 𝑖√𝛼 [
𝑃(𝑥1)

√𝑏−𝑥1
− 𝑖

𝑄(𝑥1)

√𝑎−𝑥1
]

exp[𝑖𝜒∗(𝑥1)]

√𝑥1−𝑐
,        (46) 

𝑖𝜂12⟨𝐷2(𝑥1, 0)⟩ + 𝑖𝜂13⟨𝐵2(𝑥1, 0)⟩ = 

= (E1
∞ + m13H1

∞) ⋅
x1−(a+c)/2

√(x1−c)(x1−a)
, (47) 

where: 𝛼 =
(1+𝛾2)2

4𝛾2
,  

 𝜒∗(𝑥1) = 2𝜀2ln [
√(𝑏−𝑎)(𝑥1−𝑐)

√(𝑏−𝑐)(𝑎−𝑥1)+√(𝑎−𝑐)(𝑏−𝑥1)
]. 

From Eq. (46) one gets the following expression for the dis-
placement jump at the segment (𝑐, 𝑎): 

⟨𝑢′3(𝑥1, 0)⟩ =
2√𝛼

𝜂21√𝑥1−𝑐
(

𝑃(𝑥1)cos𝜒∗(𝑥1)

√𝑏−𝑥1
+

𝑄(𝑥1)sin𝜒∗(𝑥1)

√𝑎−𝑥1
)  

Integrating this equation, one arrives at: 

⟨𝑢3(𝑥1, 0)⟩ = ∫ [
2√𝛼

𝜂21√𝑡 − 𝑐
(

𝑃(𝑡)cos𝜒∗(𝑡)

√𝑏 − 𝑡
+

𝑥1

𝑐

 

+
𝑄(𝑡)sin𝜒∗(𝑡)

√𝑎−𝑡
)]  𝑑𝑡 , 𝑐 < 𝑥1 < 𝑎.    (48) 

and also the real part of (46) and imaginary part of (47) lead to the 

following system of equations at the interval 𝑥1 ∈ (𝑐, 𝑎): 

𝜂12⟨𝐷2(𝑥1, 0)⟩ + 𝜂13⟨𝐵2(𝑥1, 0)⟩ = 

= −(𝐸1
∞ + 𝜔13𝐻1

∞) ⋅
𝑥1−(𝑎+𝑐)/2

√(𝑥1−𝑐)(𝑎−𝑥1)
, 

𝜂22⟨𝐷2(𝑥1, 0)⟩ + 𝜂23⟨𝐵2(𝑥1, 0)⟩ = 

= −
𝑃2(𝑥1)

√𝑏−𝑥1
sin𝜒∗ (𝑥1) +

𝑄2(𝑥1)

√𝑎−𝑥1
cos𝜒∗ (𝑥1). (49) 

From this system the expressions for ⟨𝐷2(𝑥1, 0)⟩ and 
⟨𝐵2(𝑥1, 0)⟩ at the interval (𝑐, 𝑎) can be easily found. 

With use of (42), it follows from (33) for 𝑥1 > 𝑏: 

𝜎32
(1)(𝑥1, 0) + 𝑖 (𝜔22𝐸1

(1)(𝑥1, 0) + 𝜔23𝐻1
(1)(𝑥1, 0)) = 

= 𝑖 [
𝑄(𝑥1)

√𝑥1−𝑎
+

𝑖𝑃(𝑥1)

√𝑥1−𝑏
]

(1+𝛾2)exp[𝑖𝜒(𝑥1)]

√𝑥1−𝑐
. 

From this equation the expression for the stress at the crack 
continuation can be written in the form: 

𝜎32
(1)(𝑥1, 0) = −(1 + 𝛾2) (

𝑄(𝑥1)

√𝑥1 − 𝑎
⋅

sin[𝜒(𝑥1)]

√𝑥1 − 𝑐
+ 

+
𝑃(𝑥1)

√𝑥1−𝑏
⋅

cos𝜒(𝑥1)

√𝑥1−𝑐
)   , 𝑥1 > 𝑏. (50) 

For electrical and magnetic fields at the crack continuation 

𝑥1 > 𝑏  one arrives at the following system: 

