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Abstract: This paper describes the influence of some parameters significant to biomass pyrolysis on the numerical solutions  
of the non-isothermal nth order distributed activation energy model (DAEM) using the Gamma distribution and discusses the special case 
for the positive integer value of the scale parameter (𝜆), i.e. the Erlang distribution. Investigated parameters are the integral upper limit,  

the frequency factor, the heating rate, the reaction order, and the shape and rate parameters of the Gamma distribution. Influence of these 
parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Gamma distribution  
from the experimentally derived thermoanalytical data of biomass pyrolysis. Mathematically, the effect of parameters on numerical solution 
is also used for predicting the behaviour of the unpyrolysized fraction of biomass with respect to temperature. Analysis of the mathematical 
model is based upon asymptotic expansions, which leads to the systematic methods for efficient way to determine the accurate  
approximations. The proposed method, therefore, provides a rapid and highly effective way for estimating the kinetic parameters  
and the distribution of activation energies.  

Key words: Biomass Pyrolysis, Distributed Activation Energy Model (DAEM), Non- Isothermal Kinetics, Gamma Distribution, Asymptotic 
Expansion, Erlang Distribution

1. INTRODUCTION 

There are various possible ways of converting biomass into 
valuable products (Szczodrak and Fiedurek, 1996). One of them 
is pyrolysis, which comes under purview of thermochemical pro-
cesses. While biomass undergoes pyrolysis process, it changes 
into gases, liquid oil and char. The details studies related to pyrol-
ysis and thermal analysis is reported by Colomba Di Blasi (Blasi, 
2008) and John E White (White and Legendre, 2011). Thermo-
gravimetric analysis (TGA) is mainly used for experimental obser-
vation of pyrolysis decomposition (Brown, 2001). The main objec-
tive of thermogravimetric analysis is to measure changes of mass 
as functions of time or temperature. 

Mathematically, it becomes complicated to describe biomass 
decomposition kinetics, as several reactions take place and their 
mechanism is unknown. There are various models which have 
been used to explain biomass pyrolysis, such as single-reaction 
and multi-reaction models (Carpart et al., 2004; Conesa et al., 
1995; Conesa et al, 2001; Pysiak and Badwi, 2004; Mysyk et al. 
2005; CriadoJ Pérez-Maqueda, 2005). The most common ap-
proach used is isoconversional model, which assumes that kinetic 
parameters, such as the frequency factor and activation energies, 
are not constant during the process of decomposition. Another 
model, which is also used for determination of kinetic parameters, 
is the lumped kinetics model. It postulates that an ultimate number 
of parallel nth order reactions take place. These partial reactions 
provide the information about overall decomposition run. Howev-

er, hitherto, the most accurate and up-to-date approach has been 
implemented for the modeling of biomass pyrolysis is the distrib-
uted activation energy model (DAEM) (Burnham and Braun, 1999; 
Burnham et al.,1995; Galgano and Blasi, 2003; Ferdous et al., 
2002). Comparatively, the principle of the lumped kinetic model 
is very similar to the DAEM. The only difference is in the number 
of expected decomposition reactions. However, lumped kinetic 
model contains around one-hundred decomposition reactions, 
it would be approaching the distributed activation kinetic model.  

The numerical solutions obtained, after implementing the as-
ymptotic expansion, of the kinetic model are used to determine 
the kinetic parameters. To predict realistic results, the parameters 
affecting the behaviour of numerical solution must be estimated. 
The effect of these parameters on the single –reaction models has 
been reviewed in literature (Brown, 2001). The distributed activa-
tion energy model (DAEM) has proven very successful to describe 
the pyrolysis of different types of biomass. Our study mainly fo-
cuses on the relevant parameters which affect the kinetics 
of pyrolysis. The DAEM also applies to the pyrolysis of other 
conventional sources of energy like coal, residual oils, resin chars 
(Teng and Hsieh, 1999) and kerogen (Lakshmanan and White, 
1994). This analytical method is not only used for thermal decom-
position of plant, or animal biomass (Giuntoli et al., 2009; Lapuer-
ta et al., 2004), but also for thermal decomposition of other mate-
rials such as medical wastes (Zhu et al., 2009), waste car tyres 
([Koreňová et al., 2006), printed circuit board wastes (Quan et al., 
2009), or sewage sludge (Otero et al. 2008; Folgueras et al. 
2003). Approximation to the non-isothermal distribution requires 
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many evaluations of double exponential term (DExp) which in-
volves rapidly varying functions, and this leads to significant nu-
merical difficulties. In addition to that the double exponential term 
arising in the DAEM, is investigated for the non-isothermal tem-
perature profile only. This double exponential term acts over 
a narrow range of activation energies, which varies as time pro-
ceeds. While approximating, the significant part of our analysis is 
to identify the importance of relative step width of the double 
exponential term as compared to the width of the initial distribution 
of volatiles released during pyrolysis. The main aim of this study is 
to use asymptotic methods to make accurate approximation to the 
integrals, and thereby predict the behaviour of the non-isothermal 
nth order DAEM by considering the effect of some relevant pa-
rameters on the pyrolysis of biomass and discuss the behaviour 
of distribution for the special case (Erlang distribution). 

