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Abstract: The paper analyses the possibility of using analytical methods of notch stress-strain correction in low-cycle fatigue life  
predictions of steam turbine rotors operating under non-isothermal conditions. The assessment was performed by comparing strain  
amplitudes calculated using the Neuber and Glinka-Molski methods and those predicted by the finite element analysis (FEA) employing 
elastic-plastic material model. The results of investigations reveal that the Neuber method provides an upper bound limit, while the Glinka-
Molski method results in a lower bound limit of strain amplitude. In the case of rotor heat grooves, both methods provide equally accurate 
results of notch strain amplitude and are suited to estimating lower and upper bound limits of low-cycle fatigue life under non-isothermal 
conditions. 
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1. INTRODUCTION 

Steam turbine rotors operating at high temperature are subject 
to creep and/or fatigue damage which leads to crack initiation and 
propagation during long-term operation (Viswanathan, 1989). 
When a crack reaches a critical size, its uncontrolled propagation 
may lead to catastrophic failure, and that is why cracking in rotat-
ing components should be avoided for safety reasons. 

Fatigue crack initiation in steam turbine rotors can occur after 
less than 1000 cycles  (Banaszkiewicz, 2018) and is caused by 
high thermal stresses induced by temperature gradients devel-
oped during transient operating conditions like start-ups, shut-
downs or load changes. The stresses may exceed the proof 
stress of material at the regions of stress concentration resulting 
in development of local plastic deformation. 

Steam turbines of large power output are of multi-cylinder de-
sign and typically consist of high pressure (HP), intermediate 
pressure (IP) and low pressure (LP) cylinders (Fig. 1). The HP 
and IP modules are fed with live and reheat steam, respectively, 
which has high nominal temperature changing during the turbine 
start-up from initial to rated values. Temperature changes are 
accompanied by steam pressure and mass flow rate variations 
giving rise to non-stationary thermal loading of steam turbine 
components. These high thermal loads in conjunction with large 
component dimensions (i.e. diameters and wall thicknesses) 
generate non-uniform temperature fields with high thermal gradi-
ents. Cyclic generation of thermal stresses occuring during start-
ups and shutdowns may lead to crack initiation in thick-walled 
elements like rotors, casings or valve chests due to thermal fa-
tigue. 

Thermal fatigue cracking of steam turbine components is not 
the only technical problem related with turbine operation. Various 

thermal and mechanical inertia effects influence the operational 
characteristics of steam turbines and require dynamic models for 
accurate predictions of transient states (Celins et al., 2017). Dif-
ferences in thermal expansion between rotors and casings result 
in altered axial clearances and their unsafe decrease during tur-
bine operation must be avoided (Kosman et al., 2009). Mechani-
cal contact between rotating and stationary elements occuring due 
to loss of clearance may lead to excessive vibration and material 
damage. Also rotor and blade vibrations affect turbine reliable 
operation and are subject to detailed analysis at the design phase 
and to online monitoring during turbine operation (Koneko et al., 
2017). Rotordynamic analyses are performed at a very early stage 
of turbine design in order to avoid unsafe rotor resonances at 
various operating conditions. Dynamic excitations due to steam 
flow and rotor rotation are present in the steam path and adversly 
affect the turbine blading life. 

There are specific areas on steam turbine rotors which are 
particularly susceptible to thermal fatigue cracking. These areas 
are characterized by geometrical irregularities, like grooves or 
transition radii and are subject to steam of high and quickly chang-
ing temperature. Locations where thermal fatigue cracks in im-
pulse rotors were found are schematically shown in Fig. 2.  

Transient temperature and stress distribution in turbine rotors 
can be accurately determined with the help of finite element mod-
els. Such models are routinely used in design calculations where 
typical operating conditions are simulated. However, such an 
approach becomes unsuitable for online calculations or analysis 
of long-term service conditions, and analytical methods for stress-
strain correction are used for such purposes (Banaszkiewicz, 
2015; 2016; 2018; Ince and Glinka, 2013; 2016; Ince at al., 2014). 