𝐸1
(1)(𝑥1, 0) + 𝜔13𝐻1

(1)(𝑥1, 0) = 

= (𝐸1
∞ + 𝑚13𝐻1

∞)
𝑥1−(𝑎+𝑐)/2

√(𝑥1−𝑐)(𝑥1−𝑎)
, (51) 

𝜔22𝐸1
(1)(𝑥1, 0) + 𝜔23𝐻1

(1)(𝑥1, 0) = 

=
(1+𝛾2)

√𝑥1−𝑐
⋅ (

𝑄(𝑥1)

√𝑥1−𝑎
cos[𝜒(𝑥1)] −

𝑃(𝑥1)

√𝑥1−𝑏
sin[𝜒(𝑥1)]). (52) 

From the last system the expressions for 𝐸1
(1)(𝑥1, 0)  

and 𝐻1
(1)(𝑥1, 0) at 𝑥1 > 𝑏 can be easily found. 

Consider now the interval (𝑎, 𝑏). Taking into account that  
at this interval (Herrmann and Loboda, 2003): 
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𝑋1
±(𝑥1) =

±𝑒±𝜒0(𝑥1)

√(𝑥1−𝑐)(𝑏−𝑥1)
,  𝑋2

±(𝑥1) =
𝑒±𝜒0(𝑥1)

√(𝑥1−𝑐)(𝑥1−𝑎)
, 

where: 𝜒0(𝑥1) = 2𝜀2tan−1√
(𝑎−𝑐)(𝑏−𝑥1)

(𝑏−𝑐)(𝑥1−𝑎)
 and using (42), one 

can write 

Φ2
±(𝑥1) = ±

𝑒±𝜒0(𝑥1)𝑃 (𝑥1)

√(𝑥1−𝑐)(𝑏−𝑥1)
+

𝑒±𝜒0(𝑥1)𝑄 (𝑥1)

√(𝑥1−𝑐)(𝑥1−𝑎)
. (53) 

Substituting (53) into (36), (39) and taking into account that 
⟨𝐷2(𝑥1, 0)⟩ = 0, ⟨𝐵1(𝑥1, 0)⟩ = 0  at (𝑎, 𝑏) we obtain the fol-
lowing expression for the displacement jump: 

⟨𝑢′3(𝑥1, 0)⟩ =
2

𝜂21√𝑥1 − 𝑐
(

𝑃(𝑥1)

√𝑏 − 𝑥1

cosh𝜒0(𝑥1) + 

+
𝑄(𝑥1)

√𝑥1−𝑎
sinh𝜒0(𝑥1))   , 𝑎 < 𝑥1 < 𝑏. 

Integrating this equation, one arrives at:  

⟨𝑢3(𝑥1, 0)⟩ = ∫ [
2

𝜂21√𝑡 − 𝑐
(

𝑃(𝑡)

√𝑏 − 𝑡
cosh𝜒0(𝑡) +

𝑥1

𝑏

 

+
𝑄(𝑡)

√𝑡−𝑎
sinh𝜒0(𝑡))] 𝑑𝑡, 𝑎 < 𝑥1 < 𝑏. (54) 

The formulas (32), (33) give for 𝑎 < 𝑥1 < 𝑏 the equation (51) 
and the following expression: 

𝜔22𝐸1
(1)(𝑥1, 0) + 𝜔23𝐻1

(1)(𝑥1, 0) = 

=
𝑃(𝑥1)

√(𝑥1 − 𝑐)(𝑏 − 𝑥1)
(𝑒𝜒0(𝑥1) − 𝛾2𝑒−𝜒0(𝑥1)) + 

+
Q(𝑥1)

√(𝑥1−𝑐)(𝑥1−𝑎)
(𝑒𝜒0(𝑥1) + 𝛾2𝑒−𝜒0(𝑥1)). (55) 

From the system (51), (55) the expressions for 𝐸1
(1)(𝑥1, 0) 

and 𝐻1
(1)(𝑥1, 0) at 𝑎 < 𝑥1 < 𝑏 can be easily found. 

