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Abstract: The problem of calculation of the characteristic equations of the standard and descriptor linear electrical circuits of integer  
and fractional orders is addressed. It is shown that the characteristic equations of standard and descriptor linear electrical circuits  
are independent of the method used in their analysis: the state space method, the mesh method and the node method. The considerations 
are illustrated by examples of standard and fractional linear electrical circuits. 

Key words: Characteristic Equation, Standard, Descriptor, Fractional, Linear, Electrical Circuit 

1. INTRODUCTION 

A dynamical system is called positive if its trajectory starting 
from any nonnegative initial state remains forever in the positive 
orthant for all nonnegative inputs. An overview of state of the art in 
positive theory is given in the monographs (Farina and Rinaldi, 
2000; Kaczorek, 2002). Variety of models having positive behavior 
can be found in engineering, especially in electrical circuits (Ka-
czorek and Rogowski, 2015), economics, social sciences, biology 
and medicine, etc. (Farina and Rinaldi, 2000; Kaczorek, 2002). 
The analysis of linear systems and electrical circuits has been 
addressed in (Antsaklis and Michel, 2006; Cholewicki, 1967; 
Kaczorek, 1992; Kaczorek and Rogowski, 2015; Kailath, 1980; 
Rosenbrock, 1970; Wolovich, 1974; Żak, 2003). 

The mathematical fundamentals of fractional calculus are giv-
en in the monographs (Oldham and Spanier, 1974; Ostalczyk, 
2008, 2016; Podlubny, 1999). The fractional systems theory and 
its applications is presented in (Dzieliński et al., 2009;  Kaczorek, 
2008a, 2008b, 2009, 2010, 2011a, 2011b, 2012a, 2013a, 2014a; 
Kaczorek and  Rogowski, 2015; Sajewski, 2016; Vinagre et al., 
2002). 

The positive electrical circuits have been analyzed in (Ka-
czorek, 2011c, 2013b, 2014b, 2015a, 2015b, 2016; Kaczorek and 
Rogowski, 2015). The constructability and observability of stand-
ard and positive electrical circuits has been addressed in (Ka-
czorek, 2013b), controllability and observability in (Kaczorek, 
2011d), the decoupling zeros in (Kaczorek, 2014b) and minimal-
phase positive electrical circuits in (Kaczorek, 2016). A new class 
of normal positive linear electrical circuits has been introduced in 
(Kaczorek, 2015b). Positive fractional linear electrical circuits have 
been investigated in (Kaczorek, 2013a), positive linear systems 
with different fractional orders in (Kaczorek, 2010, 2011a) and 
positive unstable electrical circuits in (Kaczorek, 2012b). Zeroing 
of state variables in descriptor electrical circuits has been ad-
dressed in (Kaczorek, 2013c). 

In this paper the problem of calculation of the characteristic 

equations of the standard and descriptor linear electrical circuits of 
integer and fractional orders will be analyzed. 

The paper is organized as follows. In section 2 some prelimi-
naries concerning positive electrical circuits of integer and frac-
tional orders are recalled. The characteristic equations of integer 
order electrical circuits analyzed by the state space method, mesh 
method and node method are investigated in section 3. The same 
problem for descriptor electrical circuits is addressed in section 4. 
The characteristic equations of fractional electrical circuits are 
analyzed in section 5. Concluding remarks are given in section 6. 

The following notation will be used: ℜ – the set of real num-
bers, ℜ𝑛×𝑚 – the set of n × m real matrices, ℜ+

𝑛×𝑚  – the set of 

𝑛 × 𝑚 real matrices with nonnegative entries and ℜ+
𝑛 = ℜ+

𝑛×1, 

𝑀𝑛 – the set of 𝑛 × 𝑛 Metzler matrices (real matrices with 

nonnegative off-diagonal entries), 𝐼𝑛 – the 𝑛 × 𝑛 identity matrix. 

2. PRELIMINARIES 

Consider the linear continuous-time electrical circuit described 
by the state equation: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),                                                           (1) 

where 𝑥(𝑡) ∈ ℜ𝑛, 𝑢(𝑡) ∈ ℜ𝑚  are the state and input vectors 

and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚. It is well-known (Antsaklis, 2006; 
Cholewicki, 1967; Kaczorek and Rogowski, 2015; Kailath, 1980; 
Rosenbrock, 1970; Wolovich, 1974; Żak, 2003) that any standard 
linear electrical circuit composed of resistors, coils, capacitors and 
voltage (current) sources can be described by the equation (1). 

Usually as the state variables 𝑥1(𝑡), …, 𝑥𝑛(𝑡) (the components 

of the vector 𝑥(𝑡)) the currents in the coils and voltages on the 
capacitors are chosen. 
 
Definition 1. (Kaczorek and Rogowski, 2015) The electrical circuit 
(1) is called (internally) positive if 𝑥(𝑡) ∈ ℜ+

𝑛 , for any initial condi-

tion 𝑥(0) ∈ ℜ+
𝑛  and every 𝑢(𝑡) ∈ ℜ+

𝑚 , 𝑡 ∈ [0, +∞). 
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Theorem 1. (Kaczorek and Rogowski, 2015) The electrical circuit 
(1) is positive if and only if: 

𝐴 ∈ 𝑀𝑛, 𝐵 ∈ ℜ+
𝑛×𝑚.                                                                 (2) 

The positive electrical circuit (1) for 𝑢(𝑡) = 0 is called asymptoti-
cally stable if: 

lim
𝑡→∞

𝑥(𝑡) = 0 for all 𝑥(0) ∈ ℜ+
𝑛 .                                               (3) 

 
Theorem 2. (Kaczorek and Rogowski, 2015) The positive electri-
cal circuit (1) is asymptotically stable if and only if: 

