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Abstract: Among the many elements of a modern vehicle, the braking system is definitely among the most important ones. Health,  
and, frequently, life, may rest upon the design and reliability of brakes. The most common friction pair used in passenger cars today  
is a disc which rotates with the road wheel and a cooperating pair of brake pads. The composite material of the pad results in changing 
tribological properties as the pad wears, which was demonstrated in experimental studies. The change is also facilitated by the harsh  
operating conditions of brakes (high and rapid temperature changes, water, etc.). This paper looks into how changing tribology reflects  
on the heating process of disc and pads during braking. And so a simulation study was conducted, as this method makes it possible  
to measure temperature in any given point and at any time, which is either impossible or extremely difficult in real life conditions. Finite  
element method analyses were performed for emergency braking events at various initial speeds of the vehicle reflecting the current road 
speed limits. 
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1. INTRODUCTION 

The significance of the braking system in any vehicles is 
enormous. Its main function is reducing the speed of the moving 
vehicle or stopping it completely. The wellbeing and life of the 
vehicle’s passengers rests upon it, but also of other, accidental 
participants of road and pedestrian traffic. 

 
Fig. 1. Brake pad (1) and corresponding brake disc (2) – CAD model 
 developed for the purpose of this paper based  
on manufacturer data 

Most vehicles manufactured today use disc brakes. The main 
element of this type of design is the disc, spinning alongside the 
road wheel, and the brake pad, connected with the hub via a 
caliper (Chandgude and Ganiger, 2016) (Fig. 1). As the pad is 
pressed against the disc, friction occurs which transforms kinetic 
energy into heat. The energy, in the form of heat, is then released 
into the atmosphere (Blauand McLaughlin, 2003). This is a neces-

sity, as excess heat may damage the suspension elements, which 
are made from plastics, or even tires (Kulikowski and Szpica, 
2014). Also, there is a lot of strain and stress produced, which can 
be very destructive (Varinauskaset et al., 2013; Adamowicz, 
2016a, 2016b). 

The friction force largely depends on the materials used in the 
production of the friction pair. Brake discs are largely made from 
gray cast iron, as it is characterised by good thermal conductivity 
and anti-vibration capacity (Malufet et al., 2007). Matters are 
different for brake pads. Brake pads manufacturers utilise approx-
imately 2000 different materials (Blau, 2001) which have different 
effects on the final product. An average brake pad is made from 
10 to 20 different substances. Improper composition of a brake 
pad may lead to the occurrence of fading, causing a significant 
decrease in the value of the coefficient of friction (even down to 
zero). This is related to the degradation of resin resulting in the 
substantial losing of binding properties. That is why the thermal 
stability of a brake pad, its capacity for maintaining mechanical 
properties and capacity for binding components under unfavoura-
ble conditions of braking may largely depend on the resin (Bijweet 
et al., 2006). Degradation of some types of resins starts already at 
260°C (Avalloneet et al., 2007). In order to improve the original 
mechanical and thermal properties of resins, numerous attempts 
of modifying their compositions are made (Bijweet et al., 2006; 
Bijwe, 2007). Multiple instances of heating (to temperatures of up 
to several hundreds degrees Celsius) and cooling may change the 
tribological properties of brake pads and discs. Consequently, this 
may reduce the braking force (Ścieszka, 1998). The corrosive 
environment brake systems work in (salt and water, especially 
during winter) are also significant (Borawski, 2016). 

Contemporary technological advancement makes it possible 
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to use various research techniques in many different ways pro-
ducing more or less accurate results (Williams, 2010). Also, every 
method consumes certain costs and time necessary to conduct 
the tests. Simulations of braking systems or their components are 
currently a very popular research method (Kamiński, 2013). It is 
also employed in the study of other components of vehicles (Szpi-
ca, 2015a, 2015b) and many technological processes, like weld-
ing (Česnavičiuset et al., 2016; Dunduliset et al.,2012; Kilikevičius 
et et al., 2016). Its popularity stems from low costs in comparison 
to other tests. In this case, the only requirement is a computer 
with appropriate software.  

Simulations make it possible to obtain information on the heat 
occurring during braking(Grześ, 2017; Yevtushenkoet et al., 
2017). This is a significant benefit of this method as measuring the 
temperature of a friction pair is difficult, and sometimes impossi-
ble, especially in the case of brakes (Borawski, 2018), and that is 
why the method was chosen for this study. The aim of this paper 
is to determine whether and how the wear ofa brake system’s 
working elements affects the process of heating of the pad and 
disc during braking. 