5. STRESS, ELECTRIC AND MAGNETIC INTENSITY 
FACTORS 

Analysis of the formulas (47)-(49) and (52), (53) shows that 

the stress 𝜎32
(1)(𝑥1, 0) is singular for 𝑥1 → 𝑏 + 0, 𝐸1

(1)(𝑥1, 0), 

𝐻1
(1)(𝑥1, 0) are singular for 𝑥1 → 𝑎 + 0 and 𝑥1 → 𝑏 − 0, and 

also ⟨𝐷2(𝑥1, 0)⟩, ⟨𝐵2(𝑥1, 0)⟩ are singular for 𝑥1 → 𝑎 − 0. In all 
mentioned cases, a square root singularity takes place. Therefore, 
introducing the following stress and electrical intensity factors 
(IFs): 

𝐾3 = lim
𝑥1→𝑏+0

√2𝜋(𝑥1 − 𝑏)𝜎32(𝑥1, 0), 

𝐾𝐸
𝑎 = lim

𝑥1→𝑎+0
√2𝜋(𝑥1 − 𝑎)𝐸1

(1)(𝑥1, 0), 

𝐾𝐻
𝑎 = lim

𝑥1→𝑎+0
√2𝜋(𝑥1 − 𝑎)𝐻1

(1)(𝑥1, 0), 

𝐾𝐸
𝑏 = lim

𝑥1→𝑏−0
√2𝜋(𝑏 − 𝑥1)𝐸1

(1)(𝑥1, 0), 

𝐾𝐻
𝑏 = lim

𝑥1→𝑏−0
√2𝜋(𝑏 − 𝑥1)𝐻1

(1)(𝑥1, 0),  

𝐾𝐷
𝑎 = lim

𝑥1→𝑎−0
√2𝜋(𝑎 − 𝑥1)⟨𝐷2(𝑥1, 0)⟩, 

𝐾𝐵
𝑎 = lim

𝑥1→𝑎−0
√2𝜋(𝑎 − 𝑥1)⟨𝐵2(𝑥1, 0)⟩ 

and using formulas (50), (51), (55) and (48), (49), one obtains: 

𝐾3 = −
(1+𝛾2)√2𝜋

√𝑏−𝑐
𝑃(𝑏),  

𝐾𝐸
𝑎 + 𝜔13𝐾𝐻

𝑎 = √
𝜋(𝑎−𝑐)

2
(𝐸1

∞ + 𝜔13𝐻1
∞), 

𝜔22𝐾𝐸
𝑎 + 𝜔23𝐾𝐻

𝑎 = √
2𝜋

𝑎−𝑐
(1 + 𝛾2)𝑄(𝑎), (56) 

𝐾𝐸
𝑏 + 𝜔13𝐾𝐻

𝑏 = 0, 

𝜔22𝐾𝐸
𝑏 + 𝜔23𝐾𝐻

𝑏 = √
2𝜋

𝑏−𝑐
(1 − 𝛾2)𝑃(𝑏), (57) 

𝜂12𝐾𝐷
𝑎 + 𝜂13𝐾𝐵

𝑎 = −(𝐸1
∞ + 𝜔13𝐻1

∞)√𝜋(𝑎 − 𝑐)/2,  

𝜂22𝐾𝐷
𝑎 + 𝜂23𝐾𝐵

𝑎 = √2𝜋𝑄(𝑎). (58) 

Substituting the expressions for 𝑃(𝑏) from (42), we obtain the 
following formula: 

𝐾3 = √
𝜋𝑙

2
{−𝜎32

∞𝑐𝑜𝑠𝛽 − (𝜔22𝐸1
∞ + 𝜔23𝐻1

∞)𝑠𝑖𝑛𝛽 − 

−2𝜀2√1 − 𝜆[−𝜎32
∞𝑠𝑖𝑛𝛽 + (𝜔22𝐸1

∞ + 𝜔23𝐻1
∞)𝑐𝑜𝑠𝛽]}.(59) 

The intensity factors 𝐾𝐸
𝑎 and 𝐾𝐻

𝑎, 𝐾𝐸
𝑏 and 𝐾𝐻

𝑏, 𝐾𝐷
𝑎 and 𝐾𝐵

𝑎 
can be found from the systems (56), (57), (58), respectively. 