The Neuber rule (Neuber, 1961) and Glinka-Molski method 
(Molski and Glinka, 1981) are the most commonly used ap-
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proaches in analysing elastic-plastic strains and stresses at notch 
tip. The methods have been employed for calculating stress-strain 
histories and fatigue life of components subjected to multiaxial 
loading (Buczyński and Glinka, 1997; 2001; Ince, 2016, 2017; 
Ince and Bang, 2017; Moftakhar et al., 1995). In all cases, the 
loading was non-proportional and applied at constant tempera-
ture. The Neuber rule has also been used to determine stress-

strain evolution in a notched specimen at non-isothermal condi-
tions (Gordon et al., 2008) and to compute thermal stresses in 
turbine casings (Gehlot et al., 2012). Both analytical methods 
have also been applied to predict fatigue crack initiation life in high 
strength structural steel welded joints based on local stress and 
strain ranges (Tricoteaux et al., 2007).  

 
Fig. 1. Longitudinal section of large power output steam turbine

 
Fig. 2. Typical location of fatigue cracking in impulse rotors 

It is commonly known that in most cases Glinka-Molski meth-
od underestimates the notch tip stresses and strains, while the 
Neuber rule tends to overestimate the notch stress/strain (Shin et 
al., 1994). However, predictions of both methods are similar for 
the distributions of stress and strain ahead of a notch tip where 
both fields are considerably underestimated by analytical methods 
(Guo et al., 1998).  

This paper analyses the use of these methods to determining 
elastic-plastic strain amplitudes which are required in low-cycle 
fatigue analysis under thermomechanical loading conditions. 
Numerical calculations are performed for U-shape circumferential 
grooves used in steam turbine rotors which are known to be prone 
to fatigue cracking originating from the bottom surfaces of the 
grooves. 

2. NOTCH STRESS-STRAIN CORRECTION METHODS 

Thermoelastic notch stresses in the areas of fatigue cracking 
exceed the material yield stress and consideration of elastic-
plastic material response is crucial for proper estimation of fatigue 
life. The most commonly used methods for elastic-plastic stress-
strain correction basing on the elastic solution are Neuber’s rule 

and Glinka-Molski equivalent strain energy density method. In 
case of multi-axial state of stress and strain, extended Neuber rule 
is used (Hoffmann and Seeger, 1985):  

𝜎𝑒𝑞𝜀𝑒𝑞 = 𝜎𝑒𝑞
𝑒 𝜀𝑒𝑞

𝑒   (1) 

where: 𝜎𝑒𝑞  – equivalent stress, εeq – equivalent strain,  

𝜎𝑒𝑞
𝑒  – equivalent stress obtained from elastic solution,   

𝜀𝑒𝑞
𝑒  – equivalent strain obtained from elastic solution. The equiva-

lent strains are defined using mechnical strain components. 
Similarly, Glinka-Molski method was extended for multi-axial 

state of stress using the definition of strain energy density (Mof-
takhar et al., 1995):  

1

2
𝜎𝑒𝑞

𝑒 𝜀𝑒𝑞
𝑒 = ∫ 𝜎𝑒𝑞𝑑𝜀𝑒𝑞

𝜀𝑒𝑞

0
  (2) 

Graphical interpretation of both methods for elastic-linear 
strain hardening material is given in Fig. 3 and 4. Neuber rule (Fig. 
3) assumes the equality of the total strain energy density at the 

notch tip in elastic (grey area under 𝜎𝑒𝑞
𝑒 − 𝐴 − 𝜀𝑒𝑞

𝑒  curve) and 

elastic-plastic state (shaded area under 𝜎𝑒𝑞 − 𝐵 − 𝜀𝑒𝑞  curve). 

The total strain energy density is defined as the sum of the strain 
energy density and the complementary strain energy density. 

