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Abstract: A solution is presented for the static problem of thermoelectroelasticity involving a transversely isotropic space  
with a heat-insulated rigid sheet-like inclusion (anticrack) located in the isotropy plane. It is assumed that far from this defect the body  
is in a uniform heat flow perpendicular to the inclusion plane. Besides, considered is the case where the electric potential on the anticrack 
faces is equal to zero. Accurate results are obtained by constructing suitable potential solutions and reducing the thermoelectromechanical 
problem to its thermomechanical counterpart. The governing boundary integral equation for a planar anticrack of arbitrary shape is ob-
tained in terms of a normal stress discontinuity. As an illustration, a closed-form solution is given and discussed for a circular rigid inclu-
sion. 
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1. INTRODUCTION 

Thermopiezoelectric materials are in the focus of special at-
tention because of their potential use as functional components in 
many engineering applications such as sensors, actuators, smart 
structures, etc. (see, for instance: Rao and Sunar,1994). The main 
disadvantage of these materials, however, is their inherent brittle-
ness and low fracture toughness. To promote structural mechani-
cal reliability and lengthen service period of piezoelectric devices, 
thermal stress analysis is a major concern in critical design and 
fabrication. In particular, the presence of some original defects in 
structures, e.g. cracks, inclusions and voids, gives rise to high 
thermal stress concentration, which leads to failure of compo-
nents.  

Cracks (with the displacement discontinuity) and rigid lamellar 
inclusions called anticracks (with the traction discontinuity) repre-
sent two extreme cases of inhomogeneities that influence signifi-
cantly the local fields and the overall property of the heterogene-
ous materials. Therefore research on these defects has great 
importance for structural integrity assessments.  

This contribution may be treated as an extension of earlier 
papers (Kaczyński and Kozłowski, 2009; Kaczyński, 2014; see 
also extensive references therein) to the transversely isotropic 
thermo-piezoelectric medium. A three-dimensional problem of the 
determination of thermal-electric-stress state in an infinite trans-
versely isotropic solid containing an absolutely rigid sheet-like 
inclusion (anticrack) in the plane of isotropy under a remote verti-
cally uniform heat flow is considered (Fig. 1). Thermally insulated 
anticrack surface assumption is adopted. Moreover, the electric 
potential is assumed to be zero. Note that a different electric 
condition of electrically impermeable anticrack faces was applied 
in the last study by Kaczyński and Kaczyński (2017).  

Problems pertinent to the present study but concerned with 
penny-shaped or elliptical cracks were investigated by Wang and 
Noda (2004), Yang et al. (2014) and Podil’chuk and Morgado 
(2000). 

The objective of this paper is to present a general procedure 
for solving the posed problem and to derive the governing integral 
equations. Following this brief introduction, the basic equations 
and the potential representation of their solution are outlined in 
Section 2. Formulation and solution to the considered problem is 
given in Section 3. By using appropriate harmonic potentials, the 
resulting boundary-value problems involving the temperature field 
and induced thermal stresses are reduced to classical mixed 
problems of potential theory. The integro-differential and integral 
equations derived in the present study are, respectively, similar to 
the governing equations for crack and punch problems in pure 
elasticity. Hence, these equations can be solved by directly em-
ploying the results available in the literature. As an illustration, 
a complete solution expressed in elementary functions is given 
and discussed in Section 4 for the circularly (penny-shaped) rigid 
inclusion. In Section 5, the conclusions are stated.  

 
Fig. 1. An anticrack in an infinite piezoelectric medium under uniform 

thermal flow  
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2. BASIC EQUATIONS AND POTENTIAL SOLUTIONS 

Let us recall the fundamental equations of piezothermoelastic-

ity for transversely isotropic bodies of the 6mm class (the axis 𝑥3 
is directed along the axis of anisotropy, and the 𝑥1- and 𝑥2- axes 
are arbitrary oriented in the plane of isotropy) in an uncoupled 
static setting (Chen, 2000).  

Throughout the paper, the Latin subscripts i , j are related to 
the Cartesian coordinates and run over 1, 2, 3, while the Greek 

subscripts 𝛼 , 𝛾 run over 1, 2. Repeated indices imply summation 
and a comma denotes partial differentiation.  

The constitutive relations are given by: 

σ3 α = 𝑐44 (𝑢α ,3 +  𝑢3 ,α) + 𝑒15 Φ,α,   ∀α ∈ {1, 2}

σ33 = 𝑐13 𝑢γ ,γ +  𝑐33 𝑢3 ,3 + 𝑒33 Φ,3 −  β3 𝑇

σ12 = 𝑐66 (𝑢1 ,2 +  𝑢2 ,1)

σ11 = 𝑐1γ 𝑢γ,γ + 𝑐13 𝑢3,3 + 𝑒31 Φ,3 −  β1 𝑇

σ22 = 𝑐1 3−γ 𝑢γ,γ + 𝑐13 𝑢3,3 + 𝑒31 Φ,3 −  β1 𝑇

𝐷α = 𝑒15 (𝑢α ,3 +  𝑢3 ,α) − ε11 Φ,α ,   ∀α ∈ {1,2}

𝐷3 = 𝑒31 𝑢γ ,γ +  𝑒33 𝑢3 ,3 − ε33 Φ,3 + 𝑝3 𝑇

𝑞α  =  −𝑘1 𝑇,α , ∀α ∈ {1, 2} ,      𝑞3 = − 𝑘3 𝑇,3

          (1) 

where 𝑢𝑖 , 𝐷𝑖, and 𝜎𝑖 𝑗 , 𝑞𝑖  are components of the mechanical 

displacement, electric displacement, and stress, heat flux, respec-

tively; Φ is the electric potential; 𝛵 is the temperature variation 
with 𝛵 = 0 corresponding to a traction/electric displacement-free 

state; 𝑐11, 𝑐12, 𝑐13, 𝑐33, 𝑐44, 𝑐66 = (𝑐11 − 𝑐12)/2 are the elastic 

constants, 𝑒31, 𝑒33, 𝑒15 are the piezoelectric constants; 
𝜀11, 𝜀33 are the dielectric permittivities; 𝑝3 is a pyroelectric con-

stant in the-x3direction; 𝑘1, 𝑘3 and 𝛽1, 𝛽3 are the thermal con-
ductivity and stress-temperature coefficients, respectively. 

