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Abstract: The anti-plane shear deformation problem of a half-space coated by a soft or a stiff thin layer is considered. The two-term  
asymptotic analysis is developed motivated by the scaling for the displacement and stress components obtained from the exact solution  
of a model problem for a shear harmonic load. It is shown that for a rather high contrast in stiffness of the layer and the half-space Winkler-
type behaviour appears for a relatively soft coating, while for a relatively stiff one, the equations of plate shear are valid. For low contrast, 
an alternative approximation is suggested based on the reduced continuity conditions and the fact that the applied load may be transmitted 
to the interface. In case of a stiff layer, a simpler problem for a homogeneous half-space with effective boundary condition is also formulat-
ed, modelling the effect of the coating, while for a relatively soft layer a uniformly valid approximate formula is introduced. 
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1. INTRODUCTION 

Coated structures find numerous applications in modern engi-
neering and technology, including, in particular biological sciences 
and structural mechanics, see e.g. Li et al. (2014), Bose (2017) 
and Pawlowski (2008). The presence of a thin coating layer usual-
ly motivates an asymptotic approach relying on a small geometric 
parameter, see e.g. Ahmad et al. (2011), Kaplunov and Pri-
kazchikov (2017), and Yang (2006). Often, in addition, there is a 
contrast in material parameters of the coating and the half-space, 
hence, the problem could require multiparametric analysis, similar 
to that presented recently by Kaplunov et al. (2016) and Kaplunov 
et al. (2017) for vibrations of strongly inhomogeneous structures. 
In case of a coated half-space, high contrast in stiffness between 
the layer and the substrate implies a second small material pa-
rameter, along with the two limiting cases, corresponding to a 
relatively soft and a relatively stiff coating. The importance of 
these two cases was appreciated within the framework of contact 
problems, see e.g. Alexandrov (2010). A two-parametric asymp-
totic analysis of equilibrium of a 3D half-space coated by a soft 
layer, allowing a variety of scenarios depending on the relation 
between the relative thickness and stiffness, has been carried out 
by Kaplunov et al. (2018). 

In this paper, these results are extended to a problem of anti-
plane shear deformation of a coated elastic half-space. Focusing 
on an anti-plane shear is of interest within linear and nonlinear 
solid mechanics theories, since it allows establishing a mathemat-
ically simpler analysis without loss of physical interpretation, see 
e.g. Horgan (1995). First, we derive the exact solution for anti-
plane deformations caused by a harmonic shear load. Then, 
considering the relative thickness of the layer to be small, and 
supposing a contrast in stiffness of the layer and the half-space, 
we develop a two-parametric asymptotic analysis for an arbitrary 
shear load. While doing it, we rely on the exact solution in order to 

motivate the original scaling of the displacement and stresses, 
required for the asymptotic integration technique, see for more 
detail Aghalovyan (2015), Argatov and Mishuris (2016), and Gold-
enveizer et al. (1993). A classification following from the relation 
between the two asymptotic parameters is established. The re-
sults for the anti-plane displacement and stress components are 
obtained. In particular, we focus on the relation between the shear 
load and the displacement, which results in Winkler-type behav-
iour for a rather soft coating and involves the equations of plate 
shear in case of a soft layer. The derived asymptotic results are 
compared numerically with the exact solution for shear harmonic 
load. 

2. STATEMENT OF THE PROBLEM 

Consider an anti-plane problem of equilibrium for a homoge-
neous linearly elastic isotropic half-space coated by a thin iso-
tropic layer of thickness ℎ, subject to action of a shear force 

𝑃 = 𝑃(𝑥1) at the surface of the coating (𝑥3 = 0), see Fig. 1.  
 

 
Fig. 1. Problem statement 

Throughout the paper, we assume the following: 

 the thickness of the layer ℎ is small compared to a typical 
length scale 𝑎 related to the load variation along the 

coordinate 𝑥1; 
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 there is a contrast in stiffness of the layer and the half-space; 
In view of these assumptions, we introduce a small 

geometrical parameter: 

𝜀 =
ℎ

𝑎
≪ 1, (1) 

and a material parameter: 

𝜇 = {

𝜇−

𝜇+ ,  𝜇− ≤ 𝜇+

𝜇+

𝜇− ,  𝜇+ ≤ 𝜇−
≲ 1, (2) 

where: 𝜇± – shear moduli, with “−” and “+” denoting the layer 
and the half-space, respectively. The first line in (2) corresponds 
to the case of the soft layer, and the second line is for a relatively 
stiff coating. Note, that the non-nontrast case (𝜇 = 1) is also 
included in consideration. The parameters above may be related 
to each other as: 

𝜇 = 𝜀𝛼 ,  𝛼 ≥ 0, (3) 

where for a fixed 𝜀, 𝛼 represents the level of the contrast, i.e. with 
an increase of 𝛼, the contrast in stiffness of the layer and the half-
space becomes more pronounced. 