Reλ𝑘 < 0 for 𝑘 = 1, . . . , 𝑛 or equivalently 
π

2
< argλ𝑘 <

3π

2
   (4) 

where λ𝑘  is the eigenvalue of the matrix 𝐴 ∈ 𝑀𝑛 and: 

det[𝐼𝑛λ − 𝐴] = (λ − λ1)(λ − λ2). . . (λ − λ𝑛).                     (5) 

The following Caputo definition of the fractional derivative will be 
used (Kaczorek, 2012a): 

𝐷α𝑓(𝑡) =
𝑑α

𝑑𝑡α 𝑓(𝑡) =
1

Γ(𝑛−α)
∫

𝑓(𝑛)(τ)

(𝑡−τ)α+1−𝑛 𝑑τ
𝑡

0
, 

 𝑛 − 1 < α ≤ 𝑛 ∈ 𝑁 = {1,2, . . . },                                          (6) 

where α ∈ ℜ is the order of fractional derivative, 𝑓(𝑛)(τ) =
𝑑𝑛𝑓(τ)

𝑑τ𝑛  and Γ(𝑥) = ∫ 𝑒−𝑡𝑡𝑥−1𝑑𝑡
∞

0
 is the gamma function. 

Consider fractional electrical circuits composed of resistors, 
coils, capacitors and voltage (current) sources. Using the Kirch-
hoff’s laws we may describe the transient states in the electrical 
circuits by state equations (Kaczorek, 2012a; Kaczorek and 
Rogowski, 2015): 

𝐷α𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 0 < α ≤ 1,                                 (7) 

where 𝑥(𝑡) ∈ ℜ𝑛, 𝑢(𝑡) ∈ ℜ𝑚  are the state and input vectors 

and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚. 
 
Theorem 3. (Kaczorek, 2012a) The solution of equation (7)  
is given by: 

𝑥(𝑡) = Φ0(𝑡)𝑥0 + ∫ Φ(𝑡 − τ)𝐵𝑢(τ)𝑑τ
𝑡

0
, 𝑥(0) = 𝑥0,         (8) 

where: 

Φ0(𝑡) = 𝐸α(𝐴𝑡α) = ∑
𝐴𝑘𝑡𝑘α

Γ(𝑘α+1)

∞
𝑘=0 ,                                        (9) 

Φ(𝑡) = ∑
𝐴𝑘𝑡(𝑘+1)α−1

Γ[(𝑘+1)α]

∞
𝑘=0                                                         (10) 

and 𝐸α(𝐴𝑡α) is the Mittag-Leffler matrix function (Kaczorek, 
2012a). 
 
Definition 2. (Kaczorek, 2012a) The fractional system (7) is called 

the (internally) positive fractional system if and only if 𝑥(𝑡) ∈ ℜ+
𝑛 , 

𝑡 ≥ 0 for any initial conditions 𝑥0 ∈ ℜ+
𝑛  and all inputs 𝑢(𝑡) ∈

ℜ+
𝑚, 𝑡 ≥ 0. 

 
Theorem 4. (Kaczorek, 2012a) The fractional system (7) is posi-
tive if and only if 

𝐴 ∈ 𝑀𝑛, 𝐵 ∈ ℜ+
𝑛×𝑚.                                                               (11) 

 

3. CHARACTERISTIC EQUATIONS OF INTEGER ORDER 
ELECTRICAL CIRCUITS 

3.1. State space method  

In this method as the state variables the voltages on the ca-
pacitors and the currents in the coils are chosen. The linear elec-
trical circuits are described by the state equation (1). The charac-
teristic polynomial of the circuit is given by: 

𝑝(𝑠) = det[𝐼𝑛𝑠 − 𝐴] = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1+. . . +𝑎1𝑠 + 𝑎0  (12) 

and its characteristic equation by 𝑝(𝑠) = 0. 
 
Example 1. Consider the electrical circuit shown in Fig. 1 with 

given resistances 𝑅1, 𝑅2, 𝑅3, inductances 𝐿1, 𝐿2 and voltage 
sources 𝑒1, 𝑒2. 

 
Fig. 1. Electrical circuit of Example 1 

Using the Kirchhoff’s laws for the electrical circuit we obtain 
the equations: 

𝑒1 = 𝑅1𝑖1 + 𝐿1
𝑑𝑖1
𝑑𝑡

+ 𝑅3(𝑖1 − 𝑖2),

𝑒2 = 𝑅2𝑖2 + 𝐿2
𝑑𝑖2
𝑑𝑡

+ 𝑅3(𝑖2 − 𝑖1),
                                          (13) 

which can be written in the form: 

𝑑

𝑑𝑡
[
𝑖1
𝑖2

] = 𝐴1 [
𝑖1
𝑖2

] + 𝐵1 [
𝑒1

𝑒2
],                                                    (14a) 

where: 

𝐴1 = [
−

𝑅1+𝑅3

𝐿1

𝑅3

𝐿1
𝑅3

𝐿2
−

𝑅2+𝑅3

𝐿2

], 𝐵1 = [

1

𝐿1
0

0
1

𝐿2

].                          (14b) 

The electrical circuit is positive since 𝐴1 ∈ 𝑀2 and 𝐵1 ∈

ℜ+
2×2

. 
The characteristic equation of the electrical circuit has the 

form: 

det[𝐼2𝑠 − 𝐴1] = |
𝑠 +

𝑅1+𝑅3

𝐿1

−
𝑅3

𝐿1

−
𝑅3

𝐿2

𝑠 +
𝑅2+𝑅3

𝐿2

|

= 𝑠2 + (
𝑅1+𝑅3

𝐿1

+
𝑅2+𝑅3

𝐿2

) 𝑠 +
𝑅1(𝑅2+𝑅3)+𝑅2𝑅3

𝐿1𝐿2

= 0.