The basic equations for thermopiezoelectricity in a stationary 
case without the body forces, electric charges and heat sources 
include the equilibrium equations, the electric equation and the 
heat conduction equation as follows: 

σ𝑖 𝑗,𝑗 = 0 ,     𝐷𝑖 ,𝑖 = 0,    𝑞𝑖 ,𝑖 = 0                                            (2) 

Substitution of the constitutive relations (1) into (2) gives rise 
to a governing system of five differential equations written in the 
following form: 

𝑐00 𝑢γ,γα + 𝑐66 𝑢α,γγ + 𝑐44 𝑢α,33 + 𝑐 𝑢3,3α + 

𝑒 Φ,3 α = β1 𝑇,α,   ∀α ∈ {1, 2} 

𝑐 𝑢γ,γ3 + 𝑐44 𝑢3,γγ + 𝑐33 𝑢3,33 + 𝑒15 Φ,γ γ + 

𝑒33 Φ,33 = β3 𝑇,3 

𝑒 𝑢γ,γ3 + 𝑒15 𝑢3,γγ + 𝑒33 𝑢3,33 − ε11 Φ,γ γ − 

ε33 Φ,33 = −𝑝3 𝑇,3 

(3a) 

𝑇,γ γ + 𝑘0
−2 𝑇,3 3 = 0  (3b) 

The notation for some combinations of material constants has 
been introduced: 

𝑐00 = (𝑐11 + 𝑐12)/2,   𝑐 =  𝑐13 + 𝑐44,   𝑒 =   𝑒15 + 𝑒31 , 

𝑘0 = √𝑘1/𝑘3,    𝐶
2 = 𝑐11𝑐33 − 𝑐13(𝑐13 + 2𝑐44)                 (4) 

The general potential solutions to Eqs. (3b) and (3a) proposed 
by Kaczyński and Kaczyński (2017) are (see Appendix A): 

𝑇(𝑥1, 𝑥2, 𝑥3) = −
∂2ω(𝑥1,𝑥2,𝑧0)

∂2𝑧0
2 | 𝑧0=𝑘0 𝑥3

 ≡ − ω,𝑧0 𝑧0      (5) 

𝑢α = (ψ1 + ψ2 + ψ3),α  + (−1)
α ψ,3−α + 𝑐1 ω,α , 

∀α ∈ {1, 2} 

𝑢3 = 𝑚𝑖 𝑠𝑖  ψ𝑖,𝑧𝑖 − 𝑐2𝑘0 ω,𝑧0 

(6a) 

Φ = 𝑙𝑖𝑠𝑖  ψ𝑖,𝑧𝑖 − 𝑐3𝑘0 ω,𝑧0                                                     (6b) 

where ω,ψi  (𝑖 ∈ {1,2,3}), ψ are five harmonic functions in the 

corresponding coordinate systems (𝑥1, 𝑥2, 𝑧𝑘) , 𝑧𝑘 = 𝑠𝑘𝑥3, i.e.,  

∇𝑧0
2 ω = 0,    ∇𝑧𝑖

2 ψ𝑖  = 0,   ∀ 𝑖 ∈ {1,2,3},    ∇𝑧4
2 ψ = 0 

(7) 
(
∇z𝑘
2 (⋅) ≡ (⋅),γ γ + (⋅),𝑧𝑘 𝑧𝑘 =   Δ (⋅) + (⋅),𝑧𝑘 𝑧𝑘  ,

∀𝑘 ∈ {0,1,2,3,4}
), 

𝑠0 = 𝑘0, 𝑠4 = √𝑐66/𝑐44, 𝑠1, 𝑠2, 𝑠3 are the roots with the 

positive real part of the following algebraic equation: 

𝑎0 𝑠
6 − 𝑏0 𝑠

4 + 𝑐0𝑠
2 − 𝑑0 = 0                                              (8) 

Substituting Eqs. (5) and (6a-b) into (1), one can derive the 
potential expressions for the components of stress and electric 
displacement as follows: 

σ3α = 𝑎𝑖𝑠𝑖  ψ𝑖 ,𝑧𝑖 α + δ1 ω,𝑧0  α +

                 +(−1)α𝑠4 𝑐44 ψ,𝑧4 3−α,    ∀ α ∈ {1,2}

σ33 = 𝑎𝑖  ψ𝑖 ,𝑧𝑖 𝑧𝑖 − δ3 ω,𝑧0 𝑧0
σ12 = 𝑐66[2(ψ1 + ψ2 + ψ3 + 𝑐1 ω),12 + ψ,11 − ψ,22]

σ11 = − 𝑎𝑖𝑠𝑖
2 ψ𝑖 ,𝑧𝑖 𝑧𝑖 − δ0 ω,𝑧0 𝑧0 +

                 −2𝑐66[(ψ1 +ψ2 + ψ3),22 + ψ,12 + 𝑐1 ω,22]

σ22 = − 𝑎𝑖𝑠𝑖
2 ψ𝑖 ,𝑧𝑖 𝑧𝑖 − δ0 ω,𝑧0 𝑧0 +

                 −2𝑐66[(ψ1 +ψ2 + ψ3),11 − ψ,12 + 𝑐1 ω,11]

𝐷α = 𝑑𝑖𝑠𝑖  ψ𝑖 ,𝑧𝑖 α + τ1 ω,𝑧0  α +

               +(−1)α𝑠4 𝑒15 ψ,𝑧4 3−α, ∀α ∈ {1,2}

𝐷3 = 𝑑𝑖  ψ𝑖 ,𝑧𝑖 𝑧𝑖 − τ3 ω,𝑧0 𝑧0

     (9) 

It is noted that the above general potential representation 
is valid only in the case of distinct material eigenvalues 𝑠𝑘   (𝑘 ∈
{0,1,2,3,4}). 