In this paper, we concentrate on the anti-plane problem as-

suming, therefore, that displacements 𝑢1
± = 𝑢3

± = 0 and 𝑢2
± do 

not depend on 𝑥2. Hence, defining dimensionless variables as: 

𝜉1 =
𝑥1

𝑎
, (4) 

𝜉3
− =

𝑥3

ℎ
,  0 ≤ 𝑥3 ≤ ℎ,  𝜉3

+ =
𝑥3−ℎ

𝑎
,  𝑥3 ≥ ℎ, (5) 

the governing equations for the layer and the half-space are writ-
ten as: 

ℎ

𝑎
𝜎12,1

− + 𝜎23,3
− = 0,  𝜎12

− =
𝜇−

𝑎
𝑢2,1

− ,  𝜎23
− =

𝜇−

ℎ
𝑢2,3

− ,  (6) 

𝜎12,1
+ + 𝜎23,3

+ = 0,  𝜎12
+ =

𝜇+

𝑎
𝑢2,1

+ ,  𝜎23
+ =

𝜇+

𝑎
𝑢2,3

+ ,  (7) 

where: 𝜎12
±  and 𝜎23

±  – Cauchy stresses, and comma indicates 

differentiation. 
The boundary condition, modelling shear load at the surface 

of the layer, and continuity conditions at the interface take the 
form 

𝜎23
− = −𝑃,  𝜉3

− = 0,  (8) 

𝑢2
− = 𝑢2

+,  𝜎23
− = 𝜎23

+ ,  𝜉3
− = 1.  (9) 

We also impose the decay condition for the displacement, i.e. 
𝑢2

+ → 0 as 𝜉3
+ → ∞. 

3. PROBLEM FOR A HARMONIC SHEAR LOAD 

We begin the analysis with investigation of a model problem 
for a shear harmonic force 

𝑃 = 𝐴𝜇− sin 𝜉1,  (10) 

where: 𝐴 – constant amplitude, see Fig. 2. 

 
Fig. 2. Problem for a harmonic surface load 

In this case, the displacemens may be sought as: 

𝑢2
± = 𝑓±(𝜉3

±) sin 𝜉1. (11) 

Substituting (11) into governing equations (6) and (7), we have: 

𝑓−′′(𝜉3
−) − 𝜀2𝑓−(𝜉3

−) = 0,  𝑓+′′
(𝜉3

+) − 𝑓+(𝜉3
+) = 0. (12) 

Taking into account boundary and continuity conditions (8) and 
(9), respectively, the solution of (12) decaying at infinity is written 
as: 

 𝑓−(𝜉3
−) = 𝑐1𝑒𝜀𝜉3

−
+ 𝑐2𝑒−𝜀𝜉3

−
,  𝑓+(𝜉3

+) = 𝑐3𝑒−𝜉3
+

,  (13) 

where: 

𝑐𝑖 =
𝑁𝑖

𝐷
,  𝑖 = 1,2,3, (14) 

with: 

𝑁1 = 𝐴ℎ(𝜇− − 𝜇+),  𝑁2 = 𝐴ℎ𝑒2𝜀(𝜇− + 𝜇+), (15) 

𝑁3 = 2𝐴ℎ𝑒𝜀𝜇−, (16) 

and: 

𝐷 = 𝜀[𝜇−(𝑒2𝜀 − 1) + 𝜇+(𝑒2𝜀 + 1)]. (17) 

Substituting the latter into relations (6) and (7), the stress 
components are found in the form: 

𝜎12
± =

𝜇±

𝑎
𝑓±(𝜉3

±) cos 𝜉1 ,  𝜎23
+ = −

𝜇+

𝑎
𝑓+(𝜉3

+) sin 𝜉1, (18) 

𝜎23
− =

𝜇−

ℎ
𝜀(𝑐1𝑒𝜀𝜉3

−
− 𝑐2𝑒−𝜀𝜉3

−
) sin 𝜉1. (19) 

Then, using (1) and (2), together with (3), we deduce the 
leading order asymptotic behaviour of the displacement and 
stress components obtained above, in terms of a small parameter 
𝜀, for a relatively soft and stiff layer, see Table 1. 

