

\square

$$
\operatorname{lic}^{2}
$$

used to analyse the relative position and displacement of the femur with respect to the tibia. There are two frames (Fig. 1) base reference system $\{x y z\}$ embedded in the tibia and reference system $\left\{x^{b} y^{b} z^{b}\right\}$ fixed to the femur.

Fig. 1. Schematic anterior view of the knee in flexion (Woo et al., 2006)
The points $A_{i}(i=1,2,3)$ denote the centres of the joints, modelling the ligament insertions into the tibia; \mathbf{a}_{i} - the position vector of point A_{i} with respect to the origin of the system\{xyz\}. The points $B_{i}(i=1,2,3)$ denote the centres of joints, modelling the ligament insertions into the femur and $\mathbf{b}_{j} \boldsymbol{b}$ - the position vector of the point B_{i} with respect to the origin of the system $\left\{x^{b} y^{b} z^{b}\right\}$, $\mathbf{b}_{i}-$ the position vector with respect to the origin of the base system $\{x y z\}$. The respective relation is described by using the formula:
$\mathbf{b}_{i}=\mathbf{b}_{0}+\mathbf{R}^{b} \mathbf{b}^{b}, \quad i=1,2,3$
where \mathbf{b}_{0} - position vector of point B_{0} assumed as the origin of coordinate system $\left\{x^{b} y^{b} z^{b}\right\}, \mathbf{R}^{b}$ - orientation matrix of the system $\left\{x^{b} y^{b} z^{b}\right\}$ with respect to the system $\{x y z\}$.

The position and displacement analysis of the spatial mechanism can be accomplished in the following way. The sphere surfaces are removed from contact points with the planes $\pi_{j}(j=4,5)$ and the sphere centres $B_{j}(j=4,5)$ are treated as coupler points of the transformed mechanism. The position of this mechanism (now with three degree of freedom) is described by three angles ϕ_{i} ($i=1,2,3$), shown in Fig. 2, which can be treated as additional independent variables, with values to be find from closure equations. The position vectors \boldsymbol{b}_{4} and \mathbf{b}_{5} of the platform points B_{4} and B_{5} can be found using the vector method described below, and their respective distances from the planar surfaces $\left(\pi_{4}, \pi_{5}\right)$ can be described as functions of ϕ_{i} giving the closure equations of the mechanism, as described below.

Since the sphere slides on the plane $\pi_{j}(j=4,5)$ its centre point $B_{j}(j=4,5)$ always belongs to a parallel plane and is located at a distance equal to the radius r_{j}. These conditions can be written, as in Sancisi, Parenti-Castelli (2010) [10] and Parenti-Castelli, Di Gregorio (2000) [5] and Góra (2008) [2], as follows:
$F_{i}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\left\|\mathbf{b}_{j}-\mathbf{o}_{j}\right\|-r_{j}=0, \quad j=4,5$
$F_{(}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=n_{j x}\left(b_{j x}-x_{j}\right)+n_{j j}\left(b_{j y}-y_{j}\right)+n_{j z}\left(b_{j z}-z_{j j}\right)=0$ $j=4,5$
where: $\hat{\mathbf{n}}_{j}=\left[n_{j x}, n_{j y}, n_{j]}\right]^{\mathrm{T}}, \mathbf{b}_{j}=\left[b_{j x,} b_{j,}, b_{j j}\right]^{\mathrm{T}}, \mathbf{o}_{j}=\left[x_{j}, y_{j} ; z_{j}\right]^{\mathrm{T}}$,
\mathbf{b}_{j} - position vector of point $B_{j}(j=4,5)$, i.e. curvature centre of femur condyle surface described in the system $\{x y z\}$;
$\hat{\mathbf{n}}_{j}$ - unit vector as the normal to the plane π_{j},
\mathbf{o}_{j} - position vector of the plane point $O_{j}\left(O_{4} \in \Pi_{4}, O_{5} \in \Pi_{5}\right)$, described in the system $\{x y z\}$ (tibia).