2. STUDY OBJECT AND METHODOLOGY 

The study involved brake pads (and their CAD models) which 
were both brand new and at various degrees of wear, made avail-
able thanks to the courtesy of the Authorised Service Dealer. The 
structure of one of the studied pads is presented in Fig. 2. The 
picture very clearly shows the three layers significant for this 
study: the friction material (1), the adhesive layer (interlayer), and 
the metal backplate (3).  

 
Fig.2. Cross-section of the real-life object of study: 1 – friction material,  
2 – adhesive layer (interlayer), 3 – metal backplate 

Tab. 1.Selected properties of brake pad layers 

A
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e 

Thermal conductivity 148 [W/(m*k)] 

Density 2850 [kg/m3] 

Heat capacity at 
constant pressure 

1030 [J/(kg*K)] 

In
te

rla
ye

r Thermal conductivity 84 [W/(m*k)] 

Density 2248 [kg/m3] 

Heat capacity at 
constant pressure 

1220 [J/(kg*K)] 

M
et

al
 

ba
ck

pl
at

e Thermal conductivity 440 [W/(m*k)] 

Density 7845 [kg/m3] 

Heat capacity at 
constant pressure 

58 [J/(kg*K)] 

Microscopic observation indicated, that the friction material is 
made of: metal fibers  ̴ 15%, organic fiber ̴ 15%, binder (res-
in) ̴ 20%, solid lubricants  ̴ 10%, abrasive  ̴ 10%, and fillers  ̴ 30%. 
The composition of the interlayer is similar, albeit in different 
proportions: metal fibers  ̴ 10%, organic fiber  ̴ 10%, binder (resin) ̴ 
45%, solid lubricants  ̴ 5%, abrasive ̴ 30%, and fillers  ̴ 30%. The 
backplate is made of structural steel. Due to the difference in 
chemical composition, each of the layers is characterised by 
distinct properties (Tab. 1). 

The discussed brake pad works in tandem with a brake disc 
made of grey cast iron. The properties of this material as used 
in the simulation are presented in Tab. 2. 

Tab.2.Selected material properties of the brake disc 

Thermal conductivity 47 [W/(m*k)] 

Density 7870 [kg/m3] 

Heat capacity at constant 
pressure 

498 [J/(kg*K)] 

The coefficient of friction of the pad/disc pair was determined 
by laboratory tests (Yevtushenko and Borawski, 2018). The re-
sults clearly indicate that the coefficient changes as the brake pad 
wears down (Tab. 3). 

Tab.3.Coefficient of friction test results  
           (Yevtushenko and Borawski, 2018) 

Brake pad wear 
[%] 

Average value of the 
coefficient of friction 

Standard 
deviation 

0 0.45 ±0.045 

̴10 0.46 ±0.022 

̴25 0.43 ±0.031 

̴40 0.4 ±0.014 

̴45 0.41 ±0.016 

̴50 0.39 ±0.031 

̴60 0.36 ±0.021 

̴70 0.37 ±0.024 

̴80 0.35 ±0.052 

̴90 0.6 ±0.037 

100 0.85 ±0.049 

The friction pair comes from a passenger car whose total 
weight is 1550 kg. The vehicle is furnished with 205/55/R16 tires. 
Based on the diameter of the tires, the dynamic radius used in the 
study equals 251 mm. It was assumed that braking occurs without 
slippage, and the coefficient of adhesion is 1.0. This leads to a 
deceleration of 9.81 m/s2. Also, the assumed ambient temperature 
is 25 °C. The initial speed of the car was 50 km/h, 90 km/h, and 
140 km/h, as these are the most common speed limits in urban 
and non-urban areas, and motorways. The study analysed the 
first 10 seconds from the initiation of braking. The step was 0.05 s. 

Moreover, the following assumptions were made: 

 unchanging coefficients of friction; 

 stable and homogeneous contact pressure for both pads; 

 homogeneous brake pad material and full surface contact, 

 constant braking deceleration; 

 no external factors (such as road inconsistencies, air re-
sistance). 
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Fig.3. Final geometry of analyzed disc and pads 

The simulations were conducted using FEM in Comsol Mul-
tiphysics 4.4. In order to avoid unnecessary mesh density, the 
CAD models were simplified by removing those elements which 
do have no significant influence on the end result (such as the 
brake disc slots or the elements which position the pad in the 
clamp). The final mesh comprised approximately 6200 mostly 
triangular elements, providing close to 32000 degrees of freedom. 
Final geometry of analyzed disc and pads is shown in Fig. 3. 