            (15) 
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3.2. Mesh method 

Any linear electrical circuit composed of resistors, coils, ca-
pacitors and voltage (current) sources in transient states can be 
also analyzed by the use of the mesh method (Cholewicki, 1967; 
Kaczorek and Rogowski, 2015). 

Using the mesh method and the Laplace transform for zero in-
itial conditions we can describe the electrical circuit in transient 
states by the equation: 

𝑍(𝑠)𝑋(𝑠) = 𝐸(𝑠),                                                                (16a) 

where: 𝑋(𝑠) = 𝐿[𝑥(𝑡)] = ∫ 𝑥(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
 (𝐿 is the Laplace 

operator), 

𝑍(𝑠) = [
𝑍11(𝑠) ⋯ 𝑍1𝑛(𝑠)
⋮ ⋱ ⋮
𝑍𝑛1(𝑠) ⋯ 𝑍𝑛𝑛(𝑠)

], 𝐸(𝑠) = [
𝐸1(𝑠)
⋮
𝐸𝑛(𝑠)

].           (16b) 

 
Example 2. Using the mesh method and the Laplace transform for 

the electrical circuit (with given resistances 𝑅1, 𝑅2, 𝑅3, induct-
ances 𝐿1, 𝐿2 and voltage sources 𝑒1, 𝑒2) shown in Fig. 2 
we obtain: 

[
𝑅1 + 𝑅3 + 𝑠𝐿1 −𝑅3

−𝑅3 𝑅2 + 𝑅3 + 𝑠𝐿2
] [

𝐼1(𝑠)
𝐼2(𝑠)

] = [
𝐸1(𝑠)
𝐸2(𝑠)

],      (17a) 

where 𝐼𝑘(𝑠) = L[𝑖𝑘(𝑡)], 𝐸𝑘(𝑠) = L[𝑒𝑘(𝑡)], 𝑘 = 1,2. 
In this case we have: 

𝑍(𝑠) = [
𝑅1 + 𝑅3 + 𝑠𝐿1 −𝑅3

−𝑅3 𝑅2 + 𝑅3 + 𝑠𝐿2
], 𝑋(𝑠) = [

𝐼1(𝑠)
𝐼2(𝑠)

],  

𝐸(𝑠) = [
𝐸1(𝑠)
𝐸2(𝑠)

].                                                                    (17b) 

Note that: 

det𝑍(𝑠) = |
𝑅1 + 𝑅3 + 𝑠𝐿1 −𝑅3

−𝑅3 𝑅2 + 𝑅3 + 𝑠𝐿2
| = 𝐿1𝐿2𝑠

2

+[(𝑅1 + 𝑅3)𝐿2 + (𝑅2 + 𝑅3)𝐿1]𝑠 + 𝑅1(𝑅2 + 𝑅3) + 𝑅2𝑅3

(18) 

and after multiplication by 
1

𝐿1𝐿2
 we obtain: 

det𝑍(𝑠) = 𝐿1𝐿2det[𝐼2𝑠 − 𝐴1].                                             (19) 

From (19) we have the following conclusion. 

Conclusion 1. The characteristic equation (15) of the electrical 
circuit can be also obtained by computation of the determinant 

of the matrix 𝑍(𝑠) in the mesh method. 

3.3. Node method 

Any linear electrical circuit composed of resistors, coils, ca-
pacitors and voltage (current) sources in transient states can be 
also analyzed by the use of the node method. Using the node 
method and the Laplace transform for zero initial conditions we 
can describe the electrical circuit in transient states by the equa-
tion (Cholewicki, 1967; Kaczorek and Rogowski, 2015): 

𝑌(𝑠)𝑉(𝑠) = 𝐼𝑧(𝑠),                                                                (20a) 

where: 

𝑌(𝑠) = [

𝑌11(𝑠) ⋯ 𝑌1𝑞(𝑠)

⋮ ⋱ ⋮
𝑌𝑞1(𝑠) ⋯ 𝑌𝑞𝑞(𝑠)

], 𝑉(𝑠) = [

𝑉1(𝑠)
⋮
𝑉𝑞(𝑠)

],  

𝐼𝑧(𝑠) = [

𝐼𝑧1(𝑠)
⋮
𝐼𝑧𝑞(𝑠)

],                                     (20b) 

𝑞 is the number of linearly independent nodes, 𝑌𝑖𝑗(𝑠) and 𝑉𝑖(𝑠), 

𝑖, 𝑗 = 1, . . . , 𝑞 are Laplace transforms of conductances and 
current sources of the electrical circuit, respectively. 

 
Fig. 2. Electrical circuit 

Example 3. For the electrical circuit shown in Fig. 2 using the 
node method we obtain: 

𝑌(𝑠)𝑉(𝑠) = 𝐼𝑧(𝑠),                                                                (21a) 

where 𝑉(𝑠) = L[𝑣(𝑡)], 𝐸𝑘(𝑠) = L[𝑒𝑘(𝑡)], 𝑘 = 1,2 and: 

𝑌(𝑠) = 𝑌11(𝑠) =
1

𝑅1+𝑠𝐿1
+

1

𝑅2+𝑠𝐿2
+

1

𝑅3
,

𝐼𝑧(𝑠) =
𝐸1(𝑠)

𝑅1+𝑠𝐿1
+

𝐸2(𝑠)

𝑅2+𝑠𝐿2
.

                              (21b) 

Note that: 

det𝑌(𝑠) = 𝑌(𝑠) =
1

𝑅1+𝑠𝐿1
+

1

𝑅2+𝑠𝐿2
+

1

𝑅3

=
𝐿1𝐿2𝑠2+[(𝑅1+𝑅3)𝐿2+(𝑅2+𝑅3)𝐿1]𝑠+𝑅1(𝑅2+𝑅3)+𝑅2𝑅3

(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)𝑅3

                    (22) 

and after multiplication by  
(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)𝑅3

𝐿1𝐿2
, we obtain: 

det𝑌(𝑠) =
𝐿1𝐿2

(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)𝑅3
det[𝐼2𝑠 − 𝐴1].                      (23) 

From (23) we have the following conclusion. 