At the left crack tip 𝑐, an oscillating singularity takes place. 
Such singularity for a conductive interface crack in an anti-plane 
case of a piezoelectric material has been already analyzed in 
papers by Wang et al., (2003) and Wang and Zhong (2002). For 
this reason, we do not pay special attention to this singularity 
here. At the right crack tip, the same oscillating singularity will take 

place only if 𝑎 = 𝑏, i.e. if the permeable part of the crack is ab-
sent. In a more general case, which is studied in this paper, i.e. for 
zone [𝑎, 𝑏] having nonzero length, the previously mentioned 

oscillating singularity at the point 𝑎 = 𝑏 transforms into two 

square root singularities at two different points a and b with inten-
sity factors defining by Eqs. (56)-(59). Similar situation has been 
studied for an antiplane case of a piezoelectric material by 
Lapusta et al., (2017) and also it is similar to the case of a friction-
less contact zone at the interface crack tip for a plane problem 
(Comninou, 1977). 

6. NUMERICAL REALIZATION 

For the numerical analysis the materials with the following 
characteristics (Sih and Song, 2003) were chosen: 

с44
(1)

= 43.7 ⋅ 109[𝑃𝑎], 𝑒15

(1)
= 17[𝐶/𝑚2], 

 𝛼11
(1)

= 15.1 ⋅ 10−9 [
𝐶

𝑉⋅𝑚
],     𝑑11

(1)
= 0,   ℎ15

(1)
= 165 [

𝑁

𝑎⋅𝑚
], 

𝛾
11

(1)
= 180.5 ⋅ 10−6 [

𝑁⋅𝑠2

𝐶2 ],   с44
(2)

= 42.47 ⋅ 109[𝑃𝑎], 

𝑒15

(2)
= −0.48[𝐶/𝑚2],    𝛼11

(2)
= 0.0757 ⋅ 10−9 [

𝐶

𝑉⋅𝑚
], 

𝑑11
(2)

= 0, ℎ15
(2)

= 385 [
𝑁

а⋅𝑚
], 𝛾

11

(2)
= 414.5 ⋅ 10−6 [

𝑁⋅𝑠2

𝐶2 ]  
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and 𝑐 = −0.01m, 𝑏 = 0.01 m, 𝜆 = 0,1. 

 

 

Fig. 2. The displacement jump at the segment [𝑐, 𝑏]  

            for 𝐸1
∞ = 9 ⋅ 103[𝑉/𝑚], 𝐻1

∞ = 0 (a) 

            and 𝐸1
∞ = 0, 𝐻1

∞ = 1.7 ⋅ 104[𝐴/𝑚] (b) 

 

 

Fig. 3. The displacement jump at the segment [𝑐, 𝑏] for different  

           vaues of 𝐻1
∞[𝐴/𝑚] (a) and 𝐸1

∞[𝑉/𝑚](b) 

The crack sliding for 𝐸1
∞ = 9 ⋅ 103[𝑉/𝑚], 𝐻1

∞ = 0 and 
𝐸1

∞ = 0, 𝐻1
∞ = 1.7 ⋅ 104[𝐴/𝑚] and different values of 

𝜎32
∞[𝑃𝑎] are presented in Figures 2a and 2b, respectively. It can 

be seen from these Figures that even for zero mechanical loading 

𝜎32
∞  the crack faces slide with respect to each other due to non-

zero electric (Fig. 2a) or magnetic (Fig. 2b) fields.  

The crack sliding for 𝜎32
∞ = 2 ⋅ 106[𝑃𝑎] and different values 

of 𝐻1
∞[𝐴/𝑚] and 𝐸1

∞[𝑉/𝑚] are presented in Figs. 3a and 3b, 
respectively. 

It should be mention that the oscillating singularity takes place 
at the left crack tip. However for the presented model of the crack 
sliding the oscillating singularity is physically admissible because 
the faces can slide relative to each other in any direction. One of 
the appearances the negative crack faces jump (analogy of the 
oscillating singularity) can be seen for the lower lines at the left 
crack tip in Fig. 3a.  