Additional angles $\phi_{1}, \phi_{2}, \phi_{3}$ (Fig. 2) are defined respectively as the angles between the pairs of unit vectors: $\left(\hat{\mathbf{a}}_{21}, \hat{\mathbf{d}}_{2}\right),\left(\hat{\mathbf{a}}_{23}, \hat{\mathbf{d}}_{2}\right)$ and ($-\hat{\mathbf{a}}_{21}, \hat{\mathbf{d}}_{1}$), where:
$\mathbf{d}_{1}=\mathbf{b}_{1}-\mathbf{a}_{1}, d_{2}=\mathbf{b}_{2}-\mathbf{a}_{2}$,
$\mathbf{a}_{21}=\mathbf{a}_{1}-\mathbf{a}_{2}, \mathbf{a}_{23}=\mathbf{a}_{3}-\mathbf{a}_{2}$,
$\mathbf{b}_{21}=\mathbf{b}_{1}-\mathbf{b}_{2}, \mathbf{b}_{23}=\mathbf{b}_{3}-\mathbf{b}_{2}$,
$\mathbf{d}_{12}=\mathbf{b}_{2}-\mathbf{a}_{1}, \mathbf{d}_{21}=\mathbf{b}_{1}-\mathbf{a}_{2}$
The general formula for finding one of three unit vectors can be treated as a subroutine used to calculate unknown unit vector $\hat{\mathbf{w}}$, when two unit vectors ($\hat{\mathbf{u}}$ and $\hat{\mathbf{v}}$) and two dot products of each these vectors with the unknown unit vector $\widehat{\mathbf{w}}(\hat{\mathbf{u}} \cdot \hat{\mathbf{w}}, \hat{\mathbf{v}} \cdot \hat{\mathbf{w}})$ are known. The unknown unit vector $\widehat{\mathbf{w}}$ is determined by formula, given in Morecki et al. (2002):
$\hat{\mathbf{w}}=[((\hat{\mathbf{u}} \cdot \hat{\mathbf{w}})-(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})(\hat{\mathbf{v}} \cdot \hat{\mathbf{w}})) \hat{\mathbf{u}}+((\hat{\mathbf{v}} \cdot \hat{\mathbf{w}})-(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})(\hat{\mathbf{u}} \cdot \hat{\mathbf{w}})) \hat{\mathbf{v}} \pm$
$\pm(\hat{\mathbf{u}} \times \hat{\mathbf{v}}) \sqrt{D}]((1-(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}))(1+(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})))^{-1}$
where
$D=1-(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})^{2}-(\hat{\mathbf{u}} \cdot \hat{\mathbf{w}})^{2}-(\hat{\mathbf{v}} \cdot \hat{\mathbf{w}})^{2}+2(\hat{\mathbf{u}} \cdot \hat{\mathbf{v}})(\hat{\mathbf{u}} \cdot \hat{\mathbf{w}})(\hat{\mathbf{v}} \cdot \hat{\mathbf{w}})$
By using this formula the following unit vectors can be determined in the specified order: $\hat{\mathbf{d}}_{2}, \hat{\mathbf{d}}_{1}, \hat{\mathbf{b}}_{23}, \hat{\mathbf{b}}_{24}, \hat{\mathbf{b}}_{25}, \hat{\mathbf{b}}_{0}$.

The position vectors $\mathbf{b}_{m}(m=0,1, \ldots 5)$ of points B_{m} are described in the base system $\{x y z\}$. The solution procedure for determining the position vectors \mathbf{b}_{m} of the femur points in the base system is presented in Tab. 1.