Tab. 1. Asymptotic behaviour of displacements and stresses 

 Soft layer Stiff layer 

𝜶 ≥ 𝟏 𝟎 ≤ 𝜶 ≤ 𝟏 𝜶 ≥ 𝟏 𝟎 ≤ 𝜶 ≤ 𝟏 

𝑢2
− 1 𝜀𝛼−1 𝜀−2 𝜀−𝛼−1 

𝜎12
−  𝜀 𝜀𝛼 𝜀−1 𝜀−𝛼 

𝜎23
−  1 1 1 1 

𝑢2
+ 𝜀𝛼−1 𝜀𝛼−1 𝜀−2 𝜀−𝛼−1 

𝜎12
+  1 1 𝜀𝛼−1 1 

𝜎23
+  1 1 𝜀𝛼−1 1 

Now, we study in more detail the relation between displace-
ment 𝑢2

− at the surface of the coating (𝜉3
− = 0) and prescribed 

load 𝑃 by introducing the coefficient: 

𝑘 =
𝑃

𝑢2
−|

𝜉3
−=0

. (20) 

Note, that this coefficient is constant only for the considered si-
nusoidal load. In general, the relation between displacement 
𝑢2

−|𝜉3
−=0 and load 𝑃 is a function of 𝜉1. In case of a shear har-

monic load (10), it is given by: 

𝑘 =
𝐴𝜇−𝐷

𝑁1+𝑁2
,  (21) 

following from (11), (13)1 and (14). The leading order estimates  
of the coefficient 𝑘 depending on the parameter 𝛼 are presented 
in Table 2. 
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Tab. 2. Leading order of the coefficient 𝑘 for a harmonic shear force  

 𝒌 

Soft layer Stiff layer 

𝛼 > 1 
𝜇−

ℎ
 

𝜇−ℎ

𝑎2
 

𝛼 = 1 
𝜇−𝜇+

ℎ𝜇+ + 𝑎𝜇− 
2𝜇−ℎ

𝑎2
 

0 ≤ 𝛼 < 1 
𝜇+

𝑎
 

𝜇+

𝑎
 

Therefore, at 𝛼 > 1, the coefficient 𝑘 does not depend on the 

material parameter of the half-space 𝜇+, meaning that the defor-
mation of the substrate is neglected. In general, in case of a rather 
soft layer, it may be described as a Winkler-type behaviour, simi-
larily to Kaplunov et al. (2018), while for a stiff layer, taking into 
account the term 𝑎2, it indicates that the plate shear equation 
may be expected as a relation between 𝑢2

− and 𝑃. In the range 

0 ≤ 𝛼 < 1, the relation is entirely affected by the presence of the 
half-space, i.e. the layer may no longer be separated, and the 
original problem for a coated solid should be considered. The 
case 𝛼 = 1 seems to be a transition point, since, for instance, for 
a soft layer, 𝑘 depends on both the material parameters of the 
layer and the half-space, but, at the same time, according to 

assumptions (1), (2) and the relation (3), 
ℎ

𝑎
=

𝜇−

𝜇+ = 𝜀, therefore, it 

may also be written as 𝑘 =
𝜇−

2ℎ
. 

4. ASYMPTOTIC ANALYSIS 

In this section we develop a more general procedure for an 
arbitrary load acting on the surface of the layer, adopting the 
method of direct asymptotic integration of the equations of elastici-
ty. Note that the scaling is motivated by the asymptotic orders 
in Table 1, obtained for a harmonic shear force. 

