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Abstract: Kinematic model of the human knee joint, considered as one-degree-of-freedom spatial parallel mechanism, is used to analyse 
the spatial displacement of the femur with respect to the tibia. The articular surfaces of femoral and tibia condyles are modelled, based 
on selected references, as spherical and planar surfaces. The condyles are contacted in two points  and are guided by three ligaments 
modelled as binary links with constant lengths. In particular, the mechanism position problem is solved by using the vector method. 
The obtained kinematic characteristics are adequate to the experimental results presented in the literature. Additionally, the screw  
displacements of relative motion in the knee joint model are determined.  
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1. INTRODUCTION 

The human knee joint (Fig. 1) provides a large relative move-
ment of two bones (femur and tibia) that are constrained to remain 
in contact at two points and guided with three ligaments (ACL - 
anterior cruciate ligament, MCL – medial collateral ligament and 
PCL – posterior cruciate ligament), as mentioned in Sancisi, 
Parenti-Castelli (2010), Parenti-Castelli and Di Gregorio (2000) 
and Góra (2008). The knee is important in daily living activities 
and because  of the high incidence of injuries and diseases involv-
ing this joint, which considerably affect locomotion. Restoration 
of normal knee joint function and range of motion, as pursued by 
reconstructive surgery and rehabilitation, can be  achieved by re-
establishing the natural relationship between the geometrical 
shape of the articular surfaces and the geometry of the ligaments, 
as presented in Woo et al. (2006). Kinematic models of the knee 
joint are very useful for defining diagnostic procedures, for pre-
surgical planning, for functional assessment after knee surgery, 
and for designing prosthetic replacement devices.  

Kinematic models presented as equivalent mechanisms (M1 – 
planar, M2 – spherical or M3 - spatial),  with one degree of free-
dom (1-dof), can be used to analyse the relative motion of the 
femur with respect to the tibia, give in Parenti-Castelli and Di 
Gregorio (2000) and Sancis and Parenti-Castelli (2010). The 
considered mechanism contains two nonsymmetrical platforms 
(the femur and the tibia) with two contact points  and four legs 
(ACL, PCL, MCL and PF- patella-femoral joint).The passive mo-
tion of the tibia-femoral joint (TF) is not constrained from that of 
patella-femoral chain if knee flexion is externally imposed. Thus 
the two sub-joints (TF an PF) of the knee can be analysed sepa-
rately and in particular, tibio-femoral joint (with one degree-of-
freedom) can be used to replicate the passive motion without 
taking patella-femoral (PF) joint into consideration. Since no loads 

are applied to the joint during passive motion, the muscles remain 
inactive, they do not guide the knee and, as a consequence, they 
are not considered in this study. 

It has been observed that three ligaments (ACL, PCL and 
MCL) can be considered as isometric fibres (or cables) during the 
flexion of the unloaded knee. Thus, three  ligaments are modelled 
as binary links, each connected to the tibia and femur by a spheri-
cal joint. The other bundles are not tight and reach the limit be-
tween laxity and tension at the most. As a consequence, only 
isometric bundles guide the passive motion of the knee, while the 
others can be ignored in the model. 

More recent studies concern a knee joint modelling taking into 
account elasticity in ligaments, like in Sancisi and Parenti-Castelli 
(2011)  or in Saldias et al. (2013).  

Synthesis task, where for given functional characteristics 
wanted are selected dimensions of knee joint model, seems to be 
the most challenging. Innovative approaches are presented 
in Parenti-Castelli and Sancisi (2013) or in Saldias et al (2014). 

The present paper aims to enhance the knowledge of knee 
joint mobility by equivalent 1-dof spatial mechanism, based on the 
knee model proposed in Parenti-Castelli and Di Gregorio (2000) 
and Sancisi (2013) and applied in Di Gregorio and Parenti-Castelli 
(2003). The surfaces of the femur and tibia condyles are modelled 
by rigid spherical and planar in point contact with one another. 
In particular, the scope was to use vector method, given 
in   Morecki et al. (2002), to analyse position and displacement 
of the femur with respect to the tibia, and the path of the instanta-
neous screw axis. 

2. FORMULATION OF KINEMATIC MODEL 

Kinematic model (M3) of knee joint based on the  measure-
ment results from Parenti-Castelli and Di Gregorio (2000) was 
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used to analyse the relative position and displacement of the 
femur with respect to the tibia. There are two frames (Fig. 1) base 
reference system {xyz} embedded in the tibia and reference sys-
tem {xbybzb} fixed to the femur.  