Conclusion 2. The characteristic equation (15) of the electrical 
circuit can be also obtained by computation of the determinant 
of the matrix 𝑌(𝑠) in the node method. 

In general case we shall prove the following theorem. 

Theorem 5. The characteristic equation of any linear circuit com-
posed of resistors, coils and capacitors is given in state equations 
method by: 

det[𝐼𝑛𝑠 − 𝐴] = 𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1+. . . +𝑎1𝑠 + 𝑎0 = 0,       (24) 

in mesh method by det𝑍(𝑠) = 0 and in node method by 

det𝑌(𝑠) = 0. 

Proof. Applying the Laplace transform to (1) with zero initial condi-
tions we obtain: 
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𝑋(𝑠) = [𝐼𝑛𝑠 − 𝐴]−1𝐵𝑈(𝑠) =
[𝐼𝑛𝑠−𝐴]𝑎𝑑

det[𝐼𝑛𝑠−𝐴]
𝐵𝑈(𝑠),                 (25) 

where [𝐼𝑛𝑠 − 𝐴]𝑎𝑑 is the adjoint matrix of [𝐼𝑛𝑠 − 𝐴]. 
From (16) we have: 

𝑋(𝑠) = 𝑍−1(𝑠)𝐸(𝑠) =
𝑍𝑎𝑑(𝑠)

det𝑍(𝑠)
𝐸(𝑠).                                    (26) 

Comparing the denominators of (25) and (26) we obtain that 

det[𝐼𝑛𝑠 − 𝐴] = 0 is equivalent to det𝑍(𝑠) = 0. 
From (21a) we have: 

𝑉(𝑠) = 𝑌−1(𝑠)𝐼𝑧(𝑠).                                                              (27) 

Note that knowing 𝑉(𝑠) we can always find such matrix 

𝑃(𝑠) ∈ ℜ𝑛×𝑞(𝑠) that: 

𝑋(𝑠) = 𝑃(𝑠)𝑉(𝑠).                                                                  (28) 

Substituting (27) into (28) we obtain: 

𝑋(𝑠) = 𝑃(𝑠)𝑌−1(𝑠)𝐼𝑧(𝑠) =
𝑃(𝑠)𝑌𝑎𝑑(𝑠)𝐼𝑧(𝑠)

det𝑌(𝑠)
.                         (29) 

Comparing the denominators of (25) and (29) we obtain that 
det[𝐼𝑛𝑠 − 𝐴] = 0 is equivalent to det𝑌(𝑠) = 0. □ 

Remark 1. The characteristic polynomial and characteristic equa-
tion of any linear electrical circuit is independent of the voltage 
(current) sources. Therefore, computing the characteristic equa-
tion (polynomial) of the electrical circuit the voltage (current) 
sources can be assumed as zero. 

Example 4. Consider the electrical circuit shown in Fig. 3 with 

given resistances 𝑅𝑘, 𝑘 = 1, . . . ,5, inductances 𝐿1, 𝐿2, capaci-

tance 𝐶 and source voltages 𝑒1, 𝑒2. 

 
Fig. 3. Electrical circuit of Example 4 

Using the Kirchhoff’s laws for the electrical circuit we can write 
the equations: 

𝑒1 + 𝑒2 = 𝑅11𝑖1 − 𝑅3𝑖2 + 𝑅5𝐶
𝑑𝑢

𝑑𝑡
+ 𝐿1

𝑑𝑖1

𝑑𝑡
,

0 = 𝑅22𝑖2 − 𝑅3𝑖1 + 𝐿2
𝑑𝑖1

𝑑𝑡
,

𝑒2 = 𝑢 + 𝑅33𝐶
𝑑𝑢

𝑑𝑡
+ 𝑅5𝑖1,

                       (30) 

where 𝑅11 = 𝑅1 + 𝑅3 + 𝑅5, 𝑅22 = 𝑅2 + 𝑅3, 𝑅33 = 𝑅4 + 𝑅5. 

The equations (30) can be written in the form: 

[

𝐿1 0 𝑅5𝐶
0 𝐿2 0
0 0 𝑅33𝐶

]
𝑑

𝑑𝑡
[
𝑖1
𝑖2
𝑢

]

= [

−𝑅11 𝑅3 0
𝑅3 −𝑅22 0
−𝑅5 0 −1

] [
𝑖1
𝑖2
𝑢

] + [
1 1
0 0
0 1

] [
𝑒1

𝑒2
] .

                      (31) 

From (31) we have: 

𝑑

𝑑𝑡
[
𝑖1
𝑖2
𝑢

] = 𝐴2 [
𝑖1
𝑖2
𝑢

] + 𝐵2 [
𝑒1

𝑒2
],                                                 (32a) 

where: 

𝐴2 = [

𝐿1 0 𝑅5𝐶
0 𝐿2 0
0 0 𝑅33𝐶

]

−1

[

−𝑅11 𝑅3 0
𝑅3 −𝑅22 0
−𝑅5 0 −1

]

=

[
 
 
 
 

1

𝐿1
(

𝑅5
2

𝑅33
− 𝑅11)

𝑅3

𝐿1

𝑅5

𝐿1𝑅33

𝑅3

𝐿2
−

𝑅22

𝐿2
0

−
𝑅5

𝑅33𝐶
0 −

1

𝑅33𝐶]
 
 
 
 

,

𝐵2 = [

𝐿1 0 𝑅5𝐶
0 𝐿2 0
0 0 𝑅33𝐶

]

−1

[
1 1
0 0
0 1

] =

[
 
 
 

1

𝐿1

1

𝐿1
(1 −

𝑅5

𝑅33
)

0 0

0
1

𝑅33𝐶 ]
 
 
 

.