Tab. 1. The following steps of the solution procedure
for the direct position problem by using vector method

Step	$\hat{\mathbf{u}}$	$\hat{\mathbf{v}}$	$\hat{\mathbf{w}}$	\mathbf{b}_{m}
1	$\hat{\mathbf{a}}_{21}$	$\hat{\mathbf{a}}_{23}$	$\hat{\mathbf{d}}_{2}$	$\mathbf{b}_{2}\left(\phi_{1}, \phi_{2}\right)=\mathbf{a}_{2}+d_{2} \hat{\mathbf{d}}_{2}$
2	$\hat{\mathbf{a}}_{12}$	$\hat{\mathbf{d}}_{12}$	$\hat{\mathbf{d}}_{1}$	$\mathbf{b}_{1}=\mathbf{a}_{1}+d_{1} \hat{\mathbf{d}}_{1}$
3	$\hat{\mathbf{b}}_{21}$	$-\hat{\mathbf{d}}_{32}$	$\hat{\mathbf{b}}_{23}$	$\mathbf{b}_{3}=\mathbf{b}_{2}+b_{23} \hat{\mathbf{b}}_{23}$
4	$\hat{\mathbf{b}}_{21}$	$\hat{\mathbf{b}}_{23}$	$\hat{\mathbf{b}}_{24}$	$\mathbf{b}_{4}=\mathbf{b}_{2}+b_{24} \hat{\mathbf{b}}_{24}$
5	$\hat{\mathbf{b}}_{21}$	$\hat{\mathbf{b}}_{23}$	$\hat{\mathbf{b}}_{25}$	$\mathbf{b}_{5}=\mathbf{b}_{2}+b_{25} \hat{\mathbf{b}}_{25}$
6	$\hat{\mathbf{b}}_{23}$	$\hat{\mathbf{b}}_{24}$	$\hat{\mathbf{b}}_{0}$	$\mathbf{b}_{0}=\mathbf{b}_{2}+b_{0} \hat{\mathbf{b}}_{0}$

The analysed range of the permissible displacements was divided into a finite number of discrete positions. The system of nonlinear equations (2) may be solved for two unknowns ϕ_{2} and ϕ_{3} assuming the selected value of ϕ_{1}.

On the basis of the algorithm described above a computer program in MATLAB was written. The solutions satisfied the geometrical conditions are used to determine the successive positions of the considered mechanism and the respective femur displacements as the function of the knee joint flexion angle. This algorithm can be also used for the parameter estimation procedure of the equivalent mechanism, for example to determine the coordinates of the ligament insertion points, that satisfied the correct mobility of the joint knee.
\square

$$
\begin{align*}
& \mathbf{R}^{b}=\mathrm{R}_{z}(-\gamma) \mathrm{R}_{x}(\beta) \mathrm{R}_{y}(\alpha) \\
& \quad \text { Moreover these three angles are assumed equal to zero in the } \\
& \text { full extension configuration. The considered orientation matrix, } \\
& \text { defined in Di Gregorio and Parenti-Castelli (2003) and Parenti- } \tag{6}\\
& \text { Castelli and Di Gregorio (2000), has the following expression: } \tag{5}\\
& \mathbf{R}^{b}=\left[\begin{array}{ccc}
c \alpha c \gamma+s \alpha s \beta s \gamma & c \beta s \gamma & c \gamma s \alpha-c \alpha s \beta s \gamma \\
c \gamma s \alpha s \beta-c \alpha s \gamma & c \beta c \gamma & -c \alpha c \gamma s \beta-s \gamma s \alpha \\
-c \beta s \alpha & s \beta & c \alpha c \beta
\end{array}\right]
\end{align*}
$$

where the following notation is used: $c=\cos , s=\sin$.
If the elements of the matrix (6) are known:
$\mathbf{R}^{b}=\left[\begin{array}{lll}l_{x} & m_{x} & n_{x} \\ l_{y} & m_{y} & n_{y} \\ l_{z} & m_{z} & n_{z}\end{array}\right]$
then the orientation angles can be calculated as follow:
$\beta=\left\{\arcsin \left(m_{z}\right), \pi-\arcsin \left(m_{z}\right)\right\}$