3. PROBLEM FORMULATION AND SOLUTION 

Consider an infinite transversely isotropic thermopiezoelectric 
body that is weakened by a heat-insulated rigid inclusion (antic-
rack), which occupies a bounded plane area 𝑆 with a smooth 

profile in the isotropy plane 𝑥3 = 0. There is a constant heat flux 

q(∞) = [0,0, − 𝑞0] , 𝑞0 > 0 in the direction of the negative 𝑥3 
– symmetry axis (Fig. 1). 

We deal with the boundary-value problem: find fields Τand 𝑢𝑖 
suitable smooth on R3 − S  such that Eqs. (3b), (3a) and (9) hold, 
subject to the following global boundary conditions: 

 thermal conditions at infinity (perpendicular flow of uniform 
heat) 

𝑞1 = 𝑞2 = 0 ,     𝑞3 = −𝑘3 𝑇,3 = −𝑞0                                 (10) 

 stress and electric-free state at infinity 

σ𝑖 𝑗 = 0,    𝐷𝑖 = 0                                                                   (11) 
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 mechanical conditions on 𝑆 (displacement free surfaces  
with a small vertical rigid-body translation 𝜀)  

𝑢1 = 𝑢2 = 0,    𝑢3 =  𝜀                                                          (12) 

 thermally insulated surfaces of  𝑆 

𝑞3 = −𝑘3 𝑇,3 = 0                                                                   (13) 

 vanishing of electric potential on  𝑆 

Φ = 0                                                                                       (14) 

Moreover, the parameter 𝜀 will be found in solving the 
problem from the equilibrium condition:  

∬ [σ33(𝑥1, 𝑥2, 0
+) − σ33(𝑥1, 𝑥2, 0

−)]
𝑆

  𝑑𝑥1 𝑑𝑥2   =   0   (15) 

Making use of the superposition principle, we construct the 
solution of the above anticrack boundary-value problem as a sum 
of two components, namely: 

 𝑇 = 𝑇
0

+ �̃�,     𝑢𝑖 = 𝑢𝑖
0
+ �̃�𝑖 ,     σ𝑖 𝑗  = σ𝑖 𝑗

0
+ σ̃𝑖 𝑗  ,

Φ = Φ
0

+ Φ̃,     𝐷𝑖 = 𝐷𝑖
0

+ �̃�𝑖

            (16) 

where the components attached by 0 describe the basic state of 
defect-free solid, and the components with the tilde represent the 
perturbations due to the anticrack. 

The results for the first 0-problem are found to be given by: 

  𝑇
0

(𝑥1, 𝑥2, 𝑥3) =
𝑞0

𝑘3
  

 𝑢α
0
=

𝑞0

𝑘3
𝑛α 𝑥α 𝑥3 , ∀ α ∈ {1,2} 

  𝑢3
0
=

𝑞0

2𝑘3
[𝑛2𝑥3

2 − 𝑛1(𝑥1
2 + 𝑥2

2)]

σ𝑖 𝑗
0
= 0 ,     Φ

0

= −
𝑞0

2𝑘3
𝑛3𝑥3

2 ,    𝐷𝑖
0

= 0

                               (17) 

where the constants  𝑛𝑖 are determined from the following linear 
system of equations: 

 [

2𝑐00 𝑐13 −𝑒31
2𝑐13 𝑐33 −𝑒33
2𝑒31 𝑒33 ε33

] [

𝑛1
𝑛2
𝑛3
]   = [

β1
β3
−𝑝3

]                                  (18) 

Attention will be drawn next on the corrective solution of the 
perturbed problem.  

The disturbing thermal field �̃�, which is odd in 𝑥3 and 
vanishes at infinity, is determined by solving Eq. (3b) in the half-

space  𝑥3 ≥ 0 with the following boundary conditions: 

�̃�,3  = −
𝑞0

𝑘3
 ,       ∀(𝑥1, 𝑥2, 𝑥3 = 0

+) ∈ 𝑆  

�̃� = 0 ,         ∀ (𝑥1, 𝑥2, 𝑥3 = 0
+) ∈ 𝑅2 −  𝑆

                       (19) 

According to (5) and using the potential theory (Kellogg, 
1953), the solution is written via the thermal potential 

ω̃(x1, x2, z0) as �̃�(x1, x2, x3) = − ω̃,z0 z0  , 𝑧0 = 𝑘0 𝑥3 

by assuming that: 

ω̃(𝑥1, 𝑥2, 𝑧0) = ∬ ln(𝑅0 + 𝑧0)  γ(ξ1, ξ2 )  𝑑ξ1 𝑑ξ2𝑆
 

(𝑅0 = |𝐱0 − 𝛏| = √(𝑥1 − ξ1)
2 + (𝑥2 − ξ2)

2 + 𝑧0
2 )