 

              
Fig. 1. Schematic anterior view of the knee in flexion (Woo et al., 2006) 

 
The points Ai (i = 1, 2, 3) denote the centres of the joints, 

modelling the ligament insertions into the tibia; ai – the position 
vector of point Ai with respect to the origin of the system{xyz}. The 
points  Bi (i = 1, 2, 3) denote the centres of joints, modelling the 
ligament insertions into the femur and bib – the position vector of 
the point Bi with respect to the origin of the system {xbybzb},  
bi – the position vector with respect to the origin of the base sys-
tem {xyz}. The respective relation  is described by using the for-
mula: 

bi = b0 + Rb bib ,         i = 1, 2, 3            (1) 

where b0 – position vector of point B0 assumed as the origin of 
coordinate system  {xbybzb}, Rb – orientation matrix of the system 
{xbybzb} with respect to the system {xyz}. 

The position and displacement analysis of the spatial mecha-
nism can be accomplished in the following way. The sphere sur-
faces are removed from contact points with the planes πj (j = 4, 5) 
and the sphere centres Bj (j = 4, 5) are treated as coupler points of 
the transformed mechanism. The position of this mechanism (now 
with three degree of freedom) is described by three angles ϕi  
(i = 1, 2, 3), shown in Fig. 2, which can be treated as additional 
independent variables, with values to be find from closure equa-
tions. The position vectors b4 and  b5 of the platform points B4 and 
B5 can be found using the vector method described below, and 
their respective distances from the planar surfaces (π4, π5) can be 
described as functions of ϕi giving the closure equations of the 
mechanism, as described below. 

Since the sphere slides on the plane πj (j = 4, 5) its centre 
point Bj (j = 4, 5) always belongs to a parallel plane and is located 
at a distance equal to the radius rj. These conditions can be writ-
ten, as in Sancisi, Parenti-Castelli (2010) [10] and Parenti-Castelli, 
Di Gregorio (2000) [5] and Góra (2008) [2], as follows: 

Fi(1, 2, 3) = ||bj – oj|| - rj = 0,    j = 4, 5             (2) 

Fj(1, 2, 3) = njx(bjx – xj) + njy(bjy – yj) + njz(bjz – zj)  = 0  
                j = 4, 5                    (3) 

where: 
jn̂ = [njx, njy, njz]T , bj = [bjx, bjy, bjz]T, oj = [xj, yj, zj]T, 

bj – position vector of point Bj (j = 4, 5), i.e. curvature centre 
of femur condyle surface described in the system {xyz}; 

jn̂  – unit vector as the normal to the plane πj,  

 oj – position vector of the plane point Oj (O4 π4, O5 π5), de-
scribed in the system {xyz} (tibia). 

 Additional angles 1, 2, 3 (Fig. 2) are defined respectively as 

the angles between the pairs of unit vectors: (
21â ,

2d̂ ), (
23â ,

2d̂ ) 

and (
21â ,

1d̂ ), where:  

d1 = b1 – a1,   d2 = b2 – a2, 
a21 = a1 – a2,  a23 = a3 – a2,               (4) 
b21 = b1 – b2,  b23 = b3 – b2, 
d12 = b2 – a1,  d21 = b1 – a2 . 

 The general formula for finding one of three unit vectors can 
be treated as a subroutine used to calculate unknown unit vector

w


, when two unit vectors ( û and v


) and two dot products of 

each these vectors with the unknown unit vector w


 ( wv,wu ˆˆˆˆ  ) 

are known. The unknown unit vector w


 is determined by formula, 

given in Morecki et al. (2002): 

1)))ˆˆ(1))(ˆˆ(1](()ˆˆ(

ˆ))ˆˆ)(ˆˆ()ˆˆ((ˆ))ˆˆ)(ˆˆ()ˆˆ[((ˆ





vuvuvu

vwuvuwvuwvvuwuw

D
 

where 

)ˆˆ)(ˆˆ)(ˆˆ(2)ˆˆ()ˆˆ()ˆˆ(1 222
wvwuvuwvwuvu D  

By using this formula the following unit vectors can be determined 

in the specified order: 025242312
ˆ,ˆ,ˆ,ˆ,ˆ,ˆ bbbbdd . 

 The position vectors bm (m = 0, 1,...5) of points Bm are de-
scribed in the base system {xyz}. The solution procedure for de-
termining the position vectors bm of the femur points in the base 
system is presented in Tab. 1. 

Tab. 1. The following steps of the solution procedure  
             for the direct position problem by using vector method 

Step û  v̂  ŵ  bm 

1 
21â  23â  

2d̂  222212
ˆ),( dab d  

2 
12â  

12d̂  1d̂  1111 d̂ab d  

3 
21b̂  - 32d̂  23b̂  232323 b̂bb b  

4 
21b̂  23b̂  24b̂  242424 b̂bb b  

5 
21b̂  23b̂  25b̂  252525 b̂bb b  

6 
23b̂  24b̂  0b̂  0020 b̂bb b  

 
The analysed range of the permissible displacements was di-

vided into a finite number of discrete positions. The system 

of nonlinear equations (2) may be solved for two unknowns 2  

and  3  assuming the selected value of 1 . 

 On the basis of the algorithm described above a computer 
program in MATLAB was written. The solutions satisfied the geo-
metrical conditions are used to determine the successive positions 
of the considered mechanism and the respective femur displace-
ments as the function of the knee joint flexion angle. This algo-
rithm can be also used for the parameter estimation procedure of 
the equivalent mechanism, for example to determine the coordi-
nates of the ligament insertion points, that satisfied the correct 
mobility of the joint knee. 
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Fig. 2. Model of the knee joint. Notations: di (i=1, 2, 3) - isometric  

ligament modelled as binary link, with Ai – joint at the tibia,  
Bi – joint at the femur. The surfaces of the femur condyles  
are modelled by spherical (r4 , r5) surfaces and tibia condyles  
as planar (π4 , π5) surfaces in contact with one another. The  
coordinate system {xyz} is fixed to the tibia and the system {xbybzb} 

is fixed to femur (Di Gregorio and Parenti-Castelli, 2003) 

Position of the femur and its relative displacement with re-
spect to the tibia, according to the model of the knee joint, can be 
described by using one input variable, for example flexion angle 
(α), like in Di Gregorio and Parenti-Castelli (2003). The solution for 
the position problem in the system {xyz} can be described by 

 position vectors (bm, m = 0, 1,...5) of the femur points;  

 position vector (ob) of the origin of the femur system;  

 orientation matrix (Rb) of the femur system with respect to the 
tibia system. 
The femur orientation with respect to the tibia can be de-

scribed by a sequence of three rotation angles: α – the flexion 
of the knee as the rotation angle around the y axis of the system 
{xyz}, β – rotation angle around the x axis, and  γ – rotation angle 
around the z axis. In accordance with Parenti-Castelli and Di 
Gregorio (2000), the following yields: 

Rb = Rz(-γ) Rx(β) Ry(α)             (5) 

Moreover these three angles are assumed equal to zero in the 
full extension configuration. The considered orientation matrix, 
defined in Di Gregorio and Parenti-Castelli (2003) and Parenti-
Castelli and Di Gregorio (2000), has the following expression: 

Rb = 





























ccssc

sssccccscssc

sscscscssscc

               (6) 

where the following notation is used: c = cos, s = sin. 
If the elements of the matrix (6) are known: 

Rb = 

















zzz

yyy

xxx

nml

nml

nml

                          (7) 

then the orientation angles can be calculated as follow: 

β = {arcsin(mz), π - arcsin(mz)} 

α = {arcsin(-lz/cosβ), π -  arcsin(-lz/cosβ)}                 (8) 

γ = {arcsin(mx/cosβ), π - arcsin(mx/cosβ)}   

Equating the respective elements of the matrices (6) and (7)  
the values of the orientation angles (8) are calculated.  

3. NUMERICAL EXAMPLES  

      The point coordinates and the link lengths of the knee joint 
model (Fig. 2), assumed as data according to Parenti-Castelli and 
Di Gregorio(2000), are given in Tab. 2 and 3.  

Tab. 2. Coordinates of the vectors ai described in the system {xyz},  
              bj

b – in the system {xbybzb}, the lengths di and rj [mm] 

i, j ai  bj
b  di rj 

1 [-3  0  0]T [19.2;16.9; 26.8]T 38.8 - 

2 [20.2  12.2  -18.3]T [16.8; -6.5; 10.8]T 34.8 - 

3 [-11.4  -2.4  -53.6]T [8.2; -34.1; 13.8]T 77,0 - 

4 - [5.1; -15.6; 19.1]T - 24.6 

5 - [3.0; 35.5; 27.1]T - 30.3 

Tab. 3. Coordinates of the vectors oj and the unit vectors 
jn̂  

              of the planes π4, π5 described in the system {xyz} 

j oj [mm] 
jn̂  [-] 

4 [5.1 -15.6 19.1]T [0.10  -0.25  0.96]T 

5 [3.0  35.5 27.1]T [0.21   0.16   0.97]T 

The position vectors bm of the femur points calculated by us-
ing the algorithm presented in Table 1 are given in Tab. 4. 

Tab. 4. Coordinates of the position vectors bm of the femur points  
             calculated for the determined values of additional angles 

Additional  
angles 

M bm [mm] 

1 = 45o  

2 = 101o  

3 = 51 o  

1 [34.7;   8.2;   7.5]T 

2 [19.1;-15.1;   3.3] T 

3 [22.1; -43.6;  1.8] T 

4 [28.9; -27.1; 11.2] T 

5 [36.7;   20.9; 28.6] T 

0 [  9.1;  -14.3; 21.7] T 

Orientation matrix of the femur system with respect to the 
base system, calculated by using the femur point coordinates is 
given by formula (7). The respective knee joint angles, calculated 
by using formula (8), are: α = 18o, β = 1.2o , γ = 2.5o. 

The femur pose with respect to the tibia is described by using 
the position vector okb (k – number of poses) and the orientation 
matrix Rkb dependent on the flexion angle as independent variable 
αk (k = 1, …, n).  

The determined coordinates of the system {xbybzb} origin of the 
(femur) in relation to the flexion angle (α) are presented in Fig. 3. 
The obtained characteristics are compared to the simulation 
results from Parenti-Castelli and Di Gregorio (2000). The greatest 
displacement in z direction, reaching 17 mm, is adequate to the 
reference model curve from Parenti-Castelli and Di Gregorio 
(2000). The obtained characteristics of the knee displacements 
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in x and y directions have the same profiles but are biased by ca 
1 mm with respect to the reference study. 

 
Fig. 3. The coordinates of the position vector b0 of the femur point B0  
            in relation to the flexion angle α. Comparison of the own results 
            with simulation from Parent-Castelli and Di Gregorio (2000) 

 
Fig. 4. Orientation  angles (β and γ) of the femur with respect to the tibia 
            in relation to the flexion angle (α). Comparison of the own results 
            with simulation and meausurements from Parent-Castelli and Di  
            Gregorio (2000) 

The knee joint angles β and γ as functions of the flexion angle 
α are illustrated in Fig. 3. These characteristics, achieved by using 
the formulated knee model, are compared to the results from 
Parent-Castelli and Di Gregorio (2000) consititng of simulation and 
experimental results in Wilson et al. (1998). Generaly, the 

formulated model gives adequate results to the reference model. 
However, at flexion angles above 40o some deviation 
is noticeable, especially for γ angle. This can be a consequence 
of an error propagation in the utilized numerical approach.  

4. SCREW DISPLACEMENTS FOR KNEE FLEXION 

For a finite femur body displacement, the screw parameters 
can be determined by using the coordinates of  three non-collinear 
points fixed to a body in some initial (n) and final (n+1) positions.  

The screw axis of the finite displacement of the body between 
its two positions (with the upper left index n and n+1) can be deter-
mined by using the formula, given in Morecki et al. (2002): 

)()(

)()(

2
ˆ

11

11
1,

1,

ji
n

ji
n

jk
n

jk
n
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n
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n
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nn tg
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bbbb
e













         (9) 

where:  

j
n

k
n

jk
n

bbb   – position vector of point Bj relative to Bk ,  

 corresponding to n –th position of the body; 

1,ˆ nne  – unit vector of the screw displacement axis;  

n,n+1 – angular displacement of the body from position n 
to position n + 1 around this axis 

Position vector of the axis point is described as 

]ˆ)(ˆ
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

            (10) 

(pn,n+1) - position vector of this axis with respect to the base  
 system and  
(un,n+1) - body displacement along this  screw axis (Fig. 5).  