Glinka-Molski method (Fig. 4) assumes the equality between 
the strain energy density at the notch tip of a linear elastic body 

(grey area under elastic curve under 𝜎𝑒𝑞
𝑒 − 𝜀𝑒𝑞

𝑒  ) and the strain 

energy density at the notch tip of a geometrically identical elastic-
plastic body (grey area under elastic-plastic stress-strain curve  
𝜎𝑒𝑞 − 𝜀𝑒𝑞 ) subjected to the same load. 

The formulations of Neuber’s rule and Glinka-Molski’s method 
given by equation (1) and (2) are based on the equivalent stress 
and strain, and neglect the contribution of dilatation energy repre-
senting the influence of mean stress. 

The equivalent stress  𝜎𝑒𝑞  is expressed by the deviatoric 

stress components 𝑠𝑖𝑗  (Bednarski, 1995): 
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𝜎𝑒𝑞 = √3
2⁄ 𝑠𝑖𝑗𝑠𝑖𝑗    (3) 

and the equivalent strain  𝜀𝑒𝑞  is defined by the deviatoric strain 

components eijwith energy conjugate strain definition: 

𝜀𝑒𝑞 = √2
3⁄ 𝑒𝑖𝑗𝑒𝑖𝑗    (4) 

 
Fig. 3. Graphical interpretation of the Neuber rule 

 
Fig. 4. Graphical interpretation of the Glinka-Molski method 

For proportional loading conditions and multiaxial state of 
stress, the equivalent strain can be expressed as a sum of equiva-

lent elastic strain 𝜀𝑒𝑞
𝑒  and equivalent plastic strain 𝜀𝑒𝑞

𝑝
 (Harkegard 

and Mann, 2003) 

𝜀𝑒𝑞 = 𝜀𝑒𝑞
𝑒 + 𝜀𝑒𝑞

𝑝
  (5) 

The equivalent elastic strain is defined as 

𝜀𝑒𝑞
𝑒 =

𝜎𝑒𝑞
3𝐺⁄   (6) 

where 𝐺 is shear modulus, and the equivalent plastic strain in 
linear kinematic model can be expressed as 

𝜀𝑒𝑞
𝑝

= (𝜎𝑒𝑞 − 𝜎𝑦) 𝐶⁄   (7) 

where 𝜎𝑦 is material proof stress, and C is a kinematic hardening 

parameter. 
For cyclic stress-strain analysis, equations (1) and (2) are re-

written for the corresponding stress and strain amplitudes (Zeng 
and Fatemi, 2001, Banaszkiewicz, 2015) 

𝜎𝑒𝑞,𝑎𝜀𝑒𝑞,𝑎 = 𝜎𝑒𝑞,𝑎
𝑒 𝜀𝑒𝑞,𝑎

𝑒   (8) 

1

2
𝜎𝑒𝑞,𝑎

𝑒 𝜀𝑒𝑞,𝑎
𝑒 = ∫ 𝜎𝑒𝑞,𝑎𝑑𝜀𝑒𝑞,𝑎

𝜀𝑒𝑞,𝑎

0
  (9) 

The above two equations were used to determine elasto-
plastic strain amplitudes at the notch tip based on the stress and 
strain histories obtained from elastic material response. 

3. ELASTIC-PLASTIC MATERIAL MODEL 

Constitutive material behaviour can be described using vari-
ous incremental plasticity models (Armstrong and Frederick, 1966; 
Chaboche, 1986; Garud, 1981; Mróz, 1967). Practical application 
of these cyclic plasticity models is often difficult due to significant 
number of material constants which have to be determined from 
cyclic tests. 