The force of the braking process can be describes as a nega-
tive derivative of the vehicle’s kinetic energy (Yevtushenko and 
Grzes, 2015): 

𝑃 =–
𝑑

𝑑𝑡
(

𝑚𝑣2

2
)                                                                            (1) 

or 

𝑃 = −𝑚𝑅2𝜔(𝑡)𝛼                                                                    (2) 

where: m – vehicle’s mass, v – speed of the vehicle, R – dynamic 

radius of the road wheel,ω – angular velocity of the wheel, 

t  – time, α – angular deceleration. 
Assuming that the braking deceleration is constant, we may 

say that 

𝜔(𝑡) = 𝜔0 + 𝛼𝑡(3) 

A simple stability analysis of the vehicle made demonstrated 
that approximately 60% of the total braking force comes from the 
front wheels (roughly 15% per each of the four brake pads on the 
front axis). It has been assumed that each of the brake pads 
generates identical braking force. The relation between the brak-
ing force of one wheel and the complete vehicle is as follows: 

𝐹𝑏 =
100%∙𝐹𝑓𝑏

2∙15%
≈ 3.33 ∙ 𝐹𝑓𝑏                                                      (4) 

where:𝐹𝑓𝑏 – braking force generated by one front wheel,𝐹𝑏– total 

braking force of the vehicle. 
On that basis, the braking force of the vehicle can be de-

scribed as (Richardson and Coulson, 1999) 

𝑃 = −3.33 ∬ 𝑓𝑓 ∙ 𝑑𝐴 ∙ 𝑣𝑑                                                         (5) 

where:𝑓𝑓 – frictional force per surface unit,𝑣𝑑=𝜔(𝑡) ∙ 𝑟 – brake 

disc linear speed at radius 𝑟, A – disc and pad contact surface 
area. 

The braking force is also expressed as the relation (Richard-
son and Coulson, 1999) 

𝑃 = 𝑓𝑓(𝑡) ∙ 𝜔(𝑡) ∬ 𝑟𝑚 ∙ 𝑑𝐴                                                    (6) 

where 𝑟𝑚  – distance from the pad’s centre of mass to the disc 
rotation axis. 

Comparison of the two equations makes it possible to deter-

mine the 𝑓𝑓   coefficient: 

𝑓𝑓 = −
𝑚𝑅2𝛼

3.33𝑟𝑚𝐴
                                                                          (7) 

Assuming that the vehicle’s deceleration occurs only through 
the action of the brake disc and pad, the heat flux can be ex-
pressed using the equation (Talati and Jalalifar, 2009) 

𝑞(𝑟, 𝑡) = −𝑓𝑓 ∙ 𝑣𝑑(𝑟, 𝑡)                                                         (8) 

or  

𝑞(𝑟, 𝑡) = −
𝑚𝑅2𝛼

3.33𝑟𝑚𝐴
𝑟(𝜔0 + 𝛼𝑡)                                            (9) 

Amonton-Coulomb friction law (Yanet et al., 2002) makes it 
possible to determine the contact pressure, which in the analysed 
case is as follows: 

𝑝 =
𝑃

𝜇∙𝑣
                                                                                      (10) 

where:𝜇 – coefficient of friction between the disc and pad. 
Also, the study takes into account the heat exchange occur-

ring between the disc and pad, expressed as the following relation 
(Carey, et et al., 2008) 

𝜌 ∙ 𝐶𝑝
𝜕𝑇

𝜕𝑡
+ ∇ ∙ (– 𝑘 ∙ ∇𝑇) = 𝑄– 𝜌 ∙ 𝐶𝑝 ∙ 𝑢 ∙ ∇𝑇                  (11) 

where:𝑘 – thermal conductivity,𝐶𝑝 – thermal capacity,𝑢 – heat 

flux rate,𝑄 – heating power per density unit,𝜌 – density,𝑇 – tem-
perature. 