Additional angles	M	$\boldsymbol{b}_{m}[\mathrm{~mm}]$
$\phi_{1}=45^{\circ}$		
	1	$[34.7 ; 8.2 ; 7.5]^{\top}$
	2	$[19.1 ;-15.1 ; 3.3]^{\top}$
	3	$[22.1 ;-43.6 ; 1.8]^{\top}$
	4	$[28.9 ;-27.1 ; 11.2]^{\top}$
	5	$[36.7 ; 20.9 ; 28.6]^{\top}$
	0	$[9.1 ;-14.3 ; 21.7]^{\top}$

Orientation matrix of the femur system with respect to the base system, calculated by using the femur point coordinates is base system, calculated by using the femur point coordinates is
given by formula (7). The respective knee joint angles, calculated by using formula (8), are: $\alpha=18^{\circ}, \beta=1.2^{\circ}, \gamma=2.5^{\circ}$.

The femur pose with respect to the tibia is described by using
The femur pose with respect to the tibia is described by using
the position vector $0 k^{b}$ (k - number of poses) and the orientation matrix $R_{k}{ }^{b}$ dependent on the flexion angle as independent variable $\alpha_{k}(k=1, \ldots, n)$.

The determined coordinates of the system $\left\{x^{b} y^{b} z^{b}\right\}$ origin of the (femur) in relation to the flexion angle (α) are presented in Fig. 3. (femur) in relation to the flexion angle (a) are presented in Fig. 3.
The obtained characteristics are compared to the simulation results from Parenti-Castelli and Di Gregorio (2000). The greatest displacement in z direction, reaching 17 mm , is adequate to the displacement in z direction, reaching 17 mm , is adequate to the
reference model curve from Parenti-Castelli and Di Gregorio (2000). The obtained characteristics of the knee displacements

Abstract

Abstract

$$
\begin{equation*}
\alpha=\left\{\arcsin \left(-I_{z} / \cos \beta\right), \pi-\arcsin \left(-I_{z} / \cos \beta\right)\right\} \tag{8}
\end{equation*}
$$

Abstract

^[]

[^1][^2]
Abstract

\qquad

[^3]——r
in x and y directions have the same profiles but are biased by ca 1 mm with respect to the reference study.

Fig. 3. The coordinates of the position vector \boldsymbol{b}_{0} of the femur point B_{0} in relation to the flexion angle α. Comparison of the own results with simulation from Parent-Castelli and Di Gregorio (2000)

Fig. 4. Orientation angles (β and γ) of the femur with respect to the tibia in relation to the flexion angle (α). Comparison of the own results with simulation and meausurements from Parent-Castelli and Di Gregorio (2000)

The knee joint angles β and γ as functions of the flexion angle α are illustrated in Fig. 3. These characteristics, achieved by using the formulated knee model, are compared to the results from Parent-Castelli and Di Gregorio (2000) consititng of simulation and experimental results in Wilson et al. (1998). Generaly, the
formulated model gives adequate results to the reference model. However, at flexion angles above 40° some deviation is noticeable, especially for γ angle. This can be a consequence of an error propagation in the utilized numerical approach.

4. SCREW DISPLACEMENTS FOR KNEE FLEXION

For a finite femur body displacement, the screw parameters can be determined by using the coordinates of three non-collinear points fixed to a body in some initial (n) and final $(n+1)$ positions.