4.1. Soft layer, 𝜶 ≥ 𝟏  

First, we scale the displacement and stress components ac-
cording to the first column of the Table 1, having for a relatively 
soft layer: 

𝑢2
− = ℎ𝑢2

∗−,  𝜎12
− = 𝜇−𝜀𝜎12

∗−,  𝜎23
− = 𝜇−𝜎23

∗−, (22) 

where the quantities with the asterisk are assumed to be of the 
same asymptotic order. Hence, governing equations (6) become: 

𝜀2𝜎12,1
∗− + 𝜎23,3

∗− = 0,  𝜎12
∗− = 𝑢2,1

∗− ,  𝜎23
∗− = 𝑢2,3

∗− .  (23) 

Similarly, substituting the scaling for the half-space given by: 

𝑢2
+ = ℎ𝜀𝛼−1𝑢2

∗+,  𝜎12
+ = 𝜇−𝜎12

∗+,  𝜎23
+ = 𝜇−𝜎23

∗+,  (24) 

into equations (7), we get: 

𝜎12,1
∗+ + 𝜎23,3

∗+ = 0,  𝜎12
∗+ = 𝑢2,1

∗+ ,  𝜎23
∗+ = 𝑢2,3

∗+ .  (25) 

Here and below, the applied load is scaled as:  

𝑃 = 𝜇−𝑝∗.  (26) 

In what follows, boundary and continuity conditions (8) and (9), 
respectively, may be rewritten as:  

𝜎23
∗− = −𝑝∗,  𝜉3

− = 0,  (27) 

𝑢2
∗− = 𝜀𝛼−1𝑢2

∗+,  𝜎23
∗− = 𝜎23

∗+,  𝜉3
− = 1. (28) 

Next, we expand the displacements and stresses of the layer 
in asymptotic series: 

(

𝑢2
∗−

𝜎12
∗−

𝜎23
∗−

) = (

𝑢2
−(0)

𝜎12
−(0)

𝜎23
−(0)

) + ⋯  .  (29) 

Hence, at leading order we have from (23): 

𝜎23,3
−(0)

= 0,  𝜎12
−(0)

= 𝑢2,1
−(0)

,  𝜎23
−(0)

= 𝑢2,3
−(0)

,  (30) 

subject to boundary conditions at 𝜉3
− = 0 

𝜎23
−(0)

= −𝑝∗.   (31) 

In view of (28)1, 𝑢2
∗− ≫ 𝑢2

∗+ at 𝛼 > 1 while 𝑢2
∗−~𝑢2

∗+ 

at 𝛼 = 1, therefore, the leading order continuity conditions 
at 𝜉3

− = 1 become: 

𝑢2
−(0)

= 0,  𝛼 > 1,  𝑢2
−(0)

= 𝑢2
+(0)

,  𝛼 = 1,    (32) 

𝜎23
−(0)

= 𝜎23
+(0)

. (33) 

From (30)1 and satisfying (31), we obtain: 

𝜎23
−(0)

= −𝑝∗.  (34) 

Then, using (30)3 together with (32), we deduce: 

𝑢2
−(0)

= 𝑝∗(1 − 𝜉3
−),  𝛼 > 1,  (35) 

𝑢2
−(0)

= 𝑝∗(1 − 𝜉3
−) + 𝑢2

+(0)
|

𝜉3
−=1

,  𝛼 = 1.  (36) 

Therefore, as it was discussed above, at 𝜉3
− = 0, the relation 

between displacement and applied load at 𝛼 > 1 is not affected 
by the presence of the substrate, which may be described as 
Winkler-type behaviour, while for 𝛼 = 1 the reaction of the half-

space is involved. The same happens for shear stress 𝜎12
−(0)

, 

for which we have from (30)2, (35) and (36): 

𝜎12
−(0)

=
𝜕𝑝∗

𝜕𝜉1
(1 − 𝜉3

−),  𝛼 > 1,  (37) 

𝜎12
−(0)

=
𝜕𝑝∗

𝜕𝜉1
(1 − 𝜉3

−) +
𝜕𝑢2

+(0)

𝜕𝜉1
|

𝜉3
−=1

,  𝛼 = 1.   (38) 

4.2. Soft layer, 𝟎 ≤ 𝜶 < 𝟏 

Scaling for the layer now takes the form: 

𝑢2
− = ℎ𝜀𝛼−1𝑢2

∗−,  𝜎12
− = 𝜇−𝜀𝛼𝜎12

∗−,  𝜎23
− = 𝜇−𝜎23

∗−,  (39) 

leading to: 

𝜀𝛼+1𝜎12,1
∗− + 𝜎23,3

∗− = 0,  (40) 