 
Fig. 4. The variation of the electric 𝐸1

(1)(𝑥1, 0) (a) and magnetic 

           𝐻1
(1)(𝑥1, 0) (b) fields along the electro-magnetically permeable 

           crack region (𝑎, 𝑏) 

The variation of the electric 𝐸1
(1)(𝑥1, 0) and magnetic 

𝐻1
(1)(𝑥1, 0) fields along the electro-magnetically permeable crack 

region (𝑎, 𝑏) are shown in Figs. 4a and 4b, respectively, for 

𝜆 = 0.1, 𝜎32
∞ = 106[𝑃𝑎], E1

∞ = 0 and different values of 

𝐻1
∞[𝐴/𝑚]. It is seen from these figures that 𝐸1

(1)(𝑥1, 0) and 

𝐻1
(1)(𝑥1, 0) is almost equal to 0 for 𝐸1

∞ = 0 and 𝐻1
∞ = 0, but 

they become rather large for a nonzero external magnetic field. 

Besides, 𝐸1
(1)(𝑥1, 0) and 𝐻1

(1)(𝑥1, 0) are singular at both ends 

of the segment [𝑎, 𝑏]. 
Consider further the behavior of mechanic, electric and mag-

netic values at the crack continuation. Fig. 5 show the stress 

𝜎32
(1)(𝑥1, 0) variations in this zone for 𝐸1

∞ = 9 ⋅ 103[𝑉/𝑚], 
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𝐻1
∞ = 0 (a) and 𝐸1

∞ = 0, 𝐻1
∞ = 1.7 ⋅ 104[𝐴/𝑚] (b) and dif-

ferent values of 𝜎32
∞[𝑃𝑎]. 

 

Fig. 5. The stress 𝜎32
(1)(𝑥1, 0) variations on (𝑎, 𝑏)  

            for 𝐸1
∞ = 9 ⋅ 103[𝑉/𝑚], 𝐻1

∞ = 0 (a) and 𝐸1
∞ = 0,  

            𝐻1
∞ = 1.7 ⋅ 104[𝐴/𝑚] (b) and different values of 𝜎32

∞  

 

 

Fig. 6. The variation of the electric 𝐸1
(1)(𝑥1, 0) (a) and magnetic 

           𝐻1
(1)(𝑥1, 0) (b) fields along the crack continuation 𝑏 > 0  

            for 𝜆 = 0.1, 𝜎32
∞ = 106[𝑃𝑎], 𝐸1

∞ = 0 and different values  

            of 𝐻1
∞ 

The variation of the electric 𝐸1
(1)(𝑥1, 0) and magnetic 

𝐻1
(1)(𝑥1, 0) fields along the crack continuation 𝑏 > 0 are shown 

in Figs. 6a and 6b, respectively, for 𝜆 = 0.1, 𝜎32
∞ = 106[𝑃𝑎], 

𝐸1
∞ = 0 and different values of 𝐻1

∞[𝐴/𝑚]. It is seen from these 

figures that 𝐻1
(1)(𝑥1, 0) is almost equal to 0 for 𝐸1

∞ = 0 and 

𝐻1
∞ = 0, but 𝐸1

(1)(𝑥1, 0) decreases on modulus while 

𝐻1
(1)(𝑥1, 0) increases with growing of 𝐻1

∞. 

Variations of the normalized stress intensity factor (SIF) 𝐾3 is 

shown in Tables 1 for 𝜎32
∞ = 106[𝑃𝑎], 𝐸1

∞ = 0 and different 
values of 𝜆 and 𝐻1

∞. It can be seen that for each 𝜆 the decreasing 

of magnetic field 𝐻1
∞ (growing it on modules) leads to decreasing 

of the SIF 𝐾3 and even to turning it into zero for 𝜆 = 0.1 and 
𝐻1

∞ = −18742[𝐴/𝑚]. It means that electric and magnetic 
fields can be used for governing of the SIF and decreasing the 
probability of fracture. 

Tab. 1. Variations of the normalized stress intensity factor (SIF) 𝐾3 

  

H  
0.1 0.2 0.3 

0 177676. 181031. 181731. 

-5000 130277. 150716. 160997. 

-10000 82877.8 120401. 140263. 

-15000 35478.5 90086. 119529. 

-18742.6 0.0 67394.7 104009. 