The screw axis of the finite displacement of the body between its two positions (with the upper left index ${ }^{n}$ and ${ }^{n+1}$) can be determined by using the formula, given in Morecki et al. (2002):
$\hat{\mathbf{e}}_{n, n+1} \operatorname{tg} \frac{\theta_{n, n+1}}{2}=\frac{\left({ }^{n+1} \mathbf{b}_{j k}-{ }^{n} \mathbf{b}_{j k}\right) \times\left({ }^{n+1} \mathbf{b}_{j i}-{ }^{n} \mathbf{b}_{j i}\right)}{\left({ }^{n+1} \mathbf{b}_{j k}-{ }^{n} \mathbf{b}_{j k}\right) \cdot\left({ }^{n+1} \mathbf{b}_{j i}+{ }^{n} \mathbf{b}_{j i}\right)}$
where:
${ }^{n} \mathbf{b}_{j k}={ }^{n} \mathbf{b}_{k}-{ }^{n} \mathbf{b}_{j}$ - position vector of point B_{j} relative to B_{k},
corresponding to n-th position of the body;
$\hat{\mathbf{e}}_{n, n+1}$ - unit vector of the screw displacement axis;
$\theta_{n, n+1}$ - angular displacement of the body from position n to position $n+1$ around this axis
Position vector of the axis point is described as

$$
\begin{align*}
\mathbf{p}_{n, n+1}= & \frac{1}{2}\left[{ }^{n+1} \mathbf{b}_{i}+{ }^{n} \mathbf{b}_{i}+\hat{\mathbf{e}}_{n, n+1} \times\left({ }^{n+1} \mathbf{b}_{i}-{ }^{n} \mathbf{b}_{i}\right) \operatorname{ctg} \frac{\theta_{n, n+1}}{2}+\right. \tag{10}\\
& \left.-\hat{\mathbf{e}}_{n, n+1} \cdot\left({ }^{n+1} \mathbf{b}_{j i}+{ }^{n} \mathbf{b}_{j i}\right) \hat{\mathbf{e}}_{n, n+1}\right]
\end{align*}
$$

($\boldsymbol{p}_{n, n+1}$) - position vector of this axis with respect to the base system and
($u_{n, n+1}$) - body displacement along this screw axis (Fig. 5).
The value ($u_{n, n+1}$) of the linear displacement of the body along the screw axis is determined by the formula:
$u_{n, n+1}=\hat{\mathbf{e}}_{i} \cdot\left({ }^{n+1} \mathbf{b}_{i}-{ }^{n} \mathbf{b}_{i}\right)$
Linear displacement of the body along the screw axis is determined by the formula
$u_{n, n+1}=\hat{\mathbf{e}}_{n, n+1} \cdot\left({ }^{n+1} \mathbf{b}_{i}-{ }^{n} \mathbf{b}_{i}\right)$

Fig. 5. Axis of the screw displacement of the body, described by using the unit vector ($\hat{\boldsymbol{e}}_{n, n+1}$) and the position vector ($\boldsymbol{p}_{n, n+1}$) of the axis with respect to the base system

DE GRUYTER

According to the described procedure, axes of the femur screw displacements are determined with respect to the base system. Selected screw parameters (e, p, u) are given in Tab. 5, where for example $n=1$ corresponds to a finite displacement of the flexion angle between $\alpha=25^{\circ}$ and $\alpha=30^{\circ}$. The obtained screw pitches (u) have relatively small magnitudes, what corresponds to a pure rotation about the screw axis.

Tab. 5. Parameters of the femur screw displacement with respect to the base frame $\{x y z\}$ determined for different flexion angles α_{n}

n	$\begin{gathered} \alpha_{n} \\ {[0]} \\ \hline 0 \end{gathered}$	$\mathrm{e}_{n, n+1}[-]$	$\mathrm{p}_{n, n+1}[\mathrm{~m}]$	$u_{n, n+1}[\mathrm{~m}]$
1	25	[0.2185 0	[0.8949	-0.6800
2	30	$\left[\begin{array}{l}0.9740 \\ -0.0602\end{array}\right]$	$\left[\begin{array}{c}-6.9560 \\ 4.9147\end{array}\right] \times 10^{-3}$	$\times 10^{-3}$
8	60			
9	65	$\left[\begin{array}{c}0.2692 \\ 0.9585 \\ -0.0938\end{array}\right]$	$\left[\begin{array}{c}9.1315 \\ -40.3760 \\ 7.6747\end{array}\right] \times 10^{-3}$	$\begin{gathered} 0.0279 \\ \times 10^{-3} \end{gathered}$
14	90			
15	95	$\left[\begin{array}{c}0.3536 \\ 0.9278 \\ -0.1190\end{array}\right]$	$\left[\begin{array}{c}12.9343 \\ -38.6413 \\ 9.9044\end{array}\right] \times 10^{-3}$	$\begin{gathered} 0.5702 \\ \times 10^{-3} \end{gathered}$