The value (un,n+1) of the linear displacement of the body along 
the screw axis is determined by the formula: 

)(ˆ 1
1, i

n
i

n
innu bbe  

           (11) 

Linear displacement of the body along the screw axis is de-
termined by the formula 

)(ˆ 1
1,1, i

n
i

n
nnnnu bbe  
                                (12) 

 

Fig. 5. Axis of the screw displacement of the body, described  

            by using the unit vector (
1,

ˆ
nne ) and the position vector (pn,n+1)  

             of the axis with respect to the base system 
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According to the described procedure, axes of the femur 
screw displacements are determined with respect to the base 
system. Selected screw parameters (e, p, u) are given in Tab. 5, 
where for example  n=1 corresponds to a finite displacement 
of the flexion angle between α=25o and α=30o. The obtained 
screw pitches (u) have relatively small magnitudes, what corre-
sponds to a pure rotation about the screw axis. 

Tab. 5. Parameters of the femur screw displacement with respect  
             to the base frame {xyz} determined for different flexion angles αn 

n 
αn 
[o] 

en,n+1 [-] pn,n+1 [m] un,n+1 [m] 

1 25 
[
 0.2185   
0.9740  
−0.0602

] [
0.8949 

−6.9560
4.9147

]x10-3 
-0.6800 

x10-3 2 30 

8 60 

[
 0.2692   
0.9585 

−0.0938
] [

9.1315
−40.3760 

7.6747
]x10-3 

 

 

0.0279 

x10-3 

 

 

9 65 

14 90 

[
0.3536
0.9278

−0.1190
] 

 

[
12.9343 

−38.6413
 9.9044

]x10-3 

 

0.5702 
x10-3 

 
15 95 

The following graphical representation of the screw axes ena-
bles better understating of a spatial character of this joint motion.  

The femur screw displacements with respect to the tibia refer-
ence system are illustrated in Fig. 6 by the screw axes with direc-
tion unit vectors (ea, eb, ec) and position vectors (Pa, Pb, Pc) for the 
three finite displacements (α = 250 and 300; α = 600 and 650;  
α = 900 and 950). It can be noticed, that the screw axes are mainly 
directed along lateral (y) axis of the base reference frame. Simul-
taneously, the screw axis position changes slightly for each knee 
flexion, what corresponds to a position change of an instantane-
ous rotation point in the knee joint. Additionally, the screw axes 
are positioned inside the joint, it means between the three liga-
ments. 

 

Fig. 6. Axes (ea, eb, ec) of the femur screw displacements with respect  
           to the base frame. Notations: a) α = 250 and 300; b) α =  600  
            and 650;  c) α = 900 and 950 

For further explanation of the knee joint model displacement 
(Fig. 2), the linear displacements of the curvature centres B4 and 

B5 of the femur condyle surfaces are investigated. Their coordi-
nates are presented in Fig. 7 in the tibia reference system {xyz} 
as functions of the flexion angle. The obtained changes in the 
coordinates are related to a quasi-rolling of the considered bones.  

 

Fig. 7. Coordinates of point Bj (j=4,5), i.e. curvature centre of femur 
            condyle surface, described in the system {xyz}as functions  
            of the flexion angle α 

5. CONCLUSIONS 

Kinematic model of the human knee joint, considered as par-
allel mechanism, was formulated to determine the spatial dis-
placement of the femur with respect to the tibia. The vector meth-
od was utilized for solving the direct position analysis (DPA) of the 
considered mechanism. The parameters of finite screw displace-
ments are derived for better explanation of the knee joint spatial 
motion. 

Numerical simulations proved effectiveness of the prepared 
algorithm. The elaborated algorithm can be used in the parameter 
estimation procedure of the equivalent mechanism, for example to 
determine the coordinates of the ligament insertion points, that 
satisfied the correct mobility of the joint knee. The formulated 
model enables to determine allowed ranges of the knee displace-
ments and possible collision between the ligaments and the 
bones. 

This algorithm can also be used for sensitivity analysis of the 
dimension tolerances on accuracy of the equivalent mechanism. 

It seems useful to consider the linear displacement along the 
instantaneous screw axis of the joint motion, as it is allowed in the 
actual joint. Estimation of the model parameters can improve the 
results from the numerical analysis. 

Further extensions of the kinematic model may led to solve 
static and elasto-static problems. The modified equivalent mecha-
nism with femur and tibia condyles modelled as spherical or gen-
eral shape surfaces may give better agreement with experiments. 
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