To control the obtained analytical solution the numerical  
experiment has been performed. The finite sized body composed 
of two piezoelectric parallelepipeds −30𝑚𝑚 ≤ 𝑥1 ≤ 30𝑚𝑚, 

0 ≤ 𝑥2 ≤ 20𝑚𝑚, 0 ≤ 𝑥3 ≤ 180𝑚𝑚 and −30𝑚𝑚 ≤ 𝑥1 ≤
30𝑚𝑚, −20𝑚𝑚 ≤ 𝑥2 ≤ 0, 0 ≤ 𝑥3 ≤ 180𝑚𝑚 with the 
same piezoelectric material parameters as above is considered.  
A crack in the region −10𝑚𝑚 ≤ 𝑥1 ≤ 10𝑚𝑚, 𝑥2 = 0, 

0 ≤ 𝑥3 ≤ 180𝑚𝑚 is situated. It is assumed that for 

−10𝑚𝑚 ≤ 𝑥1 ≤ 5𝑚𝑚 the faces of the crack are conductive 
while in the remaining part they are permeable. The lower bound-

ary 𝑥2 = −20𝑚𝑚 was fixed while to the upper one 𝑥2 =

20𝑚𝑚 the uniformly distributed shear stress 𝜎32
(1)(𝑥1, 20) =

10𝑀𝑃𝑎 was applied. The finite element ABAQUS code was used 
for the solution of this problem. The mesh grinding at the crack 
tips was done. As a result of this solution the maximum value of 
the crack sliding at the point 𝑥1 = 𝑥2 = 0, 𝑥3 = 90𝑚𝑚 turned 

out to be 4.93 × 10−4𝑚𝑚. Analytical analysis performing for the 
same loading, materials, conducting and permeable zone lengths 
gave the result 4.61 × 10−4 mm for the crack sliding at the 
same point. Taking into account that we compared the results for 
finite size domain (with a crack 3 times shorter than the width of 
the compound) and for infinite domain, the obtained error in 
6.51% can be considered as quite satisfactory. Therefore, this 
numerical test confirms the validity of the analytical approach 
developed in this paper.  

7. CONCLUSIONS 

An interface crack 𝑐 ≤ 𝑥1 ≤ 𝑏, 𝑥2 = 0 between two semi-

infinite piezoelectric/piezomagnetic spaces 𝑥2 > 0 and 𝑥2 < 0 
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under out-of-plane mechanical load and in-plane electrical and 
magnetic fields parallel to the crack faces is considered. The part 
(𝑐, 𝑎) of the crack (𝑎 ≤ 𝑏) faces is assumed to be electrically 
conductive and having uniform distribution of magnetic potential 
on it faces. The remaining part of the crack faces is electrically 
and magnetically permeable. Such situation can occur because of 
a soft multi-layered electrode exfoliation, made of ferromagnetic 
material, situated at the interval [𝑐, 𝑎], with additional exfoliation 

of the interval [𝑎, 𝑏] of the non-electroded interface. The consid-
ered problem involves the mixed electric and magnetic conditions 
at the crack faces and is much more complicated than the tradi-
tional formulation of the interface crack problem for a conductive 
crack. 

The presentations (32), (33) and (35), (36) were formulated for 
mechanical, electrical, and magnetic factors via a functions which 
are analytic in the whole plane except the crack region. With these 
representations the combined Dirichlet-Riemann boundary value 
problem (37), (38) and Hilbert problem (44) are formulated and 
solved in the form of relatively simple analytical formulas for any 

position of the point a. Due to this solution analytical expressions 
for stress, electric and magnetic fields as well as for the crack 
faces displacement jump are presented. The singularities of the 

obtained solution at the points a and b are investigated and the 
formulas for the corresponding intensity factors are presented. In 
Figures 2-6 the variations of the mechanic, electric and magnetic 
quantities along the appropriate parts of the interface are illustrat-
ed for certain materials combinations and for certain positions of 

the point a. The stress intensity factor corresponding to the results 
of Figs. 2-6 are given in Tab. 1.  

The results of analytical and numerical analysis showed that 
both electric and magnetic fields essentially influence the mechan-
ical, electrical and magnetic fields at the crack tip. It follows from 
this results that the mentioned fields can be used for decreasing 
of the stress intensity factor and consequently for the decreasing 
of failure dangerous of electronic devices working under the action 
of the mention fields. 
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