For numerical calculations performed using a finite element 
method, simple plasticity model with the Prager-Ziegler linear 
kinematic hardening was adopted. The plasticity surface is de-
fined by the Huber-Mises yield criterion 

𝐹 = 𝑓(𝜎𝑖𝑗 − 𝛼𝑖𝑗) − 𝜎𝑦 = 0  (10) 

where f(σij − αij) is the equivalent stress related to the back-

stress αij defining translation of the yield surface. The yield func-

tion is traditionally defined by the formula 

𝑓(𝜎𝑖𝑗 − 𝛼𝑖𝑗) = √3
2⁄ (𝑠𝑖𝑗 − 𝛼𝑖𝑗

𝑑 )(𝑠𝑖𝑗 − 𝛼𝑖𝑗
𝑑 )  (11) 

where sij is a deviatoric part of the stress tensor σij, while αij
d 

is  a deviatoric part of the backstress tensor αij. 

The linear kinematic hardening model assumes the associat-
ed plastic flow rule given by the following formula: 

𝜀𝑖̇𝑗
𝑝

= 𝜆̇
𝜕𝐹

𝜕𝜎𝑖𝑗
= 𝜆̇(𝑠𝑖𝑗 − 𝛼𝑖𝑗

𝑑 )  (12)  

where 𝜀𝑖̇𝑗
𝑝

  denotes a plastic flow rate and 𝜆̇ stands for a plastic 

work. The rate of the backstress tensor is described by Ziegler’s 
linear hardening law 

𝛼𝑖𝑗̇ = 𝜇̇(𝜎𝑖𝑗 − 𝛼𝑖𝑗)  (13) 

where 𝜇 is a positive scalar coefficient. 

4. FINITE ELEMENT ANALYSIS OF TURBINE ROTOR 

A steam turbine rotor was adopted for evaluation of both ana-
lytical methods of the notch tip stresses-strain correction. Thermal 
boundary conditions were prepared for design start-up diagrams 
from a cold (CS), warm (WS) and hot start (HS), as well as for 
shutdown (SD). Transient thermal analyses were then carried out 
in order to determine instantaneous temperature distributions 
in the rotor during the mentioned above start-ups and shutdown. 
Fig. 5 presents an example of temperature distribution at an early 
phase of the cold start. The resulting thermomechanical stresses 
including stress components due to mechanical loading are 
shown in Fig. 6. As shown in the red box, thermoelastic stress-
es are concentrated at the tip of circumferential heat grooves. It 
results from significant temperature gradients in the radial direc-
tion and stress concentration due to geometrical notch. The elas-
tic stresses are different in each groove, even though they have 
exactly the same geometry (the same notch factor).  
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Fig. 5. Rotor temperature distribution at early phase of cold start 

 

Fig. 6. Rotor equivalent stress distribution at early phase of cold start 

Fig. 7 presents an example of temperature and stress 
variation in groove G1 and G3 during cold start-up. Temperature 
in both grooves increases at almost the same rate, but the 
equivalent Huber-Mises stress in groove G3 is much higher than 
the stress in groove G1. Detailed analysis of variation of the 
deviatoric stress components in the rotor heat grooves 
(Banaszkiewicz, 2018) has shown that the deviatoric stresses 
remain in nearly fixed proportions during the analysed start-stop 
cycles and consequently the loading can be assumed 
proportional. In such a case, stress/strain analyses can be 
performed using Hencky’s equations. 

 
Fig. 7. Temperature and stress variations in groove G1 and G3   
            during cold start 

In stress-life or strain-life approaches, both the stress/strain 
amplitude and ratio are required for determining the number of 
cycles to cracking. The stress ratios were calculated for the two 
non-zero stress components in the grooves using the stresses 
obtained in elastic and elastic-plastic analyses. As an example, 
Table 1 presents the stress ratios obtained for heat groove 4. It is 
clearly seen that in all cases, the axial and circumferential stress 
ratios both in elastic and elastic-plastic condition are lower than 
minus 1. The elastic material model results in higher ratios and 
they assume higher values for the circumferential stress compo-
nent. The low-cycle fatigue life assessment of the heat grooves 
can thus be safely performed using the strain life approach and 

fatigue data with zero mean stress (R = -1) which are usually 
easily available for typical rotor materials. 

Tab. 1. Stress ratios in heat groove 4 for different start-stop cycles 

Cycle 
type 

Stress ratio [-] 

Axial 
elastic 

Axial 
elastic-
plastic 

Circumferential 
elastic 

Circumferential 
elastic-plastic 

Cold -1.29 -1.22 -1.58 -1.26 

Warm -1.62 -1.21 -2.02 -1.35 

Hot -1.58 -1.01 -2.05 -1.18 

 
 
During transient operating conditions, plastic deformation oc-

curs at the bottom of heat grooves as it is shown in Fig. 8 for 
groove 1 and 4. The size of the plastic deformation zone is very 
small and the maximum plastic strains occur at the bottom of the 
groove nearly at its plane of symmetry. At this area thermoelastic 
stresses attain maximum values. The size of the plastic zone 
is different in all grooves due to different stresses and tempera-
tures, but its shape is similar.  

 
Fig. 8. Equivalent plastic strain distribution in heat groove 1 (left)  
             and 3 (right) after 3rd hot start cycle 

5. NOTCH STRAIN AMPLITUDE CORRECTION 

The analytical methods of stress-strain correction assume the 
equivalence of strain energy density in the actual elastic-plastic 
body and in geometrically identical pseudo-elastic body (Mof-
takhar et al., 1995). The methods are based on the assumption, 
that in the case of small-scale plastic yielding near the notch tip, 
the plastic zone is controlled by the surrounding elastic stress field 
and the energy density distribution in the plastic zone is almost 
the same as that in a linear elastic material (Zeng and Fatemi, 
2001). This assumption enables  to relate the notch tip strains and 
stresses in pseudo-elastic and elastic-plastic conditions. The 
Neuber rule represents the equality of the total strain energy (the 
strain energy and the complimentary strain energy density) at the 
notch tip, while the Glinka-Molski method considers only the strain 
energy density. 

Before applying the approximate methods of notch tip stress 
and strain evaluation, the behaviour of strain energy densities 
during thermal cycling was investigated in order to check their 
equivalence in pseudo-elastic and elastic-plastic state. The total 
strain energy density variations in groove 3 during the cold start 
cycle are shown in Fig. 9. The curves representing pseudo-elastic 
and elastic-plastic energy coincide until first yielding occurs and 
then start to diverge. Most of the time, the elastic energy exceeds 
the elastic-plastic one, which is also the case at the extremum 
points of the energy curves. The difference between the energies 
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is generally at the level of several percent. Similar behaviour was 
found for all the remaining grooves and other types of starts, 
confirming that this is a characteristic feature of this rotor. 

 
Fig. 9. Total strain energy variation in groove 3 during cold start 

 
Fig. 10. Stress-strain hysteresis loops obtained from elastic-plastic 

analysis of the cold, warm and hot start 

Strain amplitudes were determined from the stabilized stress-
strain hysteresis loops calculated using the elastic-plastic material 
model. Fig. 10 presents the hysteresis loops obtained for the 
complete cycles including cold, warm and hot start-up and the 
subsequent shutdown phase. The calculated strain range is dif-
ferent for each start-stop cycle and the differences result form the 
start-up sections (compressive stress) of the curves. The shut-
down stress is positive (tensile stress) and assumes the same 
value for different cycles. 

Equations (8) and (9) can be transformed to quadratic equa-
tions using the strain definitions (5)÷(7) under the assumption of 
linearly kinematic hardening material and proportional loading 
conditions (Lemaitre and Desmorat, 2005):  

 for Neuber rule: 

𝐶𝜀𝑒𝑞,𝑎
2 + (𝜎𝑦 − 𝐶𝜎𝑦/3𝐺)𝜀𝑒𝑞,𝑎 − (𝜎𝑒𝑞,𝑎

𝑒 )
2

/3𝐺 = 0  (14) 

 for Glinka-Molski method: 

𝐶𝜀𝑒𝑞,𝑎
2 + (2𝜎𝑦 − 2𝐶𝜎𝑦/3𝐺)𝜀𝑒𝑞,𝑎 + 

[𝐶(𝜎𝑦)
2

− 3𝐺(𝜎𝑒𝑞,𝑎
𝑒 )

2
− 3𝐺(𝜎𝑦)

2
] /9𝐺2 = 0  (15) 

The above two equations can be solved analytically by means 

of the discriminant method to obtain the strain amplitudes in the 

elastic-plastic state 𝜀𝑒𝑞,𝑎. The existence of analytical solutions for 

strain amplitude is very important from the perspective of practical 
application to fatigue life analysis. Analytical expression for the 
strain amplitude can be used in lifetime calculations when a large 
number of cycles is to be analysed or for online monitoring 
of fatigue damage. 

 
Fig. 11. Strain amplitudes determined with analytical methods  
              and FEA of stabilised cycle 

The elastic-plastic hysteresis loops and thermoelastic stress 
variations were used to determine the strain amplitudes for all 
grooves and start-up types. Fig. 11 presents the analytically calcu-
lated strain amplitudes with the corresponding amplitudes ob-
tained from elastic-plastic material model. The dashed lines rep-
resent maximum deviations of each method from the elastic-
plastic FE predictions. All the grooves with plastic deformation 
were considered in the analyses and in total 18 points are plotted 
for each method. 

As it is seen in Fig. 11, the Neuber method overpredicts the 
strain amplitude and the maximum deviation attains +20%. At the 
same time, the strain amplitudes obtained from the Glinka-Molski 
method are below the values computed in elastic-plastic FEA. 
The maximum error is in this case below -18%. The average error 
of strain amplitude estimation calculated for all points in Fig. 11 is 
+13% for the Neuber rule and -10% for the Glinka-Molski method. 

It can be observed from the figure that the absolute difference 
between both methods increases with increasing strain ampli-
tudes. The results also confirm a generally observed behaviour 
that the Neuber method provides an upper bound limit of strain 
amplitude, while the Glinka-Molski method results in a lower 
bound limit. From a viewpoint of strain amplitude accuracy both 
methods are equivalent and can be used for estimating lower and 
upper bound limits of fatigue life of heat grooves under thermo-
mechanical loading conditions. 

6. FATIGUE LIFE ESTIMATION 

Fatigue life assessment was performed using the strain ampli-
tudes obtained analytically from equation (14) and (15), as well as 
from the hysteresis loops calculated with the help of the elastic-
plastic material model described in Section 3. Fig. 12 compares 
the number of cycles to crack initiation obtained based on the 
analytically evaluated strain amplitudes with those predicted by 
the non-linear FE analysis. The numbers of fatigue cycles ob-
tained based on Neuber rule are lower than those resulting from 
the elastic-plastic material model, while the numbers of cycles 
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predicted based on  Glinka-Molski method are always higher. The 
relative errors are comparable for both methods: Neuber rule 
underpredicts the low-cycle fatigue life maximum by a factor of 3 
(life factor k = 1/3), while Glinka-Molski method overpredicts the 
fatigue life by the same factor (k = 3). It is also seen from Fig. 12 
that deviation in fatigue life decreases with the increasing number 
of cycles, which is a consequence of the strain amplitude behav-
iour presented in Fig. 11. 

 
Fig. 12. Number of cycles to crack initiation determined with analytical  
              methods and FEA of stabilised cycle  

 
Fig. 13. Distribution of the number of cycles determined  
             using  Neuber rule and Glinka-Molski method 

 
Fig. 14. Crack depths found in 6 heat grooves during the rotor inspection 

The observed scatter in the number of cycles results not only 
from different stresses and strains generated during various start-
up conditions, but is also a result of different stress and strain 
maxima occuring at each heat groove during the same start-up. 

This variation in peak stresses and strains results in the distribu-
tion of the number of cycles shown in Fig. 13.  The lowest num-
bers of cycles were calculated for the middle grooves 3 and 4 at 
which the largest strain amplitudes were found. 