The following graphical representation of the screw axes enables better understating of a spatial character of this joint motion.

The femur screw displacements with respect to the tibia reference system are illustrated in Fig. 6 by the screw axes with direction unit vectors $\left(\mathbf{e}_{\mathrm{a}}, \mathbf{e}_{b}, \mathbf{e}_{c}\right)$ and position vectors $\left(P_{\mathrm{a}}, P_{\mathrm{b}}, P_{\mathrm{c}}\right)$ for the three finite displacements ($\alpha=25^{\circ}$ and $30^{\circ} ; \alpha=60^{\circ}$ and 65°; $\alpha=90^{\circ}$ and 95°). It can be noticed, that the screw axes are mainly directed along lateral (y) axis of the base reference frame. Simultaneously, the screw axis position changes slightly for each knee flexion, what corresponds to a position change of an instantaneous rotation point in the knee joint. Additionally, the screw axes are positioned inside the joint, it means between the three ligaments.

Fig. 6. Axes (e_{a}, e_{b}, e_{c}) of the femur screw displacements with respect to the base frame. Notations: a) $\alpha=25^{\circ}$ and 30°; b) $\alpha=60^{\circ}$ and 65°; c) $\alpha=90^{\circ}$ and 95°

For further explanation of the knee joint model displacement (Fig. 2), the linear displacements of the curvature centres B_{4} and
B_{5} of the femur condyle surfaces are investigated. Their coordinates are presented in Fig. 7 in the tibia reference system $\{x y z\}$ as functions of the flexion angle. The obtained changes in the coordinates are related to a quasi-rolling of the considered bones.

Fig. 7. Coordinates of point $B_{j}(j=4,5)$, i.e. curvature centre of femur condyle surface, described in the system \{xyz\}as functions of the flexion angle α

5. CONCLUSIONS

Kinematic model of the human knee joint, considered as parallel mechanism, was formulated to determine the spatial displacement of the femur with respect to the tibia. The vector method was utilized for solving the direct position analysis (DPA) of the considered mechanism. The parameters of finite screw displacements are derived for better explanation of the knee joint spatial motion.

Numerical simulations proved effectiveness of the prepared algorithm. The elaborated algorithm can be used in the parameter estimation procedure of the equivalent mechanism, for example to determine the coordinates of the ligament insertion points, that satisfied the correct mobility of the joint knee. The formulated model enables to determine allowed ranges of the knee displacements and possible collision between the ligaments and the bones.

This algorithm can also be used for sensitivity analysis of the dimension tolerances on accuracy of the equivalent mechanism.

It seems useful to consider the linear displacement along the instantaneous screw axis of the joint motion, as it is allowed in the actual joint. Estimation of the model parameters can improve the results from the numerical analysis.

Further extensions of the kinematic model may led to solve static and elasto-static problems. The modified equivalent mechanism with femur and tibia condyles modelled as spherical or general shape surfaces may give better agreement with experiments.

REFERENCES

1. Di Gregorio R., Parenti-Castelli V. (2003), A spatial mechanism with higher pairs for modelling the human knee joint, Trans. ASME Jnl of Biomechanical Eng., 125, 232-237.

DE GRUYTER

[^1]:
 #### Abstract

[^2]: \begin{abstract}

 #### Abstract

 \end{abstract}

[^3]: