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Abstract: The notions of invariant, decoupling and blocking zeros are extended to the fractional linear systems. It is shown that:  
1) The zeros are closely connected with the controllability and observability of the linear systems and their transfer functions matrices.  
2) The state vector of the fractional system for any input and zero initial conditions is independent of  the input decoupling zeros  
of the system. 3) The output of the fractional system for any input and zero initial conditions is independent of the input-output decoupling 
zeros of the system.  
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1. INTRODUCTION 

The notion of controllability and observability and the decom-
position of linear systems have been introduced by Kalman (1960, 
1963). These notions are the basic concepts of the modern con-
trol theory (Antsaklis and Michel, 2006; Kaczorek, 1993; Kailath, 
1980; Rosenbrock, 1970; Wolovich, 1974; Valcher, 1977). They 
have been also extended to positive linear systems (Farina and 
Rinaldi, 2000; Kaczorek, 2011a). The positive circuits and their 
reachability has been investigated in (Kaczorek, 2011a; Kaczorek 
and Rogowski, 2015) and controllability and observability of elec-
trical circuits in (Kaczorek, 2011c; Kaczorek and Rogowski, 2015). 

The reachability of linear systems is closely related to the con-
trollability of the systems. Specially for positive linear systems, the 
conditions for the controllability are much stronger than for the 
reachability (Kaczorek, 2002, 2016). Tests for the reachability and 
controllability of standard and positive linear systems are given in 
Kaczorek (2002, 2008) and in Kaczorek and Rogowski (2015). 
The positivity and reachability of fractional continuous-time linear 
systems and electrical circuits have been addressed in (Kaczorek, 
2008, 2011a, 2013d; Kaczorek and Rogowski, 2015). The finite 
zeros of positive discrete-time and continuous-time linear systems 
have been investigated in Tokarzewski (2011a, 2011b) and the 
decoupling zeros of positive discrete-time linear systems and 
positive electrical circuits in Kaczorek (2010, 2013b).  

The positive linear systems consisting of 𝑛 subsystems with 
different fractional orders has been analyzed in Kaczorek (2011b). 
Some recent interesting results in the fractional systems theory 
and its applications can be found in Dzieliński Sierociuk and 
Sarwas (2009) and in Kaczorek (2017b). The constructability and 
observability of standard and positive electrical circuits in Ka-
czorek (2013a). The stability of fractional systems has been ana-
lysed in (Busłowicz, 2008; Dzieliński and Sierociuk, 2008; Ka-
czorek, 2008, 2009). 

The invariant, decoupling and blocking zeros of linear positive 

systems and electrical circuits have been addressed in Kaczorek 
(1993, 2017b). 

In this paper the notions of invariant zeros, decoupling zeros 
and blocking zeros of linear systems will be extended to the frac-
tional linear systems. The paper is organized as follows. In section 
2 the elementary operations and Smith canonical form of polyno-
mial matrices are recalled. Basic definitions and theorems con-
cerning the invariant, decoupling and blocking zeros of fractional 
linear systems are presented in section 3. Concluding remarks are 
given in section 4. 

The following notation will be used: ℜ is the set of real num-
bers, ℜn×m represents the set of n × m real matrices, ℜn×m[s] 
denotes the set of n × m polynomial matrices with real coeffi-

cients, C is the field of complex numbers, In is the n × n identity 
matrix. 

2. ELEMENTARY OPERATIONS AND SMITH CANONICAL 
FORM OF POLYNOMIAL MATRICES 

Definition 1. (Kaczorek, 1993) The following operations on poly-
nomial matrices are called elementary row (column) operations: 

 Multiplication of the i-th row (column) by scalar (number) c. 
This operation will be denoted by L(i × c)(R(i × c)). 

 Addition to the i-th row (column) of the j-th row (column) multi-
plied by any polynomial b(s). This operation will be denoted 

by L(i + j × b(s))(R(i + j × b(s))). 