2. THE NON-ISOTHERMAL NTH ORDER DAEM  
USING THE GAMMA DISTRIBUTION  
AND ITS ASYMPTOTIC APPROXIMATION 

The concept of distributed activation energy was originally 
propounded by Vand (1943). Pitt applied DAEM to the problem of 
coal devolatilization (Pitt, 1962). Later, it was used by Hanbaba 
and his co-workers (Hanbaba, 1968), and Anthony (Anthony, 
1974). Postulation of the model states that the decomposition 
mechanism takes many independent, parallel, first order chemical 
reactions with different activation energies which reflect variations 
in the bond strength of constituent of biomass. The development 
of the model here follows Howard (Howard,1981) and Solomon 
and Hamblen (Solomon and Hamblen, 1983). Assume biomass’s 

constituents are numbered 𝑖 = 1,2,3……𝑛, and the released 

(volatilized mass fraction for the ith constituent is 𝑉𝑖(𝑡). The initial 

mass of constituent i in the coal is 𝑉𝑖
∗. Each reaction is assumed 

to be first order, so that the rate of pyrolysis is given by equation 
(1) 

𝑑𝑉𝑖

𝑑𝑡
= 𝑘𝑖(𝑉𝑖

∗ − 𝑉𝑖)                                                                                (1) 

The rate coefficient is taken to be Arrhenius in the form 

𝑘𝑖 = 𝑘0𝑖𝑒
−
𝐸𝑖
𝑅𝑇 , 

where k0i is the pre-exponential or frequency factor (𝑠−1), 𝐸𝑖 is 

the apparent activation energy for constituent 𝑖 (kJ/mol), 𝑅 is ideal 
gas constant, and 𝑇(𝑡) is the time-dependent temperature (K) 
regime of the biomass. 

Equation (1) can be written as: 

(𝑉𝑖
∗ − 𝑉𝑖) = 𝑒

−∫ 𝑘𝑖𝑑𝑡
𝑡

0  

For i = 1, the model is referred to as the single first-order re-
action model (SFOR). In DAEM, the dependence on volatile num-

ber i is substituted by a continuous distribution function of activa-
tion energy E, so that the total fraction of volatile available to 
release from biomass is considered to follow distribution correctly 
(Equation (2)).  

𝑑𝑉∗ = 𝑓(𝐸)𝑑𝐸 

The solution then becomes: 

𝑉∗−𝑉

𝑉∗
=  ∫ exp (−∫ 𝑘0(𝐸)𝑒

−
𝐸

𝑅𝑇
𝑡

0
)

∞

0
𝑓(𝐸)𝑑𝐸                                    (2) 

The main purpose of using this model is to assume the initial 

distribution of volatile 𝑓(𝐸), the pre-exponential factors 𝑘0(𝐸), 
and then find the resulting time-dependence of the volatiles. This 
model involves reaction time scale, which gained lot of ac-
ceptance as it is most significant part of biomass devolatilization 
(Howard, 1981; Suuberg, 1983). The problem relating to DAEM is 
that the function 𝑓(𝐸) and 𝑘0(𝐸) are highly correlated, hence it is 
very complicated for us to determine both functions accurately. A 
common assumption has been considered to assume the con-
stant value of pre-exponential or frequency factors 𝑘0. By doing 
so, though analysis gets easier, but study is more focused to-
wards the uncertainty of reactant distributions. In this paper, ap-
proximation for the time-dependence of the volatiles is evaluated 
first, which is given by equation (2), where 𝑘0(𝐸) is replaced by 
the constant 𝑘0. The non-isothermal nth DAEM is given by equa-
tion (3) 

1 − 𝑋 =                                                                                     (3) 

{
 
 

 
 
∫ exp [−∫ 𝑘0

𝑡

0
exp (

−𝐸

𝑅𝑇
) 𝑑𝑡] 𝑓(𝐸)𝑑𝐸

∞

0
 (first order reaction)

∫ [1 − (1 − 𝑛 ∫ 𝑘0exp (
−𝐸

𝑅𝑇
)

𝑡

0
𝑑𝑡)]

(
1

1−𝑛
)
𝑓(𝐸)𝑑𝐸

∞

0
 for 𝑛 ≠ 1

   

where (1 − X) is the mass fraction of released volatile, 𝑛 is the 
order of reaction, and 𝑓(𝐸) is the distribution of activation ener-
gies. 

Mainly, f(E) is a Gaussian distribution function. As the selec-
tion of an appropriate distribution function for the molecular activa-
tion energies is very important component of our study, so it would 
be beneficial to select an asymmetric distribution for modeling the 
kinetics of biomass pyrolysis, such as the Gamma distribution, 
over a symmetrical one (Skrdla and Roberson, 2005). 

Moreover, the Gamma distribution is mathematically flexible 
and expressed as: 

𝑓(𝐸) =
𝐸(𝜆−1)𝑒

−
𝐸
𝜂

𝜂𝜆𝛤(𝜆)
 for 𝐸 > 0                                                  (4) 

where 𝜆 is positive scale parameter expressed in kJ/mol and, 𝜂 is 
dimensionless positive shape parameter. 