(32b) 

Note that the electrical circuit is positive if and only if R5 = 0. 
The characteristic equation of the electrical circuit has the 

form: 

det[𝐼3𝑠 − 𝐴2]

=

[
 
 
 
 𝑠 +

1

𝐿1
(𝑅11 −

𝑅5
2

𝑅33
) −

𝑅3

𝐿1
−

𝑅5

𝐿1𝑅33

−
𝑅3

𝐿2
𝑠 +

𝑅22

𝐿2
0

𝑅5

𝑅33𝐶
0 𝑠 +

1

𝑅33𝐶]
 
 
 
 

=
𝐿1𝐿2𝑅33𝐶𝑠3+(𝐿1𝐿2−𝐿2𝑅5

2𝐶+𝐿2𝑅11𝑅33𝐶+𝐿1𝑅22𝑅33𝐶)𝑠2

𝐿1𝐿2𝑅33𝐶

+
(𝐿1𝑅22+𝐿2𝑅11−𝑅22𝑅5

2𝐶−𝑅33𝑅3
2𝐶+𝑅11𝑅22𝑅33𝐶)𝑠+𝑅11𝑅22−𝑅3

2

𝐿1𝐿2𝑅33𝐶
.

     (33) 

Applying to the electrical circuit in Fig. 3 the mesh method we 

choose as the state variables the currents 𝑖1, 𝑖2, 𝐶
𝑑𝑢

𝑑𝑡
 and we 

obtain: 

𝑍(𝑠) = [

𝑅11 + 𝑠𝐿1 −𝑅3 −𝑅5

−𝑅3 𝑅22 + 𝑠𝐿3 0

−𝑅5 0 𝑅33 +
1

𝑠𝐶

],                    (34) 

where 𝑅11 = 𝑅1 + 𝑅3 + 𝑅5, 𝑅22 = 𝑅2 + 𝑅3, 𝑅33 = 𝑅4 + 𝑅5 
and: 

det𝑍(𝑠) =
𝐿1𝐿2𝑅33𝐶𝑠3+(𝐿1𝐿2−𝐿2𝑅5

2𝐶+𝐿2𝑅11𝑅33𝐶+𝐿1𝑅22𝑅33𝐶)𝑠2

𝑠𝐶

+
(𝐿1𝑅22+𝐿2𝑅11−𝑅22𝑅5

2𝐶−𝑅33𝑅3
2𝐶+𝑅11𝑅22𝑅33𝐶)𝑠+𝑅11𝑅22−𝑅3

2

𝑠𝐶
.

(35) 

From comparison of (33) and (35) it follows that the character-
istic equations are equivalent. 

Applying to the electrical circuit in Fig. 3 the node method we 
obtain: 
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𝑌(𝑠) = [

1

𝑅1+𝑠𝐿1
+

1

𝑅2+𝑠𝐿2
+

1

𝑅3
−

1

𝑅1+𝑠𝐿1

−
1

𝑅1+𝑠𝐿1

1

𝑅1+𝑠𝐿1
+

1

𝑅4+
1

𝑠𝐶

+
1

𝑅5

]       (36) 

and: 

det𝑌(𝑠) =
𝐿1𝐿2𝑅33𝐶𝑠3+(𝐿1𝐿2−𝐿2𝑅5

2𝐶+𝐿2𝑅11𝑅33𝐶+𝐿1𝑅22𝑅33𝐶)𝑠2

𝑅3𝑅5(𝑠𝑅4𝐶𝑠+1)(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)

+
(𝐿1𝑅22+𝐿2𝑅11−𝑅22𝑅5

2𝐶−𝑅33𝑅3
2𝐶+𝑅11𝑅22𝑅33𝐶)𝑠+𝑅11𝑅22−𝑅3

2

𝑅3𝑅5(𝑠𝑅4𝐶𝑠+1)(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)
,

  

                                                                                                  (37) 

where: 

 𝑅11 = 𝑅1 + 𝑅3 + 𝑅5, 𝑅22 = 𝑅2 + 𝑅3, 𝑅33 = 𝑅4 + 𝑅5. 

From comparison of (33) and (37) if follows that the character-
istic equations are equivalent. 

4. DESCRIPTOR ELECTRICAL CIRCUITS 

In this section the previous results will be extended to de-
scriptor linear electrical circuits. 

Consider the linear electrical circuit described by the equation: 

𝐸�̇� = 𝐴𝑥 + 𝐵𝑢,                                                                       (38) 

where 𝑥 = 𝑥(𝑡) ∈ ℜ𝑛, 𝑢 = 𝑢(𝑡) ∈ ℜ𝑚 are the state and input 

vectors and 𝐸, 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚. It is assumed that: 

det𝐸 = 0 and det[𝐸𝑠 − 𝐴] ≠ 0 for some 𝑠 ∈ 𝐂 
(the field of complex numbers).                                                 (39) 

Definition 3. The linear electrical circuit described by (38) satisfy-
ing the assumption (39) is called a descriptor (singular) electrical 
circuit. 

Theorem 6. Linear electrical circuit is descriptor if it contains at 
least one mesh consisting of only ideal capacitors and voltage 
sources or at least one node with branches with coils. 

Proof. The proof is given in (Kaczorek and Rogowski, 2015). 

Example 5. Consider the descriptor electrical circuit shown in Fig. 

4 with given resistances 𝑅𝑘, 𝑘 = 1,2,3, inductances 𝐿𝑘, 𝑘 =
1,2,3 and voltage sources 𝑒1, 𝑒2. 