𝜎12
∗− = 𝑢2,1

∗− ,  𝜀1−𝛼𝜎23
∗− = 𝑢2,3

∗− .  (41) 

Scaling and equations for the half-space are taken as (24) and 
(25), respectively, with boundary condition (27), whereas the 
continuity conditions become:  

𝑢2
∗− = 𝑢2

∗+,  𝜎23
∗− = 𝜎23

∗+,  𝜉3
− = 1. (42) 
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At leading order, the equations for the layer are: 

𝜎23,3
−(0)

= 0,  𝜎12
−(0)

= 𝑢2,1
−(0)

,  𝑢2,3
−(0)

= 0,  (43) 

subject to boundary condition (31) and the following continuity con-
ditions: 

𝑢2
−(0)

= 𝑢2
+(0)

,  𝜎23
−(0)

= 𝜎23
+(0)

,  𝜉3
− = 1.     (44) 

As above, quantity  𝜎23
−(0)

 is expressed as (34). Then, (43)3 

and (44)1 imply: 

𝑢2
−(0)

= 𝑢2
+(0)

|
𝜉3

−=1
.  (45) 

Finally, (43)2 yields: 

𝜎12
−(0)

=
𝜕𝑢2

+(0)

𝜕𝜉1
|

𝜉3
−=1

.  (46) 

Hence, shear displacement and stress depend only on the de-
formation of the substrate.  

4.3. Stiff layer, 𝜶 ≥ 𝟏  

For a stiff layer, we scale the displacements and stresses ac-
cording to the third column in Table 1: 

𝑢2
− = ℎ𝜀−2𝑢2

∗−,  𝜎12
− = 𝜇−𝜀−1𝜎12

∗−,  𝜎23
− = 𝜇−𝜎23

∗−, (47) 

which implies: 

𝜎12,1
∗− + 𝜎23,3

∗− = 0,  𝜎12
∗− = 𝑢2,1

∗− ,  𝜀2𝜎23
∗− = 𝑢2,3

∗− .  (48) 

Scaling for the half-space is taken as: 

𝑢2
+ = ℎ𝜀−2𝑢2

∗+, (49) 

𝜎12
+ = 𝜇−𝜀𝛼−1𝜎12

∗+,  𝜎23
+ = 𝜇−𝜀𝛼−1𝜎23

∗+,  (50) 

which, substituted into (7), gives (25). Boundary condition, again, 
is expressed as (27), whereas the continuity conditions are: 

𝑢2
∗− = 𝑢2

∗+,  𝜎23
∗− = 𝜀𝛼−1𝜎23

∗+,  𝜉3
− = 1. (51) 

At leading order for the layer we have: 

𝜎12,1
−(0)

+ 𝜎23,3
−(0)

= 0,  𝜎12
−(0)

= 𝑢2,1
−(0)

,  𝑢2,3
−(0)

= 0,  (52) 

with boundary condition (31). Taking into account (51)2, i.e. 
𝜎23

∗− ≫ 𝜎23
∗+ at 𝛼 > 1, and 𝜎23

∗−~𝜎23
∗+ at 𝛼 = 1, the continuity 

conditions at  𝜉3
− = 1 are: 

𝑢2
−(0)

= 𝑢2
+(0)

, (53) 

𝜎23
−(0)

= 0,  𝛼 > 1,   𝜎23
−(0)

= 𝜎23
+(0)

,  𝛼 = 1. (54) 

From (52)3 we have: 

𝑢2
−(0)

= 𝑉,  (55) 

where: 𝑉 = 𝑉(𝜉1), i.e. displacement 𝑢2
−(0)

 is constant across 

the thickness of the layer, giving the function 𝑉, which may be 
denoted as a shear of the coating. Next, we deduce from (52)2:  

𝜎12
−(0)

=
𝜕𝑉

𝜕𝜉1
.  (56) 

Using (52)1 and satisfying boundary condition (31), we obtain: 

𝜎23
−(0)

= −
𝜕2𝑉

𝜕𝜉1
2 𝜉3

− − 𝑝∗.  (57) 

Finally, from continuity conditions (54), we have: 

𝜕2𝑉

𝜕𝜉1
2 = −𝑝∗,  𝛼 > 1,  (58) 

𝜕2𝑉

𝜕𝜉1
2 = −𝑝∗ − 𝜎23

+(0)
|

𝜉3
−=1

,  𝛼 = 1,    (59) 

which are in fact the equations of plate shear, with the substrate 
reaction equal to 0 at 𝛼 > 1. 

