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Abstract: The paper presents the solution linear elasticity problem for an isotropic plate weakened by a hole and two co-axial cracks. The 
plate is exerted by uniform traction at infinity. The corresponding 2D problem is solved by the method of Kolosova-Muskhelishvili  
complex potentials. The method implies reduction of the problem to simultaneous singular integral equations (SIE) for the functions defined 
the region of the cracks and hole. For particular case the solution the SIE is obtained analytically in a closed form. A thorough  
analysis of the stress intensity factors (SIF) is carried out for various cases of the hole shape: penny-shaped, elliptical and rectangular. 
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1. INTRODUCTION 

Thin walled elements, including thin plates, are used as part of 
modern machines and mechanisms as structural elements of 
buildings and constructions. By design they contain holes, while in 
the course of exploitation the small defects, like cracks, can origi-
nate and spread. Finally, these defects lead to the fracture of the 
element. The steady of the stress-strain state of plates containing 
cracks has been receiving considerable attention of many autors: 
Kaloerov et al. (2013), Kaminskii (1982), Kosmodamianskiy 
(1975), Kyt et al. (1983), Murakami (1990), Opanasovych et al. 
(2008), Panasyuk et al. (1976), Perez (2016), Savruk et al. (1981, 
1988, 1989), Staschuk (1993), Sulym (2007). 

The 2D plane crack problems are solved by using complex 
potentials, which leads to SIE for the functions defined at the 
cracks and at the contours of the holes: Chau et al. (1999), Chen 
et al. (2005, 2008, 2010, 2011, 2012), Hajimohamadi et al. (2018), 
Kratochvil et al. (2011), Kuliyev (2010), Lu et al. (2017), 
Maksymovych et al. (2017), Mogilevskaya et al. (2009), Pen et al. 
(2013), Savruk et al. (2007), Theocaris et al. (1989), Tsamasphy-
ros et al. (2013), Wang H. et al. (2012), Wang J. et al. (2003), 
Wang X.-F. et al. (2000), Zemlyanova (2007), Zeng et al. (2018). 

In the paper by Shao-Tzu et al. (2017) a new method has 
been developed recently. The authors of the paper: Felger et al. 
(2017), Gong (1994), Kushch et al. (2005), Liu et al. (2014) com-
bined the complex potentials method with the superposition prin-
ciple. 

In the paper we utilize a commonly accepted approach 
of complex potentials to the problem for an isotropic plate contain-
ing a hole and two cracks. 

2. PROBLEM STATEMENT 

Let us consider a plane problem of linear elasticity for an iso-
tropic plate containing a hole with a smooth contour and two co-

axial cracks 2𝑙1 and 2𝑙2 in length. The plate is extended  

by a tensile uniform load (𝑝, 𝑞) applied at infinity. The cracks 
edges and the hole are free of loads. Let us introduce the Carte-

sian coordinate system 𝑂𝑥𝑦 in such a way that its origin is put at 

the center of one of the cracks, and the 𝑂𝑥 axis is aligned along 
the cracks. Denoting the distance between the cracks centers 𝑥0, 

the coordinates of the center of the other crack are (𝑥0,0), and 

tips are 𝑎2 and 𝑏2. Additionally, for the sake of convenience we 
introduce the auxiliary coordinate system 𝑂′𝑥′𝑦′ associated with 
the hole. The transformation between the two coordinate systems 

is defined by the translation vector (c,d) and the angle of rotation 
𝛽. The diagram of the problem is shown in Fig. 1 where we use 

the following nomenclature: 𝐿 = �̃�1 ∪ �̃�2 – union of the straight 

segments where the cracks are located, 𝐿1 – the curved contour 

of the hole. Further signs "+" and "−" denote the threshold value  
of the corresponding quantities at y → ±0. 

 
Fig. 1. Layout and loading of hole and cracks 

The problem lies in finding the components of the stress ten-

sor field – 𝜎𝑦𝑦(𝑥), 𝜎𝑥𝑦(𝑥), and the components of external 
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loading at the hole – 𝜎𝑛𝑛 and 𝜎𝜏𝑛, satisfying the following bound-
ary conditions: 

𝜎𝑦𝑦
± (𝑥) = 0,      𝜎𝑥𝑦

± (𝑥) = 0,      𝑥 ∈ 𝐿, (1) 

𝜎𝑛𝑛(𝑡) = 0,      𝜎𝜏𝑛(𝑡) = 0,      𝑡 ∈ 𝐿1, (2) 

where the numbers with icons "+" and "−" are accordingly asso-
ciated with the upper and lower edge of the crack. 

3. SOLUTION THE PROBLEM 

Following the well established approach, the stated 2D plane 
problem of elasticity can be conveniently solved by using the 

complex potentials of Kolosova-Mushelishvili: 𝛷(𝑧), 𝛹(𝑧), 

𝑧 = 𝑥 + 𝑖𝑦, (𝑖 = √−1) (Mushelishvili, 1966). The components 

of the stress vector at the cracks edges – 𝐿 and at the contour of 

the hole – 𝐿1 are given 

𝜎𝑦𝑦 − 𝑖𝜎𝑥𝑦 = Φ(𝑧) + Φ(𝑧) + 𝑧Φ′(𝑧) + Ψ(𝑧), (3) 

𝜎𝑛𝑛 + 𝑖𝜎𝜏𝑛 = Φ(𝑡) + Φ(𝑡) +
𝑑𝑡̅

𝑑𝑡
[𝑡Φ′(𝑡) + Ψ(𝑡)],       

𝑡 ∈ 𝐿1, (4) 

Φ(𝑧) = Γ + Φ1(𝑧) + Φ  2
 (𝑧),       

Ψ(𝑧) = Γ′ + Ψ1(𝑧) + Ψ2(𝑧). (5) 

Savruk (1981) suggested representing 𝛷1(𝑧) and 𝛹1(𝑧) as 

Φ1(𝑧) =
1

2𝜋𝑖
∫

𝑔1(𝑢)𝑑𝑢

𝑢−𝑧𝐿1
,

Ψ1(𝑧) = −
1

2𝜋𝑖
∫ [

𝑔1(𝑢)𝑑𝑢

𝑢−𝑧
+

𝑢𝑔1(𝑢)𝑑𝑢

(𝑢−𝑧)2 ]
𝐿1

,
 (6) 

𝑔1(𝑢) – unknown function, 𝛷2(𝑧) і 𝛹2(𝑧) – holomorphic func-
tions outside the cracks, 

𝛤 =
1

4
(𝑝 + 𝑞),      𝛤′ = −

1

2
(𝑝 − 𝑞)𝑒−2𝑖𝛼 . 

Function 𝑔1(𝑢) defined at the contour of the hole satisfy the 
additional condition: 

∫ 𝑔1(𝑢)𝑑𝑢
𝐿1

= 0,  (7) 

meaning that the main vector of the forces applied to the hole is 
equal to zero. 

Let us introduce into the consideration function Ω2(z) by the 
formula 

       ,     2 2 2 2z z z z z  (8) 

where 𝛷 2(𝑧) = 𝛷 2(𝑧̅). 
Taking into account (5) and (8), the relationship (3) takes the 

form: 

         yy xyi z z z z z z          2 2 2 1  

      .         1 1 1 2z z z z  (9) 

Satisfying the boundary conditions (1), we finally got two con-

jugate problems for two functions 𝛷2(𝑧) and 𝛺2(𝑧): 

(Φ2(𝑥) − Ω2(𝑥))
+

− (Φ2(𝑥) − Ω2(𝑥))
−

= 0, 𝑥 ∈ 𝐿, (10) 

(Φ2(𝑥) − Ω2(𝑥))
+

+ (Φ2(𝑥) − Ω2(𝑥))
−

= 0, 𝑥 ∈ 𝐿.   (11) 

The solution problems (10, 11) is given 

Φ2(𝑧) = Ω2(𝑧),                  (12) 

Φ2(𝑧) =
1

2𝜋𝑖𝑋(𝑧)
∫

𝑓(𝑥)𝑋+(𝑥)𝑑𝑥

𝑥−𝑧𝐿
+

𝐶0

𝑋(𝑧)
,        (13) 

where:  

𝑋(𝑧) = √(𝑧2 − 𝑙1
2)(𝑧 − 𝑎2)(𝑧 − 𝑏2), 

𝑋+(𝑥) = {
−𝑖√(𝑙1

2 − 𝑥2)(−𝑥 + 𝑎2)(−𝑥 + 𝑏2),      𝑥 ∈ 𝐿1

𝑖√(𝑥2 − 𝑙1
2)(𝑥 − 𝑎2)(𝑥 − 𝑏2),      𝑥 ∈ 𝐿2

,  

𝑓(𝑥) = −
1

2𝜋𝑖
∫ {𝑔1(𝑢) [

1

𝑢−𝑥
+

1

𝑢−𝑥
] 𝑑𝑢 −

𝐿1
 (14) 