 
Fig. 4. Descriptor electrical circuit of Example 5 

Using the Kirchhoff’s laws we obtain the equations: 

𝑒1 = 𝑅1𝑖1 + 𝐿1
𝑑𝑖1

𝑑𝑡
+ 𝑅3𝑖3 + 𝐿3

𝑑𝑖3

𝑑𝑡
,

𝑒2 = 𝑅2𝑖2 + 𝐿2
𝑑𝑖2

𝑑𝑡
− 𝑅3𝑖3 − 𝐿3

𝑑𝑖3

𝑑𝑡
,
                                    (40) 

which can be written in the form: 

𝐸
𝑑

𝑑𝑡
[

𝑖1
𝑖2
𝑖3

] = 𝐴 [

𝑖1
𝑖2
𝑖3

] + 𝐵 [
𝑒1

𝑒2
],                                                 (41a) 

where: 

𝐸 = [
𝐿1 0 𝐿3

0 𝐿2 −𝐿3

0 0 0

], 𝐴 = [
−𝑅1 0 −𝑅3

0 −𝑅2 𝑅3

1 −1 −1

], 

𝐵 = [
1 0
0 1
0 0

].                                                                          (41b) 

The condition (39) is satisfied since det𝐸 = 0 and: 

det[𝐸𝑠 − 𝐴] = |
𝑅1 + 𝑠𝐿1 0 𝑅3 + 𝑠𝐿3

0 𝑅2 + 𝑠𝐿2 −𝑅3 − 𝑠𝐿3

−1 1 1

|

= [𝐿1(𝐿2 + 𝐿3) + 𝐿2𝐿3]𝑠
2 + [𝐿1𝑅3 + 𝐿3𝑅1 + 𝐿2(𝑅1 + 𝑅3)

+(𝐿1 + 𝐿3)𝑅2]𝑠 + 𝑅1𝑅3 + 𝑅2(𝑅1 + 𝑅2) ≠ 0.
(42) 

Therefore, the characteristic equation of the electrical circuit 
has the form: 

𝑠2 +
𝐿1𝑅3+𝐿3𝑅1+𝐿2(𝑅1+𝑅3)+(𝐿1+𝐿3)𝑅2

𝐿1(𝐿2+𝐿3)+𝐿2𝐿3
𝑠

+
𝑅1𝑅3+𝑅2(𝑅1+𝑅2)

𝐿1(𝐿2+𝐿3)+𝐿2𝐿3]
= 0

.                                  (43) 

The descriptor electrical circuit shown in Fig. 4. is positive if 

𝑖𝑘(𝑡) ≥ 0, 𝑘 = 1,2,3 for any initial conditions 𝑖𝑘(0) ≥ 0, 

𝑘 = 1,2,3 and all 𝑒𝑖(𝑡) ≥ 0, i = 1,2 for 𝑡 ≥ 0. 
Substituting 𝑖1(𝑡) = 𝑖2(𝑡) + 𝑖3(𝑡) into (40) we obtain: 

[
𝐿1 𝐿1 + 𝐿3

𝐿2 −𝐿3
]

𝑑

𝑑𝑡
[
𝑖2
𝑖3

] = [
−𝑅1 −(𝑅1 + 𝑅3)
−𝑅2 𝑅3

] [
𝑖2
𝑖3

] + [
𝑒1

𝑒2
]  

                                                                                                  (44) 
and: 

𝑑

𝑑𝑡
[
𝑖2
𝑖3

] = �̅� [
𝑖2
𝑖3

] + �̅� [
𝑒1

𝑒2
],                                                    (45a) 

where: 

�̅� = [
𝐿1 𝐿1 + 𝐿3

𝐿2 −𝐿3
]
−1

[
−𝑅1 −(𝑅1 + 𝑅3)
−𝑅2 𝑅3

]

= [

𝑅1𝐿3+𝑅2(𝐿1+𝐿3)

𝐿1𝐿3+𝐿2(𝐿1+𝐿3)

(𝑅1+𝑅3)𝐿2−𝑅3𝐿1

𝐿1𝐿3+𝐿2(𝐿1+𝐿3)

𝑅1𝐿2−𝑅2𝐿1

𝐿1𝐿3+𝐿2(𝐿1+𝐿3)

(𝑅1+𝑅3)𝐿2−𝑅3𝐿1

𝐿1𝐿3+𝐿2(𝐿1+𝐿3)

] ,

�̅� = [
𝐿1 𝐿1 + 𝐿3

𝐿2 −𝐿3
]
−1

=
1

𝐿1𝐿3+𝐿2(𝐿1+𝐿3)
[
𝐿3 𝐿1 + 𝐿3

𝐿2 −𝐿1
] .

 (45b) 

From (45b) it follows that A̅ ∈ M2 if and only if (R1 +
R3)L2 ≥ R3L1 and R1L2 ≥ R2L1, and B̅ ∈ ℜ+

2×2 if and only if 
L1 = 0. 

Therefore, the descriptor electrical circuit is not positive for all 

values of the resistances 𝑅𝑘, 𝑘 = 1,2,3 and inductances 𝐿𝑘 , 
𝑘 = 1,2,3. 

Using the mesh method to the electrical circuit we obtain 

𝑍(𝑠) = [
𝑅1 + 𝑅3 + 𝑠(𝐿1 + 𝐿3) −𝑅3 − 𝑠𝐿3

−𝑅3 − 𝑠𝐿3 𝑅2 + 𝑅3 + 𝑠(𝐿2 + 𝐿3)
]  

(46) 
and: 
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(49) 

(57) 

det𝑍(𝑠) = [𝑅1 + 𝑅3 + 𝑠(𝐿1 + 𝐿3)][𝑅2 + 𝑅3 + 𝑠(𝐿2 + 𝐿3)]

−(𝑅3 + 𝑠𝐿3)
2 = [𝐿1(𝐿2 + 𝐿3) + 𝐿2𝐿3]𝑠

2

+[𝐿1𝑅3 + 𝐿3𝑅1 + 𝐿2(𝑅1 + 𝑅3) + (𝐿1 + 𝐿3)𝑅2]𝑠

+𝑅1𝑅3 + 𝑅2(𝑅1 + 𝑅2).