�̃�(𝑥1, 𝑥2, 𝑥3) = −
∂

∂𝑧0
∬

γ(ξ1,ξ2 )  𝑑ξ1 𝑑ξ2

𝑅0𝑆

�̃�,3 = −𝑘0  
∂2

∂𝑧0
2∬

γ(ξ1,ξ2 )  𝑑ξ1 𝑑ξ2

𝑅0𝑆
= 𝑘0  Δ∬

γ(ξ1,ξ2 )  𝑑ξ1 𝑑ξ2

𝑅0𝑆
  

  

and the unknown density γ, in view of Eq. (19)1, satisfies the 
integro-differential singular equation of Newton’s potential type: 

Δ ∬
γ(ξ1,ξ2)  𝑑ξ1 𝑑 ξ2 

√(𝑥1−ξ1)
2+(𝑥2−ξ2)

2𝑆
   =   − 

 𝑞0

√𝑘1𝑘3
                                 (21) 

It is interesting to note that this equation has a similar form as 
that arising in Mode I crack problem. Moreover, the desired tem-
perature has a jump on  S:  

�̃�(𝑥1, 𝑥2, 0
+) − �̃�(𝑥1, 𝑥2, 0

−) = 4π γ(𝑥1, 𝑥2) ,     

(𝑥1, 𝑥2) ∈ 𝑆                                                                             (22) 

We proceed now to the associated problem of electroelasticity 
that is governed by Eqs. (3a) and (9) with the unknown quantities  
marked by the tilde. Because of the anti-symmetry of the tempera-
ture and stress system, and bearing in mind Eqs. 
(16),(17),(12),(14) and the resulting conditions for the displace-

ments and electric potential (i.e.,  �̃�1, �̃�2 , �̃�3 are odd in  𝑥3, 

and  �̃�3, Φ̃ are even in  𝑥3), the anticrack perturbed problem 
may be formulated as a mixed problem over a half-space 𝑥3 ≥ 0 
with the following boundary conditions: 

�̃�α(𝑥1, 𝑥2, 𝑥3 = 0
+) = 0 ,    ∀(𝑥1, 𝑥2) ∈ 𝑅

2    (α = 1, 2) 

�̃�3(𝑥1, 𝑥2, 𝑥3 = 0+) =
𝑞0 𝑛1

2𝑘3
(𝑥1

2 + 𝑥2
2) + 𝜀 ,   ∀ (𝑥1, 𝑥2) ∈ 𝑆

σ̃3 3(𝑥1, 𝑥2, 𝑥3 = 0
+) = 0 ,    ∀ (𝑥1, 𝑥2) ∈ 𝑅

2 − 𝑆

Φ̃(𝑥1, 𝑥2, 𝑥3 = 0
+) = 0 ,    ∀(𝑥1, 𝑥2) ∈ 𝑆

�̃�𝑖 = O (|x|
−1)   𝑎𝑠   |x| = √𝑥1

2 + 𝑥2
2 + 𝑥3

2  →  ∞

  

For the solution of this boundary-value problem we use the 
potential function approach based on the construction of the 
potentials in the general solution (6) and (9) with the knowledge 
of the thermal potential ω̃(𝑥1, 𝑥2, 𝑧0) well suited to the boundary 
conditions (23). It is expedient to make the assumptions: 

ψ𝑖(𝑥1, 𝑥2, 𝑧𝑖) = �̃�𝑖  𝑓(𝑥1, 𝑥2, 𝑧𝑖) + �̃�𝑖 ω̃(𝑥1, 𝑥2, 𝑧𝑖), 

∀ 𝑖 ∈ {1,2,3} 

ψ(𝑥1, 𝑥2, 𝑧4) ≡   0 

(24) 

with  

�̃�1 = 𝑙3𝑠3 − 𝑙2𝑠2,      �̃�2 = 𝑙1𝑠1 − 𝑙3𝑠3,   

�̃�3 = 𝑙2𝑠2 − 𝑙1𝑠1        
(25) 

Here, 𝑓(x1, x2, x3) is an unknown harmonic function and 

�̃�1, �̃�2, �̃�3 are constants to be determined. 
Making use of equations (9) and (6b), the desired field 

components become: 

�̃�α = �̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],α + �̃�𝑖
[ω̃(𝑥1, 𝑥2, 𝑧𝑖)],α

              +𝑐1 [ω̃(𝑥1, 𝑥2, 𝑧0)],α ,   ∀ α ∈ {1,2}

�̃�3 = 𝑚𝑖𝑠𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖
+  𝑚𝑖𝑠𝑖�̃�𝑖[ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖

             −  𝑐2𝑘0 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0
Φ̃ = 𝑙𝑖𝑠𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖

+  𝑙𝑖𝑠𝑖�̃�𝑖[ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖

            −  𝑐3𝑘0 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0
σ̃3 α = 𝑎𝑖𝑠𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 α

+ 𝑎𝑖𝑠𝑖�̃�𝑖  [ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 α 

                  +δ1 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0 α  ,    ∀ α ∈ {1,2}

σ̃3 3 = 𝑎𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 𝑧𝑖
+ 𝑎𝑖�̃�𝑖  [ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 𝑧𝑖 

                 −δ3 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0 𝑧0 

�̃�α = 𝑑𝑖𝑠𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 α
+ 𝑑𝑖𝑠𝑖�̃�𝑖  [ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 α 

              +τ1 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0 α ,   ∀ α ∈ {1,2}

�̃�3 = 𝑑𝑖�̃�𝑖  [𝑓(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 𝑧𝑖
+ 𝑑𝑖�̃�𝑖  [ω̃(𝑥1, 𝑥2, 𝑧𝑖)],𝑧𝑖 𝑧𝑖

               −τ3 [ω̃(𝑥1, 𝑥2, 𝑧0)],𝑧0 𝑧0 

  

(23) 

 (20) 

(26) 
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The expressions in the above equations simplify on the plane 

𝑥3 = 0
+ (where 𝑧1 = 𝑧2 = 𝑧3 = 𝑧0 = 0

+) to the following:  

�̃�α = (�̃�1 + �̃�2 + �̃�3 + 𝑐1) [
∂ ω̃(𝑥1, 𝑥2, 𝑧0)

∂𝑥α
]
𝑧0= 0

  , 

   ∀ α ∈ {1,2}

�̃�3 = 𝑚𝑖𝑠𝑖�̃�𝑖  [
∂𝑓(𝑥1, 𝑥2, 𝑥3)

∂𝑥3
]
 𝑥3=  0

+

  

             +(𝑚𝑖𝑠𝑖�̃�𝑖 − 𝑐2𝑘0) [
∂ ω̃(𝑥1, 𝑥2, 𝑧0)

∂𝑧0
]
 𝑧0= 0

Φ̃ = 𝑙𝑖𝑠𝑖�̃�𝑖  [
∂𝑓(𝑥1, 𝑥2, 𝑥3)

∂𝑥3
]
 𝑥3=  0

+

  

             +(𝑙𝑖𝑠𝑖�̃�𝑖 − 𝑐3𝑘0) [
∂ ω̃(𝑥1, 𝑥2, 𝑧0)

∂𝑧0
]
 𝑧0= 0

 

σ̃3 3 =  𝑎𝑖�̃�𝑖 [
∂2�̃�(𝑥1,𝑥2,𝑥3)

∂ 𝑥3
2 ]

 𝑥3=0
+

                 + (𝑎𝑖�̃�𝑖 − δ3) [
∂ 2ω̃(𝑥1,𝑥2,𝑧0)

∂𝑧0
2 ]

𝑧0=   0
+

�̃�3 = 𝑑𝑖�̃�𝑖 [
∂2�̃�(𝑥1,𝑥2,𝑥3)

∂ 𝑥3
2 ]

 𝑥3=0
+

                   +(𝑑𝑖�̃�𝑖 − τ3) [
∂ 2ω̃(𝑥1,𝑥2,𝑧0)

∂𝑧0
2 ]

𝑧0=   0
+

                (27) 

The three unknown constants �̃�1, �̃�2, �̃�3  are to be 
determined from the following linear system of equations: 

[
1 1 1
𝑙1𝑠1 𝑙2𝑠2 𝑙3𝑠3
𝑎1 𝑎2 𝑎3

] [

�̃�1
�̃�2
�̃�3

]   = [

−𝑐1
𝑐3𝑘0
δ3

]                                   (28) 

A glance at equations (23) and (27) reveals now that the 

potential 𝑓 is governed by: 

 for (𝑥1, 𝑥2) ∈ 𝑆 

𝑚𝑖𝑠𝑖�̃�𝑖   [
∂�̃�(𝑥1,𝑥2,𝑥3)

∂𝑥3
]
 𝑥3=0

+
=  𝑟(𝑥1, 𝑥2)                              (29)  

 for (𝑥1, 𝑥2) ∈ 𝑅
2 − 𝑆 

[
∂2�̃�(𝑥1,𝑥2,𝑥3)

∂ 𝑥3
2 ]

 𝑥3=0
+
=   0                                                       (30) 

where: 

𝑟(𝑥1, 𝑥2) = β̃ [
∂ ω̃(𝑥1,𝑥2,𝑧0)

∂𝑧0
]
 𝑧0=0

+  
𝑞0𝑛1

2𝑘3
(𝑥1

2 + 𝑥2
2) + 𝜀   (31) 

with the following constant: 

 β̃ = 𝑐2𝑘0 −𝑚𝑖𝑠𝑖�̃�𝑖                                                                (32)  

A well-known solution to this classical boundary problem  
in potential theory (Kellogg, 1953) may be written as follows:  

𝑓(𝑥1, 𝑥2, 𝑥3) = 

  
−1

2π 𝑎𝑖�̃�𝑖
  ∬ σ̃33(ξ1, ξ2, 0

+)ln(𝑅ξ + 𝑥3)  𝑑ξ1 𝑑ξ2𝑆

(𝑅ξ = √(𝑥1 − ξ1)
2 + (𝑥2 − ξ2)

2 + 𝑥3
2 )

                (33) 

Now enforcing the displacement boundary condition (29), we 
arrive at the governing two-dimensional singular integral equation 
of Newtonian potential type to determine the normal stress 

σ̃33
+ ≡ σ̃33(𝑥1, 𝑥2, 0

+) on the upper side of  𝑆: 

�̃�   ∬
σ̃33
+ (ξ1,ξ2) 𝑑ξ1 𝑑ξ2

√(𝑥1−ξ1)
2+(𝑥2−ξ2)

2𝑆
=  −�̃�(𝑥1, 𝑥2) ,                           (34) 

∀(𝑥1, 𝑥2) ∈ 𝑆 

where the constant �̃� is given by:  

�̃� =
𝑚𝑖𝑠𝑖�̃�𝑖

2π 𝑎𝑖�̃�𝑖
                                                                               (35) 

Then, having obtained the distribution of the normal stress  
in the region  𝑆, the unknown rigid translation ε can be calculated 
from Eq. (15) transformed to the following form: 

∬ σ̃33
+ (𝑥1, 𝑥2)𝑆

  𝑑𝑥1 𝑑𝑥2   =   0                                            (36) 

Moreover, the main potential 𝑓is found from Eq. (33) and the 
whole perturbed electroelastic fields can be obtained from 
relations (26).  

It is worth mentioning that for a rigid inclusion with an arbitrary 

shape 𝑆, the derived governing equations (21) and (34) generally 
can be solved by numerical methods. However, analytical 
solutions to these equations are available when the anticrack is in 
the form of an ellipse (Rahman, 2002). For illustration, a solution 
will be presented for a rigid circularly shaped inclusion in the next 
section. 

4. EXAMPLE: CIRCULAR ANTICRACK  
IN A UNIFORM HEAT FLOW 

Let the anticrack is located at the circular region in the x1Ox2-
plane, i.e., 

𝑆 = {(𝑥1 = 𝑟cosθ, 𝑥2 = 𝑟sinθ, 𝑥3 = 0):

              0 ≤ 𝑟 = √𝑥1
2 + 𝑥2

2 ≤ 𝑎  ∧    0 ≤ θ ≤ 2π}
          (37) 

Following along the same line of reasoning as that used in the 
corresponding antisymmetric anticrack problems (Kaczyński, 
2014), it is possible to obtain in this case a complete solution 
expressed in elementary functions due to the results of advanced 
method in potential theory, reported by Fabrikant (1989, 1991). 
Only the final results will be presented. 

Accordingly, the axially-symmetric solution to the thermal 
problem is given by: 

γ(𝑥1, 𝑥2) = γ̃(𝑟)  =
 𝑞0

π2 √𝑘1 𝑘3
  √𝑎2 − 𝑟2 , 

0 ≤ 𝑟 ≤ 𝑎 

∂ ω̃(𝑟, 𝑧0)

∂ 𝑥α
=

𝑞0 𝑥α

π √𝑘1 𝑘3
[−𝑥3sin

−1
𝑎

𝑙20
+ 

+ (√𝑎2 − 𝑙10
2 (1 −

𝑙10
2 +2𝑎2

3𝑟2
) +

2𝑎3

3𝑟2
] , ∀ α ∈ {1,2} 

∂ ω̃(𝑟, 𝑧0)

∂ 𝑧0
=

𝑞0

2π √𝑘1 𝑘3
[(2𝑎2 + 2𝑧0

2 − 𝑟2) sin−1
𝑎

𝑙20
 

−
(2𝑎2 − 3𝑙10

2 )

𝑎
√𝑙20

2 − 𝑎2] , 𝑧0 ≥ 0 

�̃�(𝑟, 𝑧0) = −
∂2ω̃

∂𝑧0
2 = 

−
2 𝑞0

π √𝑘1 𝑘3
  (𝑧0 sin

−1 𝑎

𝑙20
−√𝑎2 − 𝑙10

2 ), 𝑧0 ≥ 0 

(38) 
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where Fabrikant’s notation is given below: 

𝑙1 ≡   𝑙1(𝑎, 𝑟, 𝑥3) = 
1

2
[√(𝑟 + 𝑎)2 + 𝑥3

2 −√(𝑟 − 𝑎)2 + 𝑥3
2] 

𝑙2 ≡ 𝑙2(𝑎, 𝑟, 𝑥3) = 
1

2
[√(𝑟 + 𝑎)2 + 𝑥3

2 +√(𝑟 − 𝑎)2 + 𝑥3
2] 

𝑙10 = 𝑙1(𝑎, 𝑟, 𝑧0),     𝑙20 = 𝑙2(𝑎, 𝑟, 𝑧0) 

(39) 

along with the following properties: 

 [𝑙1]𝑥3=0 = [𝑙10]𝑧0=0 = min(𝑎, 𝑟)

  [𝑙2]𝑥3=0 = [𝑙20]𝑧0=0 = max(𝑎, 𝑟)
                                      (40) 

In turn, the analytical solution to the governing equation (34) 
is: 

σ̃33
+ (𝑟) =

β3
(𝑒𝑝)

𝑞0

π

2𝑎2−3𝑟2

√𝑎2−𝑟2
 ,         0 ≤ 𝑟 < 𝑎                          (41) 

where (see Eqs.(18) and (32)): 

β3
(𝑒𝑝)

=
2𝑎𝑖�̃�𝑖

3𝑚𝑗𝑠𝑗�̃�𝑗
(
2𝑛1

𝑘3
−

β̃

√𝑘1𝑘3
)                                               (42)  

and the vertical rigid displacement is found as: 

 𝜀 = −
𝑎2𝑞0

3
(

β̃

√𝑘1𝑘3
+

𝑛1

𝑘3
)                                                      (43) 

The primary harmonic potential for the electroelastic perturbed 
problem is obtained by calculating integral (32) with the use of Eq. 

(40). As a result, we find that for 𝑥3 ≥ 0: 

𝑓(𝑥1, 𝑥2, 𝑥3) = 

− 
β3
(𝑒𝑝)

𝑞0

2π2𝑎𝑖�̃�𝑖
  [𝑥3sin

−1
𝑎

𝑙2
(𝑎2 −

3

2
𝑟2 + 𝑥3

2) + 

+ √𝑎2 − 𝑙1
2 (5𝑟2 +

1

3
𝑎2 − 𝑙2

2 −
11

6
𝑙1
2)] 

(44) 

and 

∂ 𝑓(𝑥1, 𝑥2, 𝑥3)

∂ 𝑥3
= 

− 
β3
(𝑒𝑝)

𝑞0

2π𝑎𝑖�̃�𝑖
 [(𝑎2 −

3

2
𝑟2 + 3𝑥3

2)   sin−1
𝑎

𝑙2
+ 

−
3(2𝑎2 − 3𝑙1

2)  √𝑙2
2 − 𝑎2

2𝑎
] 

∂2𝑓(𝑥1, 𝑥2, 𝑥3)

∂ 𝑥3
2 = 

− 
β3
(𝑒𝑝)

𝑞0

π𝑎𝑖�̃�𝑖
[3𝑥3 sin

−1
𝑎

𝑙2
− 3√𝑎2 − 𝑙1

2  +
𝑎2√𝑎2 − 𝑙1

2

𝑙2
2 − 𝑙1

2 ] 

(45) 

Having the exact expressions for the governing harmonic 
functions and their derivatives as shown in Eqs. (45) and (38), the 
full –space piezothermoelastic field can be obtained simply from 
formulas (26). The derivation is omitted here to save the space 
of the paper. To investigate the singular behaviour of the thermal-
electric-stress field near the disc edge, however, the solution in 

the inclusion plane 𝑥3 = 0
± is given below: 

𝑇(𝑟, 0±) = {
± 

2 𝑞0

π √𝑘1 𝑘3
 √𝑎2 − 𝑟2       0 ≤ 𝑟 ≤ 𝑎

       0                                     𝑟 > 𝑎

 

𝑞𝑟(𝑟, 0
±) = − 𝑘1

∂𝑇(𝑟, 0±)

∂𝑟
= 

=  {±
2 𝑞0
π
√
𝑘1
𝑘3

𝑟

√𝑎2 − 𝑟2
      0 ≤ 𝑟 ≤ 𝑎

0                                              𝑟 > 𝑎

 

𝑞3(𝑟, 0
±) = −𝑘3 𝑇,3(𝑟, 0

±) =   

=  {

0                                                            0 ≤ 𝑟 < 𝑎
2 𝑞0
π
 (sin−1

𝑎

𝑟
  −  

𝑎

√𝑟2 − 𝑎2
)  −  𝑞0          𝑟 > 𝑎

 

(46) 

𝑢1(𝑟, 0
±) = 𝑢2(𝑟, 0

±) = 0                       0 ≤ 𝑟 < ∞ 

𝑢3(𝑟, 0
±) =

{
 
 

 
 
ε                                                    0 ≤ 𝑟 < 𝑎
2

π
(𝜀 +

𝑞0𝑛1
2 𝑘3

 𝑟2) sin−1
𝑎

𝑟
+

−
𝑞0𝑛1 

π 𝑘3
  √𝑟2 − 𝑎2  −  

𝑞0𝑛1
2 𝑘3

 𝑟2    𝑟 > 𝑎

 

σ33(𝑟, 0
±) =   {± 

β3
(𝑒𝑝)

𝑞0
π

2𝑎2 − 3𝑟2

√𝑎2 − 𝑟2
         0 ≤ 𝑟 < 𝑎

 0                                             𝑟 > 𝑎

 

σ3 𝑟(𝑟, 0
±) = σ31(𝑟, 0

±)cosθ + σ32(𝑟, 0
±)sinθ = 

=  {

 β(𝑒𝑝)𝑞0 𝑟                                                             0 ≤ 𝑟 < 𝑎

2𝑞0
π
(β(𝑒𝑝)𝑟sin−1

𝑎

𝑟
−

β𝑟
(𝑒𝑝)

𝑎3

𝑟 √𝑟2 − 𝑎2
−
β(𝑒𝑝)𝑎 √𝑟2 − 𝑎2

𝑟
)  

 

𝑟 > 𝑎 

 
(47) 

Φ(𝑟, 0±) = 0          0 ≤ 𝑟 < ∞ 

𝐷𝑟(𝑟, 0
±) = 𝐷1(𝑟, 0

±)cosθ + 𝐷2(𝑟, 0
±)sinθ = 

=  {

 β̃(𝑒𝑝)𝑞0 𝑟                                                             0 ≤ 𝑟 < 𝑎

2𝑞0
π
(β̃(𝑒𝑝)𝑟sin−1

𝑎

𝑟
−

β̃𝑟
(𝑒𝑝)

𝑎3

𝑟 √𝑟2 − 𝑎2
−
β̃(𝑒𝑝)𝑎 √𝑟2 − 𝑎2

𝑟
)  

 

𝑟 > 𝑎 (48) 

𝐷3(𝑟, 0
±) = 

=   {±
𝑞0
π
 [
β𝑑
(𝑒𝑝)(2𝑎2 − 3𝑟2)

√𝑎2 − 𝑟2
−
2(𝑑𝑖�̃�𝑖 − τ3)

√𝑘1𝑘3
√𝑎2 − 𝑟2] 

     0                                                                            𝑟 > 𝑎

0 ≤ 𝑟 < 𝑎 

where: 

β(𝑒𝑝) =
3β3

(𝑒𝑝)
𝑎𝑗𝑠𝑗�̃�𝑗

4 𝑎𝑖�̃�𝑖
−
(𝑎𝑘𝑠𝑘�̃�𝑘 + δ1)

2√𝑘1𝑘3

β𝑟
(𝑒𝑝)

=
𝑎𝑗𝑠𝑗�̃�𝑗

3𝑚𝑖𝑠𝑖�̃�𝑖
(
2𝑛1
𝑘3

−
β̃

√𝑘1𝑘3
)

β̃(𝑒𝑝) =
3β3

(𝑒𝑝)
𝑑𝑗𝑠𝑗�̃�𝑗

4 𝑑𝑖�̃�𝑖
−
(𝑑𝑘𝑠𝑘�̃�𝑘 + τ1)

2√𝑘1𝑘3
 

β̃𝑟
(𝑒𝑝)

=
𝑑𝑗𝑠𝑗�̃�𝑗   

3 𝑚𝑖𝑠𝑖�̃�𝑖
(
2𝑛1
𝑘3

−
β̃

√𝑘1𝑘3
)

β𝑑
(𝑒𝑝)

=
𝑑𝑗�̃�𝑗

𝑎𝑖�̃�𝑖
β3
(𝑒𝑝)

 (49) 

Analyzing the above expressions, we reveal that 

1. The anticrack  𝑆 obstructs locally the heat flow, producing the 
jump of temperature and the drastic change of its gradient on 
the surface near the anticrack front. 