 Intercharge of the i-th and j-th rows (columns). This operations 

will be denoted by L(i, j)(R(i, j)). 
Applying the elementary row and column operations to identity 

matrices we obtain unimodulary matrices. The elementary row 
(column) operations are equivalent to premultiplication (postmulti-
plication) of the matrix by suitable unimodular matrices (Kaczorek 
1993). The elementary row and column operations do not change 
the rank of the matrices. 
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Definition 2. (Gantmacher, 1988, Kaczorek, 1993) The polynomi-
al matrix: 

𝐴𝑆(𝑠) =

[
 
 
 
 
 
 
𝑎1(𝑠) 0 ⋯ 0 0 ⋯ 0

0 𝑎2(𝑠) ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑎𝑟(𝑠) 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0 0 ⋯ 0]
 
 
 
 
 
 

 

∈ ℜ𝑚×𝑝[𝑠]                                                                                 (1) 

is called the Smith canonical form of the polynomial matrix 
A(s) ∈ ℜm×p[s], where a1(s), a2(s), ..., ar(s) are nonzero 
invariant polynomials (with leading coefficients equal to 1) of the 

matrix A(s) such that ai(s)|ai+1(s) (ai(s) divides ai+1(s) with 
zero remainder) for i = 1, . . . , r − 1 and r = rankA(s). 

The invariant polynomials a1(s), a2(s), ..., ar(s) of the ma-

trix A(s) are uniquely determined by: 

𝑎𝑘(𝑠) =
𝐷𝑘(𝑠)

𝐷𝑘−1(𝑠)
 for 𝑘 = 1, . . . , 𝑟 (𝐷0(𝑠) = 1),                       (2) 

where Dk(s) is the greatest common divisor of all of the k × k 

minors of the matrix A(s). 
The equivalent polynomial matrices have the same greatest 

common divisors Dk(s) (Kaczorek, 1993). 

3. INVARIANT, DECOUPLING AND BLOCKING ZEROS  
OF FRACTIONAL LINEAR SYSTEMS 

Consider the fractional linear system (Kaczorek, 2011d): 

𝑑α𝑥(𝑡)

𝑑𝑡α = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 0 < α < 1                           (3a)  

𝑦 = 𝐶𝑥,                                                                                    (3b)  

where:  

 0
 𝐷𝑡

α𝑓(𝑡) =
𝑑α𝑓(𝑡)

𝑑𝑡α
=

1

Γ(1−α)
∫

�̇�(τ)

(𝑡−τ)α
𝑑τ

𝑡

0
,                              (3c) 

is Caputo definition of the fractional derivative of α order,  

ḟ(τ) =
df(τ)

dτ
, Γ(x) = ∫ tx−1e−tdt

∞

0
, Re(x) > 0 is the Euler 

gamma function and x = x(t) ∈ ℜn, u = u(t) ∈ ℜm,  

y = y(t) ∈ ℜp are the state, input and output vectors  

and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n. 
The system matrix of the linear system (3) is defined by: 

𝑆(λ) = [
𝐼𝑛λ − 𝐴 𝐵
𝐶 0

] ∈ ℜ(𝑛+𝑝)×(𝑛+𝑚)[λ], λ = 𝑠α              (4)  

Let the matrix: 

𝑆𝑆(λ) = [diag[𝑝1
(λ) ⋯ 𝑝

𝑟
(λ)] 0

0 0
] ∈

ℜ(𝑛+𝑝)×(𝑛+𝑚)[λ]                                                                        (5)  

be the canonical Smith form of the system matrix (4),  

where p1(λ), …, pr(λ) are the invariant polynomials satisfying 

the condition pi(λ)|pi+1(λ) for i = 1, . . . , r − 1  
and r = rankS(λ). 

The invariant polynomials are determined by: 

𝑝
𝑘
(λ) =

𝐷𝑘(λ)

𝐷𝑘−1(λ)
 for 𝑘 = 1, . . . , 𝑟 (𝐷0(λ) = 1).                      (6) 

From (6) we have: 

𝑝(λ) = 𝑝1(λ). . . 𝑝𝑟(λ) =
𝐷1(λ)

𝐷0(λ)

𝐷2(λ)

𝐷1(λ)
. . .

𝐷𝑟(λ)

𝐷𝑟−1(λ)
= 𝐷𝑟(λ).     (7) 

The polynomial p(λ) is called the invariant zero polynomial 
of the system (3). 