4.4. Stiff layer, 𝟎 ≤ 𝜶 < 𝟏 

In this case, the scaling for the layer is given by: 

𝑢2
− = ℎ𝜀−𝛼−1𝑢2

∗−,  𝜎12
− = 𝜇−𝜀−𝛼𝜎12

∗−,  𝜎23
− = 𝜇−𝜎23

∗−, (60) 

with the governing equations: 

𝜀1−𝛼𝜎12,1
∗− + 𝜎23,3

∗− = 0, (61) 

𝜎12
∗− = 𝑢2,1

∗− ,  𝜀𝛼+1𝜎23
∗− = 𝑢2,3

∗− .  (62) 

Scaling for the half-space is: 

𝑢2
+ = ℎ𝜀−𝛼−1𝑢2

∗+,  𝜎12
+ = 𝜇−𝜎12

∗+,  𝜎23
+ = 𝜇−𝜎23

∗+,  (63) 

with equations (25). Boundary and continuity conditions are taken 
as (27) and (42).  

The leading order equations and results are the same as in 
Subsection 4.2.  

5. NUMERICAL COMPARISON OF THE ASYMPTOTIC 
RESULTS WITH THE EXACT SOLUTION 

In this section the derived asymptotic results are tested by 
comparison with the exact solution of a problem for harmonic load 
(10) applied at the surface of the layer 𝑥3 = 0. In doing so, we 
study the coefficient 𝑘 introduced in (20). 

For the exact solution, coefficient 𝑘 follows from (21). 
For the asymptotic results, in case of a soft layer, we use rela-

tions (35) and (36) for 𝛼 > 1 and 𝛼 = 1, respectively, and (45) 

for 0 ≤ 𝛼 < 1. Shear stress 𝜎23
−(0)

 is uniform across the thick-

ness of the layer, see (34), and may be transmitted to the inter-
face, therefore, the value of the interfacial displacement 

𝑢2
+(0)

|
𝜉3

−=1
, due to continuity conditions (33) and (42)2, may be 

found from a simpler problem for a homogeneous half-space with 
𝜎23

+ = −𝑃. Its solution for harmonic load (10) is presented as 
Case 1 in Appendix. 

In order to derive 𝑘 for a hard layer, we solve plate shear 

equation (58) for 𝛼 > 1 and (59) for 𝛼 = 1. For the latter case, 
taking into account continuity condition (53), the deflection of the 
layer, see (55), may be again derived from a problem for a half-

space with  𝜎23
+ = −𝑃 −

𝜇+

𝑎

𝜕2𝑢2
+

𝜕𝜉1
2 |

𝜉3
+=0

 (Case 2 in Appendix for 

harmonic load). The case 0 ≤ 𝛼 < 1 is identical to one for a soft 
layer. 

As a result, asymptotic formulae for the coefficient 𝑘 coincide 
with leading order exact solution presented in Table 2.  

As an illustration, we plot the dimensionless coefficient 

𝑘∗ =
ℎ

𝜇− 𝑘,  (64) 

in Fig. 3 and 4 for a soft and a stiff layer, respectively, with 
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𝛼 = log𝜀 𝜇, Poisson’s ratios 𝜈− = 0.25 and 𝜈+ = 0.3, and 
𝜀 = 0.1. Here, blue solid lines correspond to the exact solution, 
dashed and dot-dashed lines display the asymptotic approxima-
tions at 𝛼 > 1 (formula (35) in case of a soft coating and (58) for 
a stiff one) and 0 ≤ 𝛼 < 1 (formula (45) valid for both soft and 
stiff layers), respectively, which have limited ranges of applicabil-
ity. For a soft coating, case 𝛼 = 1 gives two-term approximation 
(36), which appears to be uniformly valid over the whole range of 
parameter 𝛼, and the associated curve, denoted by red dots in 
Fig. 3, is very close to the exact solution. As for a stiff layer, ap-
proximation at 𝛼 = 1, represented by formula (59), is a limiting 
case, displayed by the blue dot in Fig. 4, being valid only for this 
particular value of 𝛼, therefore there is no uniformly valid approx-
imation. We can, however, match the derived approximations 
through 

�̃�∗ = 𝑘∗
0𝑒−

𝛼

𝑏 + 𝑘∗
∞ (1 − 𝑒−

𝛼

𝑏),                                              (65) 

where: 𝑘∗
0 and 𝑘∗

∞ – dimensionless coefficients for approxi-
mations at 𝛼 = 0 and 𝛼 > 1, respectively, and 𝑏 can be found 
using the value of 𝑘∗ at 𝛼 = 1. For harmonic load (10), 𝑏 ≈
0.455, and the related curve is plotted with red dots in Fig. 4. 