The distribution of the number of cycles to crack initiation 
shown in Fig. 13 very well correlates with the distribution of fatigue 
crack length found during a steam turbine rotor inspection, as 
shown in Fig. 14. The examined rotor was in operation for nearly 
300 000 hours and accumulated 478 cold and 576 hot starts. The 
largest cracks of depth exceeding 3 mm were found in grooves 3 
and 4 for which the shortest fatigue lives were predicted both by  
Neuber rule and Glinka-Molski method. 

Tab. 2. LCF damage estimation of heat groove 3 

Method 

Cycles to 
cracking [-] 

Damage [-] 

Cold 
starts 

Warm 
starts 

Cold 
starts 

Warm 
starts 

Total 

Neuber 2719 239 0.176 2.410 2.586 

Glinka-
Molski 

8784 1757 0.054 0.328 0.382 

FEA 4442 611 0.108 0.943 1.050 

 
Both analytical methods of notch stress-strain correction were 

also used to assess the low-cycle fatigue damage of the rotor at 
the most critical heat groove 3 where the largest crack of 3.5 mm 
depth was found. Fatigue crack initiation life was estimated using 
the linear damage accumulation model (Seweryn, 1997) which is 
still widely used in fatigue analysis of components subject to 
variable loading conditions and recommended to lifetime assess-
ment of steam turbines (Banaszkiewicz, 2015). The total fatigue 
damage DLCF is calculated from the following equation: 

𝐷𝐿𝐶𝐹 = ∑
1

𝑁𝑖

𝑛
i=1   (16) 

where n is the number of cycles accumulated in service and Ni is 
the number of cycles to crack initiation. The number of cycles 
accumulated in service was split into cold and hot start cycles as 
only these numbers were available from the turbine operating 
history. The results of fatigue damage estimation are presented in 
Table 2, which for comparison purposes also includes the predic-
tions of elastic-plastic material model. The latter model predicts 
the fatigue damage slightly exceeding 1, which is above the lower 
scatter band limit of the linear damage accumulation rule equal 
0.75 (Szala et al., 2014). Neuber rule overpredicts the FEA dam-
age by a factor of 2.5, while Glinka-Molski method results in dam-
age being approximately 40% of that obtained using elastic-plastic 
FEA. Basing on the above results and the numbers of cycles 
presented in Fig. 12 it can be concluded that Neuber rule provides 
a lower bound limit, while Glinka-Molski method provides an upper 
bound limit of fatigue life of turbine rotors determined by the heat 
groove damage.  

7. SUMMARY 

The paper presented the analysis of applicability of Neuber 
and Glinka-Molski methods to strain amplitude evaluation and 
fatigue life prediction of heat grooves under thermomechanical 
loads. 
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The results of numerical calculations demonstrated a reason-
ably good agreeement between the strain energy density in the 
actual elastic-plastic and  fictituous elastic state of the rotor heat 
grooves. With this confirmation, the use of analytical methods of 
stress-strain correction assuming the equivalence of both ener-
gies, was justified. 

The elastic-plastic analyses results showed that the plasticity 
zone at the heat grooves is highly localized and extends from the 
groove bottom surface towards the rotor axis on a very small 
depth. Thus, the non-isothermal low-cycle fatigue of the grooves 
takes place under small-scale yielding conditions. 

Comparison of the strain amplitudes predicted by both meth-
ods with those obtained from elastic-plastic FEA confirmed the 
known behaviour of the analytical methods in isothermal condi-
tions showing that Neuber method provides an upper bound limit, 
while Glinka-Molski method results in a lower bound limit of strain 
amplitude. In this particular case of circumferential heat grooves, 
both methods result in similar strain amplitude deviations for 
stabilised cycles and are suitable to estimating lower and upper 
bound limits of low-cycle fatigue life of grooved rotors subjected to 
thermomechanical loads. The analysis of fatigue life performed for 
real operating conditions of the rotor confirmed the range of accu-
racy of the analytical methods found in the investigation of the 
number of cycles to crack initiation. 
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