Definition 3. The zero of the polynomial p(λ) is called the invari-
ant zero of the system (3.1). 
Theorem 1. (Kaczorek, 1993) If m = p and the matrix (4) has full 
rank then: 

𝑝(λ) = det𝑆𝑆(λ) = 𝑐det𝑆𝑆(λ),                                              (8) 

where c = detL(λ)detR(λ) since L(λ) and R(λ) are unimodu-
lar matrices of elementary row and column operations. 

Theorem 2. If m = p then: 

𝑝(λ) = det [
𝐼𝑛λ − 𝐴 −𝐵
𝐶 0

] = det[𝐼𝑛λ − 𝐴]det𝑇(λ),        (9) 

where: 

𝑇(λ) = 𝐶[𝐼𝑛λ − 𝐴]−1𝐵.                                                         (10) 

Proof. It is easy to see that: 

[
𝐼𝑛 0

−𝐶[𝐼𝑛λ − 𝐴]−1 𝐼𝑝
] [

𝐼𝑛λ − 𝐴 −𝐵

𝐶 0
] 

= [
𝐼𝑛λ − 𝐴 −𝐵
0 𝑇(λ)

]                                                                (11) 

and: 

det {[
𝐼𝑛 0

−𝐶[𝐼𝑛λ − 𝐴]−1 𝐼𝑝
] [

𝐼𝑛λ − 𝐴 −𝐵

𝐶 0
]}

= det [
𝐼𝑛λ − 𝐴 −𝐵

0 𝑇(λ)
]

               (12a) 

since: 

det [
𝐼𝑛 0

−𝐶[𝐼𝑛λ − 𝐴]−1 𝐼𝑝
] = 1.                                          (12b) 

□ 
Consider the submatrix: 

𝑆1(λ) = [𝐼𝑛λ − 𝐴 𝐵]                                                         (13) 

of the system matrix (4). 

Definition 4. (Kaczorek, 1993) A number z ∈ C for which: 

rank[𝐼𝑛𝑧 − 𝐴 𝐵] < 𝑛                                                         (14) 

is called the input decoupling (i.d.) zero of the fractional system 
(3). 

Let the matrix: 

𝑆1𝑆(λ) = [diag[�̅�1
(λ) ⋯ �̅�

𝑛
(λ)] 0] ∈ ℜ𝑛×(𝑛+𝑚)[λ] 

                                                                                                   (15) 

be the canonical Smith form of the matrix (13). 

Note that z ∈ C is an i.d. zero of the system (3) if and only 
if 𝑧 is a zero of the polynomial: 

�̅�(λ) = �̅�
1
(λ). . . �̅�

𝑛
(λ).                                                          (16) 
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Therefore, the i.d. zeros of the system are the zeros of the 
polynomial (16). The system has no i.d. zeros if and only 

if p̅(λ) = 1, i.e. the matrix S1(λ) has the canonical Smith form 
[In 0]. The i.d. zeros represent unreachable modes of the 
system (3) (Kaczorek, 1993). 

The number of i.d. zeros n1 of the system (3) is equal to the 
rank defect of its reachability (controllability) matrix, i.e. 

𝑛1 = 𝑛 − rank𝑅𝑛,                                                                  (17) 

where: 

𝑅𝑛 = [𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵].                                            (18) 

Theorem 3. (Kaczorek 1993) The state vector x of the fractional 

system (3) for any input u(t) and zero initial state x(0) = 0 
is independent of the i.d. zeros of the system. 

Consider the submatrix:  

𝑆2(λ) = [
𝐼𝑛λ − 𝐴

𝐶
]                                                                 (19) 

of the system matrix (4). 
Definition 5. (Kaczorek 1993) A number z ∈ C for which: 

rank [
𝐼𝑛𝑧 − 𝐴
𝐶

] < 𝑛                                                                (20) 

is called the output-decoupling (o.d.) zero of the fractional system 
(3). 

Let the matrix: 

𝑆2𝑆(λ) = [diag[�̂�1
(λ) ⋯ �̂�

𝑛
(λ)]

0
] ∈ ℜ(𝑛+𝑝)×𝑛[λ]     (21) 

be the canonical Smith form of the matrix (19). 