2. The normal stress σ33 and electric displacement 𝐷3 suffer 

jumps across  𝑆and exhibit the inverse square-root singularity 
at  𝑟 = 𝑎−. This indicates a mechanism of failure in the form 
of material separation from the surface of the rigid inclusion 
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described by the stress and electric displacement singularity 
coefficients given by: 

𝑆I
± =   lim

𝑟→ 𝑎−
√2π(𝑎 − 𝑟) σ33(𝑟, 0

±)   = 

∓
β3
(𝑒𝑝)

𝑞0 𝑎√𝑎 

√π
 

𝑆I
±(𝑒𝑑)

=   lim
𝑟→ 𝑎−

√2π(𝑎 − 𝑟) 𝐷3(𝑟, 0
±)   = 

∓
β𝑑
(𝑒𝑝)

𝑞0 𝑎√𝑎 

√π
 

(50) 

3. Another mechanism controlling the material cracking around 
the anticrack front is Mode II (edge-sliding) described by the 
thermal and electric stress intensity factors:  

𝐾II
(𝑒) =    lim

𝑟→ 𝑎+
√2π(𝑟 − 𝑎) σ3 𝑟(𝑟, 0) 

= − 
2 β𝑟

(𝑒𝑝)
𝑞0 𝑎√𝑎 

 √π
 

𝐾II
(𝑒𝑑) =   lim

𝑟→ 𝑎+
√2π(𝑟 − 𝑎) 𝐷𝑟(𝑟, 0) 

 

  =  − 
2 β̃𝑟

(𝑒𝑝)
𝑞0 𝑎√𝑎 

 √π
  

(51) 

These parameters can be used in conjunction with a suitable 
force criterion of fracture. 

5. CONCLUSIONS 

The three-dimensional thermal stress problem for an insulated 
rigid inclusion obstructing a uniform heat flux in an infinite linear 
transversely isotropic thermopiezoelectric medium has been 
investigated. The case where the electric potential on the antic-
rack surface is equal to zero was considered. Using the potential 
function method, the problem involving the inclusion of arbitrary 
shape has been reduced to classical boundary problems of poten-
tial theory. Specifically, with the knowledge of the steady-state 
temperature distribution, the governing equation was derived, 
which is similar to that reported in the literature on contact prob-
lems in elasticity. In particular, for a circularly shaped inclusion, 
the solution was obtained in terms of elementary functions. Exact 
expressions for the thermo-electro-elastic field at the plane 
of anticrack surface were derived and interpreted from the point 
of view of linear fracture mechanics. The results obtained are new 
to the literature and can serve as a benchmark to various numeri-
cal analysis.  

Appendix A 

The material coefficients in characteristic equation (8) are as 
follows (see (4)): 

𝑎0 = 𝑐44(𝑐33 ε33 + 𝑒33
2 ) 

+𝑒33(2𝑐44𝑒15 + 𝑐11𝑒33 − 2 𝑐 𝑒) 

𝑏0 = 𝑐33(𝑐44 ε11 + 𝑒
2) + ε33 𝐶

2                                        
+𝑒33(2𝑐44𝑒15 + 𝑐11𝑒33 − 2 𝑐 𝑒) 

𝑐0 = 𝑐44(𝑐11 ε33 + 𝑒
2) + ε11 𝐶

2 
+𝑒15(2𝑐11𝑒33 + 𝑐44𝑒15 − 2 𝑐 𝑒) 

𝑑0 = 𝑐11(𝑐44 ε11 + 𝑒15
2 ) 

 

According to Kaczyński and Kaczyński (2017), material 
constants appearing in representations (6) and (9) are listed 
below: 

𝑚𝑖 =
− 𝑐44 𝑒33 𝑠𝑖

4 + (𝑐11𝑒33 + 𝑐44𝑒15 − 𝑐 𝑒) 𝑠𝑖
2 − 𝑐11 𝑒15

𝑠𝑖
2[(𝑐 𝑒33 − 𝑒 𝑐33)𝑠𝑖

2 − (𝑐 𝑒15 − 𝑒 𝑐44)]
  

𝑙𝑖 =
𝑐44 𝑐33 𝑠𝑖

4 − (𝐶2 − 2𝑐44
2 ) 𝑠𝑖

2 + 𝑐11 𝑐44

𝑠𝑖
2[(𝑐 𝑒33 − 𝑒 𝑐33)𝑠𝑖

2 − (𝑐 𝑒15 − 𝑒 𝑐44)]

  

𝑎𝑖 = 𝑐44(1 + 𝑚𝑖)  + 𝑒15 𝑙𝑖        

𝑑𝑖 = 𝑒15(1 + 𝑚𝑖) − ε11𝑙𝑖
δ0 = 𝑐11 𝑐1 + 𝑘0

2(𝑐13𝑐2 + 𝑒31𝑐3) − β1
δ1 = 𝑘0[𝑐44(𝑐1 − 𝑐2) − 𝑒15 𝑐3]

δ3 = 𝑐13 𝑐1 + 𝑘0
2(𝑐33𝑐2 + 𝑒33𝑐3) − β3       

 τ1  = 𝑘0[𝑒15(𝑐1 − 𝑐2) + ε11 𝑐3]

τ3 = 𝑒31 𝑐1 + 𝑘0
2(𝑒33𝑐2 − ε33𝑐3) + 𝑝3

 ( 

Moreover, the constants 𝑐𝑖  are given from the solution 
of the following linear system: 

[

𝑐11 − 𝑐44𝑘0
2 𝑐 𝑘0

2 𝑒 𝑘0
2

𝑐 𝑐33𝑘0
2 − 𝑐44 𝑒33𝑘0

2 − 𝑒15
𝑒 𝑒33𝑘0

2 − 𝑒15 ε11 − ε33𝑘0
2

] [

𝑐1
𝑐2
𝑐3
]   

= [
β1
β3
−𝑝3

] 

 
(A4) 
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