The mean and the variance of distribution are given by equa-
tion (5) and equation (6) respectively: 

𝐸0 = 
𝜆

𝜂
                                                                                        (5)  

𝜎2 =
𝜆

𝜂2
                                                                                        (6) 

Primarily, the Erlang distribution was given by A. K. Erlang to 
examine the telephonic-traffic engineering. Later, it was imple-
mented in the field of stochastic and biomathematics (Robeva, 
2010). Basically, the Erlang distribution is a special case of the 
Gamma distribution for the integer values of the scale parameter 

λ. For η =1, the distribution is exponential. For values of η ≥ 1, 
the distribution becomes ‘bell shaped’, and positively skewed. 
With increase in the value of η, the Gamma distribution ap-
proaches the Gaussian distribution more and more closely. In 
addition, attribute of distribution curve is also decided by the scale 
and shape parameters. However, the wide distribution pattern is 
chosen to simplify the given numerical problem of DAEM. Here, 
variance and mean of distribution functions are dependent on 
these parameters, which are evaluated with the help of equations 
(5) and (6). 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Robeva%20R%5Bauth%5D
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3. SYSTEMATIC APPROXIMATIONS 

The integrand in equation (3) (first order) consists of two 
terms. The first term (DExp) of equation (3) is function of time, 
which in fact depends on the temperature history experienced 
experimentally by the biomass sample. The second part is invari-
ant of time, and depends on the distribution of volatiles in the 
sample. The behaviour of temperature dependent part is consid-
ered first, and approximations are derived that is useful to solve 
the double exponential term. The ramping temperature history 
only has been investigated, together with the Gamma distribution 
of volatiles. 

3.1. The double exponential simplification  

Approximations to the double exponential are considered, 

where 𝑇 varies linearly with time and having constant slope that 

indicates the heating rate (𝜃) of sample 𝐸 can take any positive 
value. The approach considered here is similar to that of Niksa 
and Lau (Niksa and Lau, 1993) and it involves much systematic 
and accurate approximation.  

DExp = exp(−∫𝑘0𝑒
−
𝐸
𝑅𝑇

𝑡

0

𝑑𝑡) 

For approximation of double exponential term, the first step is 
to consider the typical values of dependent parameters and func-
tions. The frequency factors (k0) are typically in range 

of k0~ 10
10 − 1013s−1, whereas the activation energies do-

main lies between 100-300 kJ/mol. The temperature dependence, 
however, consider according to the specified experimental re-
quirement. It varies from biomass to biomass, but typically the 
range of temperature varies as:  

1000 °𝐶 ≤ 𝑇 ≤ 2000 °𝐶 

Note: The DAEM model is also applicable to the combustion 
related problems where the extensive range of temperature 
is incorporated, and hence it is useful to extrapolate the simplifica-
tion made in the higher specified regimes of temperature, which 
is mentioned above. 

To demonstrate the proposed method, the ramping profile 
of temperature has been considered as follows 

T = θt, 

If the temperature is taken to ramp linearly, DExp becomes: 

DExp = exp (−∫𝑘0 𝑒
−
𝐸
𝑅𝜃𝑡

𝑡

0

𝑑𝑡) 

The integral in the exponent is approximated by using the 

conventional Laplace approach where the parameter 
E

Rθt
 is as-

sumed to be large and hence the dominant contribution from the 
integral is nearest to the maximum temperature experienced by 
the biomass sample. 

exp(−∫𝑘0 𝑒
−
𝐸
𝑅𝜃𝑡

𝑡

0

𝑑𝑡)~exp(
−𝑘0 𝑅𝜃𝑡

2

𝐸
𝑒
−
𝐸
𝑅𝜃𝑡) 

 as 
𝐸

𝑅𝜃𝑡
→ ∞       

(7) 

  
This approximate function can be written in the form: 

~exp (−exp (
𝐸𝑠 − 𝐸

𝐸𝑤
)) 

where again the function switches rapidly from zero to one with 
respect to increment of activation energy E, over a range of step 

size Ew around the central value Es, which can be approximated 
as follows: 
  

𝑔(𝐸) = (
𝐸𝑠 − 𝐸

𝐸𝑤
) 

Then equation (7) can be rewritten as: 

exp (−exp(𝑔(𝐸))) 

where: 

𝑔(𝐸) ≡ −
𝐸

𝑅𝜃𝑡
+  ln (

𝑘0𝑅𝜃𝑡
2

𝐸
) 

Expand g(E) with the help of Taylor series around Es by: 

𝑔(𝐸)~𝑔(𝐸𝑠) + (𝐸 − 𝐸𝑠)𝑔
′(𝐸𝑠) +

(𝐸−𝐸𝑠)
2

2!
𝑔′′(𝐸𝑠) +

⋯       
(8) 

Using equation (8) and the predefined function g(Es), Es and 

Ew are chosen such that: 

𝑔(𝐸s) = 0 and 𝑔′(𝐸s) =
−1

𝐸w
 

After solving these, we have: 

𝐸𝑠 = 𝑅𝜃𝑡𝑌(𝑘0𝑡) and 𝐸𝑤 = (
𝑅𝜃𝑡𝐸𝑠

𝑅𝜃𝑡+𝐸𝑠
) 

where Y(x) is Lambert W function defined to be one of the real 
roots of the equation: 

𝑌 𝑒𝑌 = 𝑥. 

Approximation for the small and the large values of x (corre-
sponding to short and long times) (Armstrong and Kulesza, 1981) 
can be taken as: 

𝑌~𝑥 − 𝑥2, 𝑥 ≪ 1, 

and 

𝑌~ ln(
𝑥

ln (
𝑥
ln𝑥

)
) , 𝑥 ≫ 1. 

DExp has been varied like a smoothed step-function, rising 

rapidly (for the large values of k0t) from zero to one in a range 

of activation energies of the step width Ew around the central 
value E = Es, where both Es and Ew vary with time. In equation 

(3), DExp is multiplied by the initial distribution f(E). The initial 
distribution is supposed to be centered around a value E0 and has 
a width designated by σ. The Gamma distribution function has 
been used, which is demarcated by the special case, i.e the Er-
lang distribution for its practical scope. The distribution can be 
either wide or narrow. Here we have discussed the wide distribu-

tion case only, where the initial distribution function f(E) is rela-
tively wide in compare with the width of DExp. Moreover, the 
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shape of the total integrand also depends on the distribution 
chosen. When the initial distribution is relatively wide compared to 

Ew, the total integrand behaves similar to an initial distribution 
f(E). But as time proceeds, it is progressively shifted from the left 
by the step-like DExp. The location of the maximum of the total 
integrand can move significantly, and the shape becomes quite 
skewed. 

From equations (3) and (7), the remaining mass fraction equa-
tion can be expressed as: 

1 − 𝑋 =  ∫ exp (−exp (
𝐸𝑠 − 𝐸

𝐸𝑤
))

∞

0

𝐸(𝜆−1)𝑒
−
𝐸
𝜂

𝜂𝜆𝛤(𝜆)
 𝑑𝐸  

Let:  

ℎ(𝐸) = −exp (
𝐸𝑠−𝐸

𝐸𝑤
) −

𝐸

𝜂
,  

then: 

1 − 𝑋 =  ∫ exp(ℎ(𝐸))

∞

0

𝐸(𝜆−1)

𝜂𝜆𝛤(𝜆)
 𝑑𝐸      

where Es and Ew are function of t as mentioned earlier. 

Energy is now rescaled as y =
E

E0
, so that the problem be-

comes: 

1 − 𝑋 =  
𝛼

𝛤(𝜆)
∫ 𝑦(𝜆−1)exp(ℎ(𝑦))
∞

0
 𝑑𝑦                                (9) 

ℎ(𝑦) = −exp (
𝑦𝑠−𝑦

𝑦𝑤
) − (𝜎√𝑦)

2
                                          (10) 

where the constant parameter α =  
σ2λ

E0
 . Note that in practice 

α ≪ 1. Time is also rescaled as τ = k0t. 
For linear ramping temperature T = θt, 

𝑦𝑠 =
𝑅𝜃𝜏𝑌(𝜏)

𝑘0𝐸0
, 𝑦𝑤 =

𝑦𝑠

(1 + 𝑌(𝜏))
 

Note: The ramping temperature can be generalized to the case 

of non-zero initial temperature T0 by simply replacing t with 

t +
T0

θ
 everywhere, else analysis will be changed. 

Approximations to equation (10) are studied by considering 
the initial distribution, centered around y =  1 with width 

√α
2λ

 , while DExp jumps from zero to one around y = ys with 
a width yw . 

3.2. The wide distribution case 

3.2.1. Gamma distribution  
(Generalized form of the Erlang distribution) 

The initial distribution much wider than DExp is considered. In 
this limit, as previously discussed, DExp jumps from zero to one 

near y = ys in a manner that has previously been approximated 
by the step function (Howard, 1981; Suuberg, 1983; Vand, 1943; 

Pitt, 1962). To apply this, the limit yw √α
2λ

≪ 1 is taken: 

𝐻(𝑦 − 𝑦𝑠) = {
0, 𝑦 < 𝑦𝑠
1, 𝑦 ≥ 𝑦𝑠

 

Equation (9) can be rewritten for first order and nth order reactions 

Case 1: For first order (𝐧 = 𝟏)reaction 

1 − 𝑋 =

 
𝛼

𝛤(𝜆)
∫ (exp(−exp (

𝑦𝑠−𝑦

𝑦𝑤
)) −

∞

0

𝐻(𝑦 − 𝑦𝑠)) 𝑦
(𝜆−1)exp (−(𝜎√𝑦)

2
)  𝑑𝑦 +

𝛼

𝜎2𝜆𝛤(𝜆)
 𝛤(𝜆, 𝜎2𝑦𝑠)  

where Γ(λ, σ2ys) is the upper incomplete Gamma function.  
The second integral in this equation is a complementary error 

function, therefore easily computed. In fact, many previous simpli-
fications (the step-function approximations) used just this term 
and neglected the first integral. The first integral term is the initial 
distribution multiplied by a function that is very small everywhere 
except in a neighbourhood of size yw around the point 
 y = ys. This integrand can, therefore, be approximated by ex-
panding the initial distribution term with the help of Taylor series 
about y = ys. 

Let: 

𝑍(𝑦) = 𝑦(𝜆−1)exp (−(𝜎√𝑦)
2
) 

𝑍(𝑦)~ 𝑍(𝑦𝑠) + (𝑦 − 𝑦𝑠)𝑍
′(𝑦𝑠) +

(𝑦−𝑦𝑠)
2

2!
𝑍′′(𝑦𝑠) +

(𝑦−𝑦𝑠)
3

3!
𝑍′′′(𝑦𝑠)+… 

𝑍(𝑦)~ 𝑍(𝑦𝑠) + (𝑦 − 𝑦𝑠)𝑍
′(𝑦𝑠) +

(𝑦−𝑦𝑠)
2

2!
𝑍′′(𝑦𝑠) +

(𝑦−𝑦𝑠)
3

3!
𝑍′′′(𝑦𝑠)  

~exp (−(𝜎√𝑦𝑠)
2
) [𝑦𝑠

(𝜆−1) − (𝑦 − 𝑦𝑠)ys
(𝜆−2)(−λ + 𝜎2𝑦𝑠 + 1) +

(𝑦−𝑦𝑠)
2

2
𝑦𝑠
(𝜆−3)(𝜎4𝑦𝑠

2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆
2 − 3𝜆 + 2)) −

(𝑦−𝑦𝑠)
3

6
𝑦𝑠
(𝜆−4)(𝜎6𝑦𝑠

3 + 3(1 − 𝜆)𝜎4𝑦𝑠
2 + (3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 −

𝜆3 + 6𝜆2 − 11𝜆 + 6)]  

Substituting 
y−ys

yw
= x, dy =  yw dx in equation (9),  

we have: 

~ exp (−(𝜎√𝑦𝑠)
2
) [𝑦𝑠

(𝜆−1) − 𝑦𝑤𝑥ys
(𝜆−2)(−λ + 𝜎2𝑦𝑠 + 1) +

(𝑦𝑤𝑥)
2

2
𝑦𝑠
(𝜆−3)

(𝜎4𝑦𝑠
2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆

2 − 3𝜆 + 2)) −
(𝑦𝑤𝑥)

3

6
𝑦𝑠
(𝜆−4)(𝜎6𝑦𝑠

3 + 3(1 − 𝜆)𝜎4𝑦𝑠
2 + (3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 −

𝜆3 + 6𝜆2 − 11𝜆 + 6)]  

1 − 𝑋 ~  

𝛼

𝛤(𝜆)
∫ (exp(−exp(−𝑥)) − 𝐻(𝑥))exp(−(𝜎√𝑦𝑠)

2
) [𝑦𝑠

(𝜆−1) −
∞

0

𝑦𝑤𝑥ys
(𝜆−2)(−λ + 𝜎2𝑦𝑠 + 1) +

(𝑦𝑤𝑥)
2

2
𝑦𝑠
(𝜆−3)

(𝜎4𝑦𝑠
2 +

2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆
2 − 3𝜆 + 2)) −

(𝑦𝑤𝑥)
3

6
𝑦𝑠
(𝜆−4)(𝜎6𝑦𝑠

3 +

3(1 − 𝜆)𝜎4𝑦𝑠
2 + (3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 − 𝜆

3 + 6𝜆2 − 11𝜆 +

6)] 𝑦𝑤𝑑𝑥 + 
𝛼

𝜎2𝜆𝛤(𝜆)
 𝛤(𝜆, 𝜎2𝑦𝑠)  

or 

1 − 𝑋~
𝛼

𝛤(𝜆)
exp (−(𝜎√𝑦𝑠)

2
) 𝑦𝑠

(𝜆−1)𝑦𝑤 [𝐿0 −
𝑦𝑤

𝑦𝑠
𝐿1(−λ + 𝜎

2𝑦𝑠 +

1) +
1

2
(
𝑦𝑤

𝑦𝑠
)
2
L2(𝜎

4𝑦𝑠
2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆

2 − 3𝜆 + 2)) −
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1

6
(
𝑦𝑤

𝑦𝑠
)
3
𝐿3(𝜎

6𝑦𝑠
3 + 3(1 − 𝜆)𝜎4𝑦𝑠

2 + (3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 −

𝜆3 + 6𝜆2 − 11𝜆 + 6)]  +
𝛼

𝜎2𝜆𝛤(𝜆)
 𝛤(𝜆, 𝜎2𝑦𝑠)                              (11) 

We know that:  

𝛤(𝜆, 𝜎2𝑦𝑠)

𝛤(𝜆)
= 1 − 𝑃(𝜆, 𝜎2𝑦𝑠) 

where P(λ, σ2ys) =
γ(λ,σ2ys)

Γ(λ)
 is the lower cumulative distribution 

for Gamma random variables and γ(λ, σ2ys) is the lower incom-
plete gamma function.  

𝐿0 ≈ −0.5772,  𝐿1 ≈ −0.98906 ,  𝐿2 ≈ −1.81496, 𝐿3
≈ −5.89037 

The remaining integral terms are evaluated by the expression: 

𝐿𝑛 ≡ ∫ 𝑥𝑛 (𝑒−𝑒
−𝑥
− 𝐻(𝑥))

∞

−∞
 𝑑𝑥  

Case 2: For nth order reaction (𝐧 ≠ 𝟏) 

Invoking the equation (3), we can derive the result for nth order 

reaction. As stated earlier, the term (
E

Rɵt
)∞, the exponential 

term raised to power(
1

1−n
), will vary from zero to one, and 

is approximated by using the binomial expansion. Hence, the 
equation (3) is written as: 

(1 − 𝑋)𝑛𝑡ℎ ~ ∫ [1 − exp (
𝐸𝑠−𝐸

𝐸𝑤
) +

𝑛

2
exp(2 (

𝐸𝑠−𝐸

𝐸𝑤
)) −

∞

0

(2𝑛−1)

6
exp(3 (

𝐸𝑠−𝐸

𝐸𝑤
)) +⋯ ]

𝐸(𝜆−1)𝑒
−
𝐸
𝜂

𝜂𝜆𝛤(𝜆)
𝑑𝐸   

(1 − 𝑋)𝑛𝑡ℎ ~ ∫ [1 − exp (
𝑦𝑠−𝑦

𝑦𝑤
) +

𝑛

2
exp(2 (

𝑦𝑠−𝑦

𝑦𝑤
)) −

∞

0

(2𝑛−1)

6
exp(3 (

𝑦𝑠−𝑦

𝑦𝑤
)) +⋯ ]

𝛼 𝑦(𝜆−1)exp(−(𝜎√𝑦)
2)

𝛤(𝜆)
𝑑𝑦     

After applying the wide distribution limit, the above equation 
is expressed in the form of Heaviside or unit step function as: 

(1 − 𝑋)𝑛th~∫ [1 − (exp (
𝑦𝑠−𝑦

𝑦𝑤
) − 𝐻(𝑦𝑠 − 𝑦)) +

∞

0

𝑛

2
(exp(2 (

𝑦𝑠−𝑦

𝑦𝑤
)) − 𝐻(𝑦𝑠 − 𝑦)) −

(2𝑛−1)

6
(exp(3 (

𝑦𝑠−𝑦

𝑦𝑤
)) −

−𝐻(𝑦𝑠 − 𝑦)) + ⋯ ]
𝛼 𝑦(𝜆−1)exp(−(𝜎√𝑦)

2)

𝛤(𝜆)
𝑑𝑦    

or: 

(1 − 𝑋)𝑛th ~ 
𝛼

𝜎2𝜆
(1 +

(𝑛−5)

6

𝛤(𝜆,𝜎2𝑦𝑠)

𝛤(𝜆)
) +

𝛼

𝛤(𝜆)
exp (−(𝜎√𝑦𝑠)

2
) 𝑦𝑠

(𝜆−1)𝑦𝑤 ([(𝑃0 +
𝑛

2
𝑀0 −

(2𝑛−1)

6
𝑁0) −

𝑦𝑤

𝑦𝑠
(𝑃1 +

𝑛

2
𝑀0 −

(2𝑛−1)

6
𝑁1) (−λ + 𝜎

2𝑦𝑠 + 1) +
1

2
(
𝑦𝑤

𝑦𝑠
)
2
(𝑃2 +

𝑛

2
𝑀2 −

(2𝑛−1)

6
𝑁2) (𝜎

4𝑦𝑠
2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆

2 − 3𝜆 + 2)) −

1

6
(
𝑦𝑤

𝑦𝑠
)
3
(𝑃3 +

𝑛

2
𝑀3 −

(2𝑛−1)

6
𝑁3) (𝜎

6𝑦𝑠
3 + 3(1 − 𝜆)𝜎4𝑦𝑠

2 +

(3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 − 𝜆
3 + 6𝜆2 − 11𝜆 + 6)])                        (12) 

 

3.2.2. Erlang Distribution (Generalized Chi-squared 

distribution) (for the positive integer value of 𝝀 > 𝟎) 

Case 1: First order reaction 

For Erlang distribution, we can rewrite the equation (11) as: 

1 − 𝑋~ 
𝛼

(𝜆−1)!
exp (−(𝜎√𝑦𝑠)

2
) 𝑦𝑠

(𝜆−1)𝑦𝑤 [𝐿0 −
𝑦𝑤

𝑦𝑠
𝐿1(−λ +

𝜎2𝑦𝑠 + 1) +
1

2
(
𝑦𝑤

𝑦𝑠
)
2
L2(𝜎

4𝑦𝑠
2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆

2 − 3𝜆 +

2)) −
1

6
(
𝑦𝑤

𝑦𝑠
)
3
𝐿3(𝜎

6𝑦𝑠
3 + 3(1 − 𝜆)𝜎4𝑦𝑠

2 + (3𝜆2 − 9𝜆 +

6)𝜎2𝑦𝑠 − 𝜆
3 + 6𝜆2 − 11𝜆 + 6)]  +

𝛼

𝜎2𝜆(𝜆−1)!)
 𝛤(𝜆, 𝜎2𝑦𝑠)         (13) 

In case of the Erlang distribution, we have: 

𝛤(𝜆, 𝜎2𝑦𝑠)

(𝜆 − 1)!
= 𝑃𝑟(𝜆, 𝜎2𝑦𝑠) ≈ 1 −∑

1

𝑓!

𝜆−1

𝑓=0

𝑒−(𝑦𝑠𝜎
2)(𝜎2𝑦𝑠)

𝑓 

where Pr(λ, σ2ys) is the cumulative distribution for the Poisson 
random variable.  

Case 2: nth order reaction 

 The nth order reaction case of the Erlang distribution is ex-
pressed as: 

(1 − 𝑋)𝑛𝑡ℎ ~ 
𝛼

𝜎2𝜆
(1 +

(𝑛−5)

6

𝛤(𝜆,𝜎2𝑦𝑠)

(𝜆−1)!
) +

𝛼

(𝜆−1)!
exp (−(𝜎√𝑦𝑠)

2
) 𝑦𝑠

(𝜆−1)𝑦𝑤 ([(𝑃0 +
𝑛

2
𝑀0 −

(2𝑛−1)

6
𝑁0) −

𝑦𝑤

𝑦𝑠
(𝑃1 +

𝑛

2
𝑀0 −

(2𝑛−1)

6
𝑁1) (−λ + 𝜎

2𝑦𝑠 + 1) +
1

2
(
𝑦𝑤

𝑦𝑠
)
2
(𝑃2 +

𝑛

2
𝑀2 −

(2𝑛−1)

6
𝑁2) (𝜎

4𝑦𝑠
2 + 2(1 − 𝜆)𝜎2𝑦𝑠 + (𝜆

2 − 3𝜆 + 2)) −

1

6
(
𝑦𝑤

𝑦𝑠
)
3
(𝑃3 +

𝑛

2
𝑀3 −

(2𝑛−1)

6
𝑁3) (𝜎

6𝑦𝑠
3 + 3(1 − 𝜆)𝜎4𝑦𝑠

2 +

(3𝜆2 − 9𝜆 + 6)𝜎2𝑦𝑠 − 𝜆
3 + 6𝜆2 − 11𝜆 + 6)])                        (14) 

The values of coefficients are estimated as: 

𝑃0 ≈ −0.36788 , 𝑃1 ≈ −0.23576,  𝑃2 ≈ −0.17273,  𝑃3 ≈
−0.13607,  

𝑀0 ≈ −0.56767,  𝑀1 ≈ −0.35150,  𝑀2 ≈ −0.25250,  𝑀3 ≈
−0.19642,  

𝑁0 ≈ −0.68326,  𝑁1 ≈ −0.41102,  𝑁2 ≈ −0.29061,  𝑁3 ≈
−0.22387.  

The remaining integral terms are evaluated as: 

𝑃𝑛 ≡ ∫ 𝑥𝑖(exp (−𝑥) − 𝑈(𝑥)) 𝑑𝑥 , 𝑖 = 0,1,2,3… .

∞

−∞

 

𝑀𝑛 ≡ ∫ 𝑥𝑖(exp (−2𝑥) − 𝑈(𝑥)) 𝑑𝑥 , 𝑖 = 0,1,2,3…

∞

−∞

 

𝑁𝑛 ≡ ∫ 𝑥𝑖(exp (−3𝑥) − 𝑈(𝑥)) 𝑑𝑥 , 𝑖 = 0,1,2,3…

∞

−∞
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4. APPLICATION OF THE FOREST WASTE 

For application perspective, the thermogravimetric analysis 
has been performed upon the sample of pine needles. The date of 
elemental composition and the calorific value have been obtained 
by using the CHNO-S analyser, and the bomb calorimeter, 
whereas the thermal degradation of the same sample has been 
carried out under the presence of inert atmosphere of nitrogen, 
and with the help of TG/DTG (SDT Q600 (TA, Perkin Elmer)) 
analyser. The range of temperature varied from 292 K to 873K in 
the furnace. The thermocouple type ‘R’ has been used to measure 
the sample and the furnace temperature. A vertical TG/DCS 
holder was used to hold the sample. To perform pyrolsis, a nitro-
gen purge flow rate was set at 100 ml/min, whose function is to 
remove the product gases. Thermogravimetric measurements are 
done at the heating rate of 10 °C/min. Al2O3 crucibles are used. 
The furnace space is inertized in order to eliminate the remaining 
oxygen. The mass of the samples is in between 20 mg to 21 mg. 

Thermogravimetric data has used for the prediction of nth-
order DAEM using the Gamma distribution (Fig. 8). Equations 
(11), (12), (13), and (14) are solved by using algorithm on the 
Matlab software. Each parameter is compared and reiterated until 
the root mean square error between experimental and simulated 
values is not less than equal to the maximum permissible error.  

Tab. 1. Elemental composition and the high heating value (H.H.V)  
             of pine needle sample 

C%  H% N %  O %  S% Ash% *H.H. V 
(kJ/kg) 

**V.M 
% 

53.7 5.21 0.61 32.13 0.22 4.72 19.5  70.1 
*H.H. V- Higher heating value 
**V.M - Volatile matter  

Tab. 2.  Comparative illustration of Gamma and Erlang distributions  
              with other distribution types 

Distribution Types 
Upper limit of ‘dE’ 

integrals 
Frequency factor 

(min-1) 

Gaussian  

(Dhaundiyal and 
Singh, 20016) 

   80 kJ/mol  1.75 E+06 

Weibull  

(Dhaundiyal and 
Singh ,2016) 

   23 kJ/mol  10E+03 

Gamma       150 kJ/mol   0.0015 

Erlang    150 kJ/mol   0.0015 

Tab. 3. Computed root mean square error 

Distribution function Root mean squared error (RMSE)** 

Gamma 10E-02 to 10E-03 

Erlang 10E-02 to 10E-03 

𝑅𝑀𝑆𝐸∗∗ = √
∑ ((1 − 𝑋𝑖)𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − (1 − 𝑋𝑖)𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑)
𝑁
𝑖=1

𝑁
 

where 𝑁 is number of data points. 

a) 

 

b) 

 

Fig. 1. Effect of shape parameter of the Gamma distribution (𝜂)  

on the numerical results ( 𝑘0 = 5.7E-04 min-1, 𝜃 = 10 °C/min,  

𝑇0 =293 K and 𝜆 = 45.5 kJ/mol; (a) first order reaction,  

(b) nth order reaction, 𝑛 = 8.5) 

a) 

 

b) 

 

Fig. 2. Effect of scale parameter of the Gamma distribution (λ) on the 

numerical results (𝑘0= 5.7E-04 min-1, 𝜃 = 10 °C/min, 𝑇0 = 293 K 

and 𝜂 = 35; (a) first order, (b) nth order, 𝑛 = 8.5) 
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a) 

 
b) 

 

Fig. 3. Effect of heating rate on the numerical results (𝑘0= 5.7E-04 min-1, 

𝜆 = 45.5 kJ/mol, 𝑇0 =293 K and 𝜂 = 35; (a) first order,  
(b) nth order, 𝑛 = 8.5) 

a) 

 

b) 

 

Fig. 4.  Effect of upper limit (E∞) of d𝐸 integral on the numerical   

 results (𝑘0 = 5.7E-04 min-1, 𝜆 = 45.5 kJ/mol, 𝑇0 =293 K  

 and 𝜂= 35; (a) first order, (b) nth order, 𝑛= 8.5) 

a) 

 

b) 

 

Fig. 5. Effect of frequency factor (𝑘0) on the numerical results  

(𝜆 = 45.5 kJ/mol, 𝑇0 = 293 K and 𝜂 = 35; (a) first order,  

(b) nth order, n = 8.5) 

 

Fig. 6. Effect of reaction order (n) on the numerical results  
(𝜆 = 45.5 kJ/mol, 𝑇0  =293 K; and  𝜂 = 35) 

a) 
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b) 

 

Fig. 7. Effect of scale parameter of the Erlang distribution (𝜆) on the 

numerical results (𝑘0= 0.0047 min-1, 𝜃 = 10 °C/min, 𝑇0 =293 K 

and 𝜂 = 32; (a) first order, (b) nth order, 𝑛 = 6.8) 

a) 

 

b) 

 

Fig. 8. Comparison between the experimental data and the nth order 
DAEM prediction (a) The Erlang Distribution (b) The Gamma 
Distribution 

5. RESULTS AND DISCUSSION 

The shape parameter has been obtained for Gamma distribu-
tion by using the asymptotic approximation and the energy rescal-

ing (y) of activation energies. The influence of shape parameter 
of Gamma distribution on the numerical results is shown in Fig. 1. 
At the beginning of pyrolysis, the remaining mass fraction 

(1 − X) (equations 11 and 12) must be at vicinity of one. On the 
contrary, in Fig. 1, it is observed that the remaining mass fraction 
is less than one. However, as the value of shape parameter ap-

proaches 44 ≤ η, the upper half of curve approaches one. The 
distribution exhibits no inflexion for the lower value of shape pa-
rameter 39 ≥ η and the remaining mass fraction curves lead 
towards right as parallel to each other. The effect of scale pa-

rameter values (λ) of Gamma distribution on the numerical result 
is shown in Fig. 2. The decrease in the value of scale parameter, 

λ, reduces the slope of the remaining mass proportion (1 − X) 
(equations 11and 12) curves. The effect of positive integer value 
of scale parameter of Erlang distribution is depicted in Fig. 7. It is 

observed that the behaviour of scale parameter (λ) for Erlang 
distribution is opposite to that of Gamma distribution. As the value 

of λ ≤ 33, the remaining mass fraction curve has proximity with 
one for the Erlang distribution, which implies the good approxima-
tion is obtained at the beginning of pyrolysis. The variation has 
been observed as the second term is almost negligible in equation 
(14), and the remaining mass fraction behaves like the cumulative 
distribution function. The effect of heating rate on numerical re-
sults is illustrated in Fig. 3, where it is seen that the remaining 
mass proportion is slightly increased with the heating rate. It has 
been observed that the mass fraction curves are shifted up the 
temperature scale with an increase in the heating rate. The influ-
ence of the outer limit of ‘d𝐸’ on the numerical results of the non-
isothermal nth order DAEM is shown in Fig. 4. It reveals that 

remaining mass proportion is at vicinity of one for E∞ ≤
150 J/mol values. When the values of 𝐸 are more than 250 
J/mol, the results are not accurate and closely proximate to each 

other. Hence, 150 J/mol is used as the upper limit of the d𝐸 inte-
gral. The effect of the frequency factor (𝑘0) values on the numeri-
cal results is shown in Fig. 5. According to these curves, increase 

in k0 values causes (1 − X) (equations 11 and 12) curves to shift 
towards the left direction. The effect of the reaction order (𝑛) 
values on the numerical result is illustrated in Fig. 6. As the order 

of reaction increases, the lower half range of (1 − X) (equations 
11 and 12) curves shifted up. The prediction of nth order DAEM 
is depicted in Fig. 8. In the beginning of pyroylsis, Erlang distribu-
tion (Fig. 8a) and Gamma distribution (Fig. 8b) are in good 
agreement with the thermogravimetric data, but as time increases, 
the gamma distribution has relatively provided an accurate  
approximation for the conversion occurred at the higher tempera-
ture.  

Variation in the upper limit of activation energy and frequency 
factors for the different distribution function is shown in Tab. 3. 
But, in case of the Gamma and the Erlang distributions, it was 
found that evaluation of kinetic parameters at single heating rate 
led to the compensatory effect (Doyle,1962). Root mean squared 
error between Erlang and Gamma distribution functions is illus-
trated in Tab. 3.  

6. CONCLUSIONS 

In the asymptotic approximation of the nonisothermal nth order 
for knowing the influence of parametric values on the pyrolysis 

kinetics, 150 J/mol value is used as the limit of the outer dE inte-
gral. The variation of the frequency factor, heating rate, the reac-
tion order, the shape, and the scale parameter of the Gamma 
distribution as well as Erlang distribution affect the form of remain-
ing mass fraction curves. We also studied the influence of some 
parameters. The special case of Gamma distribution has been 
discussed to know the more practical aspect regarding the distri-
bution behaviour at lower and higher temperature regimes. It has 
been concluded that the Gamma distribution provides better 
approximation for conversion rate at higher temperature than that 
of the Erlang distribution. The Erlang distribution is found to be 
more suiTab. for pyrolysis reaction that took place for the lower 
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temperature regimes. Moreover, the results are very helpful 
to determine the kinetic parameters of the nonisothermal nth order 
Gamma DAEM from the thermo analytical data of biomass pyoly-
sis. It can also be concluded from comparative illustration that the 
two asymmetrical distribution functions (Weibull and Gamma) 
does not provide the same results (Tab. 3.)  
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