−𝑔1(𝑢) [
1

�̅� − 𝑥
+

𝑥

(�̅� − 𝑥)2
+

𝑢

(�̅� − 𝑥)2
] 𝑑�̅�} − 2Γ − Γ′̅, 

an unknown constant to be determined from the condition 

∫ [Φ2
+(𝑥) − Φ2

−(𝑥)]𝑑𝑥
𝑏2

𝑎2
= 0.                       (15) 

Substituting (13) in (15), we have: 

𝐶0 = 𝐴 + ∫ [𝑔1(𝑢)𝐵1(𝑢)𝑑𝑢 + 𝑔1(𝑢)𝐵2(𝑢)𝑑�̅�]
𝐿1

,       (16) 

where: 

𝐴 = (Γ +
1

2
Γ′̅) ∑ (𝐴𝑚(𝑥0(𝑙2𝜏𝑚 + 𝑥0) − (𝑙2𝜏𝑚 + 𝑥0)2 +

𝑁

𝑚=1

 

+
𝑙1

2 + 𝑙2
2

2
)) �̃�,⁄       𝐴𝑚 =

𝜋

𝑁√((𝑙2𝜏𝑚 + 𝑥0)2 − 𝑙1
2)

,       

�̃� = ∑ 𝐴𝑚,

𝑁

𝑚=1

 

𝐵1(𝑢) = −
1

2𝜋𝑖
∑ (𝐴𝑚Re [

𝑋(𝑢)

𝑢 − 𝑙2𝜏𝑚 − 𝑥0

+ 𝑢])

𝑁

𝑚=1

�̃�⁄ , 

𝐵2(𝑢) =
1

4𝜋𝑖
∑ (𝐴𝑚 [

𝑢 − �̅�

�̅� − 𝑙2𝜏𝑚 − 𝑥0

(𝑦(�̅�) + 𝑙2𝜏𝑚 +

𝑁

𝑚=1

 

+𝑥0 − �̅� −
𝑋(𝑢)

𝑢−𝑙2𝜏𝑚−𝑥0
)]) �̃�⁄ ,

 

𝜏𝑚 = cos (
(2𝑚−1)𝜋

2𝑁
), 

𝑦(𝑧) =
4𝑧3 − (3𝑧2 − 𝑙1

2)2𝑥0 + 2𝑧(𝑎2𝑏2 − 𝑙1
2)

2𝑋(𝑧)
. 

Dependences (Mushelishvili, 1966) 

∫
𝑋+(𝑥)𝑑𝑥

𝑥−𝑧𝐿
= 𝜋𝑖 (𝑋(𝑧) − 𝑧2 + 𝑧𝑥0 +

𝑙1
2+𝑙2

2

2
),                      (17) 

∫
𝑋+(𝑥)𝑑𝑥

(𝑥 − 𝑧)2

𝐿

= 𝜋𝑖(𝑥0 − 2𝑧 + 𝑦(𝑧)), 

considering (17), function Φ2(z) (13) takes the form: 

Φ2(𝑧) = ∫ [𝑔1(𝑢)𝑅1(𝑢, 𝑧)𝑑𝑢 + 𝑔1(𝑢)𝑅2(𝑢, 𝑧)𝑑�̅�]
𝐿1

+  

+𝑃(𝑧) +
𝐶0

𝑋(𝑧)
,                  (18) 

where 

𝑃(𝑧) = − (Γ +
1

2
Γ′̅) (1 −

1

𝑋(𝑧)
(𝑧2 − 𝑧𝑥0 −

𝑙1
2 + 𝑙2

2

2
)), 
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𝑅1(𝑢, 𝑧) = −
1

4𝜋𝑖
[
𝑋(𝑧) − 𝑋(𝑢)

�̅� − 𝑧
+

𝑋(𝑧) − 𝑋(𝑢)

𝑢 − 𝑧
+ 𝑢 + �̅�], 

𝑅2(𝑢, 𝑧) = −
1

4𝜋𝑖
[
𝑢 − �̅�

�̅� − 𝑧
(𝑦(�̅�) +

𝑋(𝑧) − 𝑋(𝑢)

�̅� − 𝑧
+ 𝑧 − �̅�)]. 