      

From comparison of (42) and (47) it follows that the character-
istic equation obtained in the mesh method is identical with (43). 

Using the node method to the electrical circuit we obtain: 
 

𝑌(𝑠) =
1

𝑅1+𝑠𝐿1
+

1

𝑅2+𝑠𝐿2
+

1

𝑅3+𝑠𝐿3
                                          (48) 

and: 

det𝑌(𝑠) =
(𝑅2+𝑠𝐿2)(𝑅3+𝑠𝐿3)+(𝑅1+𝑠𝐿1)(𝑅3+𝑠𝐿3)+(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)

(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)(𝑅3+𝑠𝐿3)

=
𝐿1(𝐿2+𝐿3)+𝐿2𝐿3]𝑠2+[𝐿1𝑅3+𝐿3𝑅1+𝐿2(𝑅1+𝑅3)+(𝐿1+𝐿3)𝑅2]𝑠

(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)(𝑅3+𝑠𝐿3)

+
𝑅1𝑅3+𝑅2(𝑅1+𝑅2)

(𝑅1+𝑠𝐿1)(𝑅2+𝑠𝐿2)(𝑅3+𝑠𝐿3)
.

        

Therefore, the characteristic equation obtained in the node 
method is identical with (43). 

In general case we have the following theorem. 
 
Theorem 7. The characteristic equations of the descriptor linear 
electrical circuit composed of resistors, coils and capacitors ob-
tained by the state space method, mesh method and node method 
are equivalent. 
 
Proof. The proof is similar to the proof of Theorem 5. 

5. CHARACTERISTIC EQUATIONS OF FRACTIONAL 
ELECTRICAL CIRCUITS 

5.1. State space method 

Consider the fractional linear electrical circuit described by (7) 

for Bu(t) = 0. Applying to the equation (7) the Laplace transform 
and taking into account that: 

L[𝐷α𝑥(𝑡)] = 𝑠α𝑋(𝑠) − 𝑠1−α𝑥(0)                                       (50) 

for 𝑥(0) = 0 we obtain: 

[𝐼𝑛𝑠α − 𝐴]𝑋(𝑠) = 0.                                                             (51) 

The characteristic polynomial of the electrical circuit (of matrix 
A) has the form: 

𝑝(𝑠α) = det[𝐼𝑛𝑠α − 𝐴]

= (𝑠α)𝑛 + 𝑎𝑛−1(𝑠
α)𝑛−1+. . . +𝑎1𝑠

α + 𝑎0
                          (52) 

and its characteristic equation 𝑝(𝑠α) = 0. 
 
Example 6. Consider the fractional electrical circuit shown in Fig. 

5 with given resistances 𝑅1, 𝑅2, 𝑅3, capacitances 𝐶1, 𝐶2 and 
source voltage 𝑒. 

Using the Kirchhoff’s laws we obtain the equations: 

𝑒 = 𝑅1𝐶1
𝑑α𝑢1

𝑑𝑡α
+ 𝑢1 + 𝑅3 (𝐶1

𝑑α𝑢1

𝑑𝑡α
+ 𝐶2

𝑑α𝑢2

𝑑𝑡α
) ,

𝑒 = +𝑅3 (𝐶1
𝑑α𝑢1

𝑑𝑡α
+ 𝐶2

𝑑α𝑢2

𝑑𝑡α
) + 𝑢2 + 𝑅2𝐶2

𝑑α𝑢2

𝑑𝑡α

                   (53) 

which can be written in the form: 

[
(𝑅1 + 𝑅3)𝐶1 𝑅3𝐶2

𝑅3𝐶1 (𝑅2 + 𝑅3)𝐶2
]

𝑑α

𝑑𝑡α
[
𝑢1

𝑢2
]

= [
−1 0
0 −1

] [
𝑢1

𝑢2
] + [1

1
] 𝑒

.                                 (54) 

 
Fig. 5. Electrical circuit of Example 6 

Premultiplying (54) by the inverse matrix: 

[
(𝑅1 + 𝑅3)𝐶1 𝑅3𝐶2

𝑅3𝐶1 (𝑅2 + 𝑅3)𝐶2
]
−1

=
1

Δ
[
(𝑅2 + 𝑅3)𝐶2 −𝑅3𝐶2

−𝑅3𝐶1 (𝑅1 + 𝑅3)𝐶1
] ,

Δ = [𝑅1(𝑅2 + 𝑅3) + 𝑅2𝑅3]𝐶1𝐶2

                                      (55) 

we obtain: 

𝑑α

𝑑𝑡α [
𝑢1

𝑢2
] = 𝐴 [

𝑢1

𝑢2
] + 𝐵𝑒,                                                       (56a) 

where: 

𝐴 = [
−

𝑅2+𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1

𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1

𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶2
−

𝑅1+𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶2

] ,

𝐵 = [

𝑅2

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1

𝑅1

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶2

] .

         (56b) 

From (56b) it follows that the fractional electrical circuit is posi-

tive since A ∈ M2 and B ∈ ℜ+
2  for all nonzero values of the 

resistances and capacitances. 
The characteristic equation of the matrix A has the form: 

det[𝐼2λ − 𝐴]

= [
λ +

𝑅2+𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1
−

𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1

−
𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶2
λ +

𝑅1+𝑅3

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶2

]

= λ2 +
(𝑅1+𝑅3)𝐶1+(𝑅2+𝑅3)𝐶2

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2
λ +

1

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2
= 0,

  

where λ = 𝑠α. 