 

 
Fig. 3. Asymptotic and exact solution for harmonic load for a soft coating 

 

Fig. 4. Asymptotic and exact solution for harmonic load for a stiff coating 

6. CONCLUDING REMARKS 

A full two-parametric asymptotic analysis (in 𝜀 and 𝜇) of the 
anti-plane shear deformation problem of a coated half-space  

is developed. It is demonstrated that in case of a relatively soft 
layer for a rather high contrast (𝛼 > 1), the deformation of the 
substrate can be neglected, which leads to Winkler-type behav-
iour. In a similar situation for a relatively stiff coating (𝛼 ≥ 1), we 
arrive at equations of plate shear. At the same time, in the 
intermediate range of contrast in stiffness considered in Sections 
4.2 and 4.4, the layer deformation is strongly affected by the 
presence of the substrate. In this case, shear deformation may be 
found from a simpler problem for a half-space. The latter, together 
with a Winkler-type behaviour term, result in two-term asymptotic 
formula (36) uniformly valid over the whole range of material 
parameter for a relatively soft layer. For a stiff coating, when the 
geometrical and material parameters are of the same order 
(𝛼 = 1), it is also possible to reduce the original problem for  
a coated solid to a problem for a homogeneous half-space with 
effective boundary conditions at the surface.  

The obtained solution is also of importance for problems of 
delamination between the thin coating and the substrate, especial-
ly in tribological context, see e.g. Goryacheva and Torskaya 
(2010),  Holmberg et al. (2009) and  Jiang et al. (2010).  

In addition, we mention related problems for the imperfect 
transmission conditions, see Mishuris (2003, 2004) and Mishuris 
and Öchsner (2005). Note that such asymptotically evaluated 
simplified conditions can be verified numerically with FEM analy-
sis, see e.g. Mishuris et al. (2005),  Mishuris and Öchsner (2007). 
This is of crucial importance as accurate mathematical proof may 
not always be available. On the other hand, such conditions fail 
near singular points (crack tip, edges), but still may be valuable for 
physical applications in fracture mechanics, see Mishuris (1999, 
2001).  

We also note related problems on homogenization of high-
contrast periodic structures, see e.g. Cherdantsev and Chered-
nichenko (2012), Figotin and Kuchment (1998), Kaplunov and 
Nobili (2017), and Smyshlyaev (2009). 

APPENDIX 

Consider a homogeneous elastic half-space (𝜉3
+ ≥ 0) subject 

to the boundary conditions presented in Table 3. 

Tab. 3. Summary for a homogeneous half-space with various cases  
             of boundary conditions 

 Case 1 Case 2 

Boundary conditions 

𝜎23
+  −𝐴𝜇− sin 𝜉1 −𝐴𝜇− sin 𝜉1 −

𝜇+

𝑎

𝜕2𝑢2
+

𝜕𝜉1
2 |

𝜉3
+=0

 

Coefficient in (13) 

𝑐3 
𝐴𝑎𝜇−

𝜇+  
𝐴𝑎𝜇−

2𝜇+  

Displacements and stresses at the surface 

𝑢2
+ 

𝐴𝑎𝜇− sin 𝜉1

𝜇+  
𝐴𝑎𝜇− sin 𝜉1

2𝜇+  

𝜎12
+  𝐴𝜇− cos 𝜉1 

𝐴𝜇− cos 𝜉1

2
 

𝜎23
+  −𝐴𝜇− sin 𝜉1 −

𝐴𝜇− sin 𝜉1

2
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The equations of the formulated problem and the solution are 
given by (7) and (11) with functions (13)2, where the values of the 
coefficient 𝑐3, corresponding to the related case of the applied 
boundary conditions, are also presented in Table 3, together with 
the displacement and stress components at the surface 𝜉3

+ = 0.  
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