During the action of the brakes, the following amount of heat 
is released through convection and radiation (Richardson and 
Coulson, 1999) 

𝑞𝑑 =– ℎ(𝑇– 𝑇𝑟)– 𝜀𝜎(𝑇4– 𝑇𝑟
4)                                             (12) 

where:ℎ – convection coefficient,(𝑇– 𝑇𝑟) – temperature differ-

ence between the friction material and ambient temperature,𝜀 – 

emissivity of material,𝜎 – Stefan-Boltzman constant. 
The relation between the convection coefficient and the speed 

of the vehicle is described as follows (Richardson and Coulson, 
1999): 

ℎ =
0.037𝑘

𝑙
(

𝜌∙𝑙∙𝑣

𝜇
)

0.8

∙ (
𝐶𝑝∙𝜇

𝑘
)

0.33

                                            (13) 

where:𝑙 – disc diameter,𝜇 – viscosity. 

3. RESULTS AND DISCUSSION 

The most important value measured in the study was temper-
ature. It was gauged in two points: in the geometrical centre of the 
braking pad at 0.2 mm from its surface (Figs. 4-6) and at 0.2 mm 
from the surface of the disc at the opposite side, i.e. after turning it 
by 180° (Figs.7-9). 

The graphs show that the difference between maximum tem-
peratures for all test conditions is slight, no more than 20 degrees. 
The highest temperature reached by the friction pair occurs when 
the disc cooperates with a completely worn pad (see curve no. 11 
in Figs.  4-9). The analysis of the above graphs indicates that 
there is heat exchange after stopping the vehicle, as a result of 
various properties of the cooperating materials. Due to convec-
tion, the brake pad takes part of the energy accumulated in the 
disc, as demonstrated by a temporary increase in the pad’s tem-
perature. Next, the friction elements are gradually cooling through 
radiation. Yet the phenomenon does not occur in the case  
of a fully worn brake pad. This is the result of the similar proper-
ties of the brake disc and pad backplate materials. 
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Fig.4. Brake pad temperature change during emergency braking commencing at initial speed of 50 km/h: 1 – brand new brake pad, 2 – brake pad wear 
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear 
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 

 

Fig.5. Brake pad temperature change during emergency braking commencing at initial speed of 90 km/h: 1 – brand new brake pad, 2 – brake pad wear 
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear 
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 –  brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 

 

Fig.6.Brake pad temperature change during emergency braking commencing at initial speed of 140 km/h: 1 – brand new brake pad, 2 – brake pad wear 
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear 
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 
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Fig.7. Brake disc temperature change during emergency braking commencing at initial speed of 50 km/h: 1 – brand new brake pad, 2 – brake pad wear  
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear  
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 

 

Fig.8. Brake disc temperature change during emergency braking commencing at initial speed of 90 km/h: 1 – brand new brake pad, 2 – brake pad wear  
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear  
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 

 

Fig.9. Brake disc temperature change during emergency braking commencing at initial speed of 140 km/h: 1 – brand new brake pad, 2 – brake pad wear  
at approx. 10%, 3 – brake pad wear at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake pad wear at approx. 45%, 6 – brake pad wear  
at approx. 50%, 7 – brake pad wear at approx. 60%, 8 – brake pad wear at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake pad wear 
at approx. 90%, 11 – brake pad wear at 100% 

Also, the study looked into the amount of heat generated in 
the analysed cases (Fig.10). Here it can be observed that the 

wear of the brake pad has no significant impact. The difference  
for various degrees of wear did not exceed 1%. 
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Fig.10. Heat generated by the braking system of one wheel during  

a vehicle’s emergency braking: 1 – brand new brake pad,  
2 – brake pad wear at approx. 10%, 3 – brake pad wear  
at approx. 25%, 4 – brake pad wear at approx. 40%, 5 – brake 
pad wear at approx. 45%, 6 – brake pad wear at approx. 50%,  
7 – brake pad wear at approx. 60%, 8 – brake pad wear  
at approx. 70%, 9 – brake pad wear at approx. 80%, 10 – brake 
pad wear at approx. 90%, 11 – brake pad wear at 100% 

4. CONCLUSIONS 

This paper presents a comparative simulation of a friction pair 
comprising in a brake disc and brake pad at various degrees of 
wear. Due to the nature of the braking process there is risk of 
“brake fading” which may significantly inhibit brake performance. 
The results of numerical analyses indicated that: 
1. Emergency braking from initial speed of 140 km/h bears  

the risk of brake fading at any degree of brake pad wear. 
2. The wear of the brake pad has no significant effect  

on the maximum temperature achieved by the working  
elements of the braking system during braking. 

3. The wear of the brake pad has no significant effect  
on the amount of heat generated during braking. 

4. The friction pair reaches highest temperature when the brake 
pad is fully worn (i.e. when the pad’s backplate rubs against 
the disc). 
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