Note that z ∈ C is an o.d. zero of the system (3) if and only 
if 𝑧 is a zero of the polynomial: 

�̂�(λ) = �̂�
1
(λ). . . �̂�

𝑛
(λ).                                                          (22) 

Therefore, the o.d. zeros of the system are the zeros of the 
polynomial (22). The system has no o.d. zeros if and only 

if p̂(λ) = 1, i.e. the matrix S2(λ) has the canonical Smith form 

[
In
0

]. The o.d. zeros represent unobservable modes of the system 

(3) (Kaczorek, 1993). 
The number of o.d. zeros n2 of the system (3) is equal to the 

rank defect of its observability matrix, i.e. 

𝑛2 = 𝑛 − rank𝑂𝑛,                                                                 (23) 

where: 

    𝑂𝑛 = [

𝐶

𝐶𝐴

⋮

𝐶𝐴𝑛−1

].                                                                   (24) 

Theorem 4. (Kaczorek, 1993) The output y of the fractional sys-
tem (3) for any input u′(t) = Bu(t) and zero initial condition 

x(0) = 0 is independent of the o.d. zeros of the system. 

Definition 6. (Kaczorek, 1993) A number z ∈ C for which both 
conditions (14) and (20) are satisfied is called the input-output 
decoupling (i.o.d.) zero of the fractional system (3). 

Therefore, z ∈ C is an i.o.d. zero if and only if it is both an i.d. 
zero and an o.d. zero of the system. 

The number of i.o.d. zeros nio of the fractional system (3) 

is equal to: 

𝑛𝑖𝑜 = 𝑛 − rank𝑅𝑛 − rank𝑂𝑛 + rank𝑂𝑛𝑅𝑛.                     (25) 

Definition 7. (Kaczorek, 1993) A number z ∈ C is called a block-
ing zero of the system (3) if: 

𝐶[𝐼𝑛𝑧 − 𝐴]𝑎𝑑𝐵 = 0,                                                               (26) 

where [Inz − A]ad is the adjoint matrix. 
If (26) is satisfied for all λ then by definition the system has no 

blocking zeros. 
Theorem 5. (Kaczorek, 1993) A number z ∈ C is an uncontrolla-

ble and/or unobservable mode of the system if and only if 𝑧 is 
a blocking zero of the system. 
Theorem 6. If the transfer function matrix: 

𝑇(λ) = 𝐶[𝐼𝑛λ − 𝐴]−1𝐵 = 0                                                (27) 

then: 

𝑂𝑛𝑅𝑛 = 0,                                                                               (28) 

where On and Rn are defined by (24) and (18), respectively. 
Proof. Note that if (27) holds then: 

𝐶𝐴𝑘𝐵 = 0 for 𝑘 = 0,1, . . . , 𝑛 − 1.                                        (29) 

Using (24), (18) and (29) we obtain: 

𝑂𝑛𝑅𝑛 = [

𝐶

𝐶𝐴

⋮

𝐶𝐴𝑛−1

] [𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵]

= [

𝐶𝐵 𝐶𝐴𝐵 ⋯ 𝐶𝐴𝑛−1𝐵

𝐶𝐴𝐵 𝐶𝐴2𝐵 ⋯ 𝐶𝐴𝑛𝐵

⋮ ⋮ ⋱ ⋮

𝐶𝐴𝑛−1𝐵 𝐶𝐴𝑛𝐵 ⋯ 𝐶𝐴2(𝑛−1)𝐵

] = 0.

                  (30) 

This completes the proof. □ 
Theorem 7. Let for the fractional system (3) the condition (27) be 
satisfied. Then: 
1. the pair (A,B) is unreachable if 𝐶 ≠ 0, 

2. the pair (A,C) is unobservable if 𝐵 ≠ 0. 
Proof. From (13) we have: 

𝐶[𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵] = 0                                               (31) 

and: 

rank[𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵] < 𝑛                                         (32) 

if C ≠ 0. Therefore, the pair (A,B) is unreachable. 
Similarly, from (30) we have: 

[

𝐶

𝐶𝐴

⋮

𝐶𝐴𝑛−1

] 𝐵 = 0                                                                     (33) 

and: 

rank [

𝐶
𝐶𝐴
⋮
𝐶𝐴𝑛−1

] < 𝑛                                                                  (34) 

if B ≠ 0. Therefore, the pair (A,C) is unobservable. □ 
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Example 1. Consider the electrical circuit shown in Fig. 1 with 

given resistances R1, R2, R3, R4, inductance 𝐿, capacitance 𝐶 
and voltage source 𝑒. 
 