After taking into consideration (5), (8) and (12), function (4) 
can be represented as: 

          
dt dt

t t t t t t
dt dt

          
 2 1 1 1 1  (19) 

        , .
dt dt

t t t t t t L
dt dt

 
           

 
2 2 2 12 1 0  

Taking into account (6) and (18), formula (19) yields a singular 
integral equation for function 𝑔1(𝑢): 

∫ [𝑔1(𝑢)𝐾(𝑢, 𝑡)𝑑𝑢 + 𝑔1(𝑢)𝑀(𝑢, 𝑡)𝑑�̅�]

𝐿1

= 𝜌(𝑡), 

𝑡 ∈ 𝐿1,                    (20) 

where: 

   
 

 
, ,

B udt
K u t R u t

i u t dt u t X t

 
        

1
1

1 1 1

2
 

 
 

 
 

 

 
, ,

B u B udt dt
R u t R u t

dt dtX t X t

    
                

1 2
1 21  

   
 

 
 , ,

y tdt
t t R u t B u

dt X t

 
   
 
 

2 2
2

 

 
 

 
 

 
, ,

B udt t u
M u t R u t

i u t dt X tu t

 
      

    

2
22

1 1

2
 

 
 

 
 

 

 
, ,

B u B udt dt
R u t R u t

dt dtX t X t

    
                

2 1
2 11  

   
 

 
 , ,

y tdt
t t R u t B u

dt X t

 
   
 
 

1 1
2

 

   
 

 
 

dt A dt A
t P t P t

dt X t dt X t

 
            

 
 

2  

 
 

   
 

 
.

y tdt A dt
P t t t P t A

dt dtX t X t

                   
2

1  

To estimate the safe range of external loading, we can use 
one of the criteria of fracture which takes into account the behav-
ior of the stress vector components in the vicinity of the defects 
expressed through the SIF (Savruk, 1988): 

𝑘11
± − 𝑖𝑘12

± = 2 lim
𝑥→±𝑙

[√2𝜋|𝑥 ∓ 𝑙|Φ2(𝑥)],                    (21) 

𝑘21
− − 𝑖𝑘22

− = 2 lim
𝑥→𝑎2

[√2𝜋|𝑥 − 𝑎2|Φ2(𝑥)], 

𝑘21
+ − 𝑖𝑘22

+ = 2 lim
𝑥→𝑏2

[√2𝜋|𝑥 − 𝑏2|Φ2(𝑥)]. 

For further consideration we assume that the contour of hole 

𝐿1 is given by function 𝑡′ = 𝑥′ + 𝑖𝑦′ = 𝜔(𝜃) = �̃�(𝑒𝑖𝜃), 

0 < 𝜃 ≤ 2𝜋, with the specific properties: 

𝑡(𝜃) = 𝑐 + 𝑖𝑑 + 𝑒𝑖𝛽𝜔(𝜃).  (22) 

By virtue of 𝑢(𝜈) = 𝑐 + 𝑖𝑑 + 𝑒𝑖𝛽𝜔(𝜈) and (22), equation 
(20) and relationship (7) take the form: 

∫ [�̃�(𝜈)𝐾(𝜈, 𝜃)𝑑𝑢 + �̃�(𝜈)�̃�(𝜈, 𝜃)𝑑𝜈]

2𝜋

0

= �̃�(𝜃),       

0 < 𝜃 ≤ 2𝜋,  (23) 

𝐾(𝜈, 𝜃) = 𝐾(𝑢(𝜈), 𝑡(𝜃)),      �̃�(𝜈, 𝜃) = 𝑀(𝑢(𝜈), 𝑡(𝜃)), 

�̃�(𝜃) = 𝜌(𝑡(𝜃)),      �̃�(𝜈) = 𝑔1(𝑢(𝜈))𝜔′(𝜈), 

∫ �̃�(𝜈)𝑑𝜈
2𝜋

0
= 0.  (24) 

For (23, 24) we will use the method of numerical integration of 
SIE (Panasyuk et al., 1976). 

4. NUMERICAL ANALYSIS 

Numerical analysis of the problem was conducted at 𝛼 =
𝜋 2⁄ , 𝛽 = 0, 𝑙1 = 𝑙2 = l, with the interaction of cracks with 
elliptical (Fig. 2) and rectangular (Fig. 3) holes at 𝑑 𝑙⁄ = 0, 

𝑥0 = 2𝑐, and a circular hole (Fig. 4) at 𝑑 𝑙⁄ = 1.2, 𝑐 𝑙⁄ = 0, 

these figures curves 1 were built at �̃� = 𝑞 𝑝⁄ = 0, curves 2 at 

�̃� = 0.5, curves 3 at �̃� = 1, curves 4 at �̃� = 2. For the consid-

ered cases of elliptical and rectangular holes 𝑘11
± = 𝑘21

∓ , 

𝑘12
± = 𝑘22

∓ = 0. 

In Fig. 2 and Fig. 3 the panel (a) corresponds to distant 
cracks, while the panel (b) corresponds to the case of close 
cracks, relatively to the distance to the hole. 