5.2. Mesh method 

Using the mesh method and the Laplace transform for zero in-
itial conditions the fractional linear electrical circuits in transient 
states can be described by the equation: 

𝑍(λ)𝑋(λ) = 𝐸(λ), λ = 𝑠α                                                   (58a) 

where: 𝑋(λ) = L[𝑥(𝑡)] is the Laplace transform of the mesh 
currents. 

(47) 
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𝑍(λ) = [
𝑍11(λ) ⋯ 𝑍1𝑛(λ)
⋮ ⋱ ⋮
𝑍𝑛1(λ) ⋯ 𝑍𝑛𝑛(λ)

], 𝐸(λ) = [
𝐸1(λ)
⋮
𝐸𝑛(λ)

].           (58b) 

 

Example 7. For the fractional electrical circuit shown in Fig. 5. 
using the mesh method and the Laplace transform for zero initial 
conditions we obtain: 

[
𝑅1 + 𝑅3 +

1

λ𝐶1
𝑅3

𝑅3 𝑅2 + 𝑅3 +
1

λ𝐶2

] [
𝐼1(λ)
𝐼2(λ)

] = [
𝐸(λ)
𝐸(λ)

],         (59) 

where: 𝐼𝑘(λ) = L[𝑖𝑘(𝑡)], 𝐸(λ) = L[𝑒(𝑡)], 𝑘 = 1,2. 
In this case: 

𝑍(λ) = [
𝑅1 + 𝑅3 +

1

λ𝐶1
𝑅3

𝑅3 𝑅2 + 𝑅3 +
1

λ𝐶2

]                           (60) 

and: 

det𝑍(λ) = |
𝑅1 + 𝑅3 +

1

λ𝐶1
𝑅3

𝑅3 𝑅2 + 𝑅3 +
1

λ𝐶2

|

=
[(𝑅1+𝑅3)λ𝐶1+1][(𝑅2+𝑅3)λ𝐶2+1]−𝑅3

2𝐶1𝐶2λ2

λ2𝐶1𝐶2

= [
λ2 +

(𝑅1+𝑅3)𝐶1+(𝑅2+𝑅3)𝐶2

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2
λ

+
1

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2

]

× [𝑅1(𝑅2 + 𝑅3) + 𝑅2𝑅3] = 0.

                      (61) 

Dividing (61) by R1(R2 + R3) + R2R3 we obtain the char-

acteristic equation (57). Therefore, det[I2λ − A] = 0 and 

detZ(λ) = 0 represent the same characteristic equation of the 
fractional electrical circuit shown in Fig. 5. 

5.3. Node method 

Using the node method and the Laplace transform for zero ini-
tial conditions the fractional linear electrical circuits in transient 
states can be described by the equation: 

𝑌(λ)𝑉(λ) = 𝐼𝑧(λ), λ = 𝑠α                                                   (62a) 

where: 

𝑌(λ) = [

𝑌11(λ) ⋯ 𝑌1𝑞(λ)

⋮ ⋱ ⋮
𝑌𝑞1(λ) ⋯ 𝑌𝑞𝑞(λ)

], 𝑉(λ) = [

𝑉1(λ)
⋮
𝑉𝑞(λ)

], 

𝐼𝑧(λ) = [

𝐼𝑧1(λ)
⋮
𝐼𝑧𝑞(λ)

],                                                                   (62b) 

q is the number of linearly independent nodes, Yij(λ) and Vi(λ), 

i, j = 1, . . . , q are Laplace transforms of conductances and cur-
rent sources of the electrical circuit, respectively. 
 

Example 8. For the fractional electrical circuit shown in Fig. 6 
using the node method and the Laplace transform for zero initial 
conditions we obtain (62) with: 

𝑌(𝑠) = 𝑌11(𝑠) =
1

𝑅1+
1

λ𝐶1

+
1

𝑅2+
1

λ𝐶2

+
1

𝑅3

=
𝐶1λ

1+𝑅1𝐶1λ
+

𝐶2λ

1+𝑅2𝐶2λ
+

1

𝑅3

                                  (63) 

and 𝐼𝑧(λ) =
𝐸(λ)

𝑅3
. 

 
Fig. 6. Electrical circuit 

From (63) we have: 

det𝑌(λ) =

λ2[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2+λ[(𝑅1+𝑅3)𝐶1+(𝑅2+𝑅3)]𝐶2+1

(1+𝑅1𝐶1λ)(1+𝑅2𝐶2λ)𝑅3

= 0

                   (64) 

and: 

λ2 +
(𝑅1+𝑅3)𝐶1+(𝑅2+𝑅3)𝐶2

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2
λ

+
1

[𝑅1(𝑅2+𝑅3)+𝑅2𝑅3]𝐶1𝐶2
= 0

.                                                    (65) 

Therefore, detY(λ) = 0 the same characteristic equation 
of the fractional electrical circuit as the equation (57). 

In general case we have the following theorem. 
 

Theorem 8. The characteristic equation of any fractional linear 
electrical circuit in the state space method det[𝐼𝑛λ − 𝐴] = 0, in 

the mesh method det𝑍(λ) = 0 and in the node method 

det𝑌(λ) = 0 is the same. 
 
Proof. The proof is similar to the proof of Theorem 5. 
 

The considerations presented in section 4 can be easily ex-
tended to the fractional descriptor linear electrical circuits. 

6. CONCLUDING REMARKS 

The problem of calculation of the characteristic equations 
of the standard positive and descriptor linear electrical circuits 
of integer and fractional orders has been addressed. It has been 
shown that the characteristic equations of standard and descriptor 
linear electrical circuits are independent of the method used in 
their analysis. The state space method, the mesh method and the 
node method have been analyzed (Theorems 5 and 8). The 
results obtained for standard linear electrical circuits can be 
extended to the fractional linear electrical circuits by substituting 𝑠 

by λ = 𝑠α, where α is the order of the fractional differential 
equation. The considerations have been illustrated by examples of 
standard and descriptor linear electrical circuits. 
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