 
Fig. 1. Electrical circuit of Example 1 

Knowing that ic = C
dαuC

dtα
, uL = L

dαiL

dtα
 and using Kirch-

hoff’s laws we may write the equations: 

𝑒 = 𝑅𝐶
𝑑α𝑢𝐶

𝑑𝑡α
+ 𝑢𝐶, 𝑅 = 𝑅1 +

𝑅2+𝑅3

2
,

𝑅4𝑖𝐿 + 𝐿
𝑑α𝑖𝐿

𝑑𝑡α
= 0.

                                   (35) 

As the output 𝑦 we choose: 

𝑦 = 𝑖𝐿.                                                                                      (36) 

The equations (35) and (36) can be rewritten in the form:  

𝑑α

𝑑𝑡α
[
𝑢𝐶

𝑖𝐿
] = 𝐴2 [

𝑢𝐶

𝑖𝐿
] + 𝐵2𝑒, 𝑦 = 𝐶2 [

𝑢𝐶

𝑖𝐿
],                          (37a) 

where: 

𝐴2 = [
−

1

𝑅𝐶
0

0 −
𝑅4

𝐿

], 𝐵2 = [
1

𝑅𝐶

0
], 𝐶2 = [0 1].             (37b) 

The transfer function of the electrical circuit is: 

𝑇(λ) = 𝐶2[𝐼2λ − 𝐴2]
−1𝐵2

= [0 1] [
λ +

1

𝑅𝐶
0

0 λ +
𝑅4

𝐿

]

−1

[
1

𝑅𝐶

0
] = 0

                          (38) 

for all values of 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝐿 and 𝐶. 
The electrical circuit with (37b) is unreachable and unobserv-

able since the matrices: 

𝑅2 = [𝐵2 𝐴2𝐵2] = [
1

𝑅𝐶
−

1

(𝑅𝐶)2

0 0
], 

 𝑂2 = [
𝐶2

𝐶2𝐴2
] = [

0 1

0 −
𝑅4

𝐿

]                                      (39) 

have only one nonzero column and one nonzero row, respective-
ly. From (39) we have: 

𝑂2𝑅2 = [
0 1

0 −
𝑅4

𝐿

] [
1

𝑅𝐶
−

1

(𝑅𝐶)2

0 0
] = [

0 0

0 0
].                (40) 

From (14) and (37b) we obtain: 

rank[𝐼𝑛𝑧 − 𝐴2 𝐵2] = rank [
𝑧 +

1

𝑅𝐶
0

1

𝑅𝐶

0 𝑧 +
𝑅4

𝐿
0

] = 1  

                                                                                                   (41) 

Therefore, by Definition 4 the electrical circuit has one input-

decoupling zero 𝑧1 = −
𝑅4

𝐿
. 

From (14) and (37b) we have: 

rank [
𝐼𝑛𝑧 − 𝐴2

𝐶2
] = rank [

𝑧 +
1

𝑅𝐶
0

0 𝑧 +
𝑅4

𝐿

0 1

] = 1                (42) 

and by Definition 5 the electrical circuit has also one output-

decoupling zero 𝑧2 = −
1

𝑅𝐶
. 

Therefore by Definition 5 the electrical circuit has no input-

output decoupling zeros since z1 ≠ z2. 
From (42) it follows that the electrical circuit has no blocking 

zeros since (38) holds for all λ. 

4. CONCLUDING REMARKS 

The notions of invariant, decoupling and blocking zeros have 
been extended to the fractional linear systems. The relationship 
between the decoupling zeros and the controllability and observa-
bility of the fractional linear systems has been shown. It has been 
also shown that if the transfer matrix is zero then the product 
of the observability and controllability matrices is zero matrix 

(Theorem 6) and if the product is zero then the pair (A, B) 

is unreachable if C = 0 and the pair (A, C) is unobservable 
if B = 0 (Theorem 7). The considerations can be extended to the 
positive fractional linear systems and electrical circuits. 
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