In the case of an elliptical hole, function 𝜔(𝜈) has the form: 

𝜔(𝜈) = 𝑅(𝑒𝑖𝜈 + 𝑚𝑒−𝑖𝜈),   (25) 

where: 𝑅 = (𝑎 + 𝑏) 2⁄ , 𝑚 = (𝑎 − 𝑏) (𝑎 + 𝑏)⁄ , a and b are 
semi-axes of the ellipse. 

Fig. 2 illustrates the SIF 𝐾1
∗± = 𝑘11

± (𝑝√𝜋𝑙)⁄  as a function of 

the ellipse semi-axis b, normalized by l, provided all other param-
eters remain constant. From the graphs one can see the local 

maximum of SIF, behavior indicates of the parameter 𝑏 𝑙⁄  poten-
tially dangerous from point of view of structural integrity, since in 
the vicinity of the local maximum the cracks can start to spread. 
The graphs also reveal the dependence of SIF on the ratio be-
tween the components of the traction vector 𝑞 𝑝⁄ . However, such 
dependence is minor for the case of rectangular hole (Fig. 3). 

For a rectangular hole, the reflecting function is taken as 
(Kosmodamianskiy, 1975) 

𝜔(𝜈) = 𝑅 (𝑒𝑖𝜈 + ∑
𝐶2𝑘−1

𝑒𝑖𝜈(2𝑘−1)
9
𝑘=1 ),  (26) 

where 𝑅 is a real number, �̃�2𝑘−1 are known constants. 
 



Heorgij Sulym, Viktor Opanasovich, Mykola Slobodian, Yevhen Yarema        DOI 10.2478/ama-2018-0037 
Biaxial Loading of a Plate Containing a Hole and Two Co-Axial Through Cracks 

240 

                           
Fig. 2. Reduced intensity factors for an elliptical hole the ratio 𝑏 𝑙⁄  at different values 𝑞 𝑝⁄  

                         
Fig. 3. Reduced intensity factors for a rectangular hole the ratio 𝑐 𝑙⁄  at different values 𝑞 𝑝⁄  

                         

                          
Fig. 4. Reduced intensity factors for a penny-shaped hole the ratio 𝑥0 𝑙⁄  at different values 𝑞 𝑙⁄  
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Fig. 3 shows a graphical dependence of the consolidated SIF 

𝐾1
∗± = 𝑘11

± (𝑝√𝜋𝑙)⁄  for a rectangular hole (with the ratio 2:1 

between the sides, the bigger side is parallel to the cracks) on the 

relative distance c l⁄  between the center of the hole and the 
cracks centers. 

The figure shows that the value of the SIF whether the tension 
is monoaxial or biaxial. However, when drawing the rectangular 
hole to the cracks, the SIF grow, and vice versa – go to the ap-
propriate values for the isolated crack. 

Fig. 4 illustrates the dependencies of SIFs 𝐾𝑗
∗± =

𝑘1𝑗
± (𝑝√𝜋𝑙)⁄ , 𝐾2+𝑗

∗± = 𝑘2𝑗
± (𝑝√𝜋𝑙)⁄  (𝑗 = 1,2) for a penny-

shaped hole. The panels (a) and (c) correspond to the crack 
under the hole, while panels (b) and (d) correspond to the other 
one. The Fig. 4 illustrates the effect of interaction of two cracks – 
the dependence of SIF’s on the distance between the cracks 

𝑥0 𝑙⁄ . The behavior of all functions SIF = SIF(𝑥0 𝑙⁄ ) is monotonic; 
with increasing parameter 𝑥0 𝑙⁄ , the SIFs decrease approaching 
the corresponding limit values for the case of a single crack and 
the hole, know from (Kaloerov, 2013). 

For the ratio q p⁄  increasing, the SIF the crack under the hole 
increases, while the SIF the other crack decreases. 

5. CONCLUSIONS 

The paper presents a solution 2D plane linear elasticity prob-
lem for the plate possessing a hole and two coaxial cracks in the 
field of uniform traction. By method of complex potentials the 
problem is reduced to a set of singular integral equations for 
functions defined at the hole contour. The numerical procedure 
(method of mechanical quadratures) was used to the approximate 
solution of the problem. The thorough analysis of the stress inten-
sity factors SIF was carried out for particular cases of the hole 
shape and the location of the cracks relatively to the hole. Based 
on criteria of Fracture Mechanics, involving the SIFs, the analysis 
revealed the range of geometric parameters of the problem poten-
tially dangerous from point of view of structural integrity of the 
plate. 
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