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Abstract: In this paper influence of temporal profile of the specific friction power (i.e. the product of the coefficient of friction, sliding veloci-
ty and contact pressure) on thermal stresses in a friction element during braking was investigated. Spatio-temporal distributions of thermal 
stresses were analytically determined for a subsurface layer of the friction element, based on the model of thermal bending of a thick plate 
with unfixed edges (Timoshenko and Goodier , 1970). To conduct calculations, the fields of dimensionless temperature were used. These 
fields were received in the article (Topczewska, 2017) as solutions to a one-dimensional boundary-value problem of heat conduction for a 
semi-space heated on its outer surface by fictional heat flux with three, different time profiles of the friction power.  
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1. INTRODUCTION 

As a result of friction, on the disc-pad contact surface during 
braking, high temperature and thermal stresses appear in friction 
elements. In these conditions the abrasive wear process is inten-
sified and braking efficiency is significantly lower. When thermal 
stresses exceed the ultimate strength of the friction material, then 
plastic deformations and thermal cracks on the brake disc surface 
may arise (Yevtushenko and Kuciej, 2010b; Kim et al. 2013; Wu  
et al. 2016). Therefore, thermal calculations of working elements 
are pivotal stage during braking systems design.  

Analytical equations to determine temperature and thermal 
stresses, generated as a result of frictional heating, are predomi-
nantly obtain from solution to a one-dimensional thermal problem 
of friction (Evtushenko et al., 2000; Yevtushenko et al., 2012; 
2014). Acceptance of a one-dimensional heat conduction model is 
reasoned for high values of Peclet number (for braking at high 
speed) (Blok, 1955). One of the approach to formulate thermal 
problems of friction during braking is based on a virtual separation 
of friction elements and heating their working surfaces by the heat 
fluxes with intensity proportional to the specific power of friction 
(Talati and Jalalifar, 2009; Yevtushenko and Kuciej, 2010b). Using 
this approach, in the paper (Evtushenko and Kutsei, 2006) distri-
butions of the non-stationary temperature and thermal stresses for 
a semi-infinite solid heated on its outer surface by the frictional 
heat flow modelled by a pulse with rectangular or triangular 
shape. Thermal problem of friction for a strip – semi-space (pad – 
calliper) tribosystem with linear time profile of frictional heat flux 
intensity effects on the outer surface of the strip were formulated 
and solved in the article (Yevtushenko et al., 2011). 

In the literature there is a lack of exact solutions to this type 
of problems with temporal profile of heat flux adequately de-
scribed the real braking processes. The experimental study (Chi-
chinadze, 1967) shows that this quantity may have a various 
forms, depends on working conditions, thermal stability of the 

friction pair and the way of contact pressure regulation.  
Influence of temporal profile of specific friction power on spa-

tio-temporal distribution of the temperature in a friction element 
during single braking was investigated in the article (Topczewska, 
2017). For this purpose a one-dimensional boundary-value prob-
lem of heat conduction for a homogeneous semi-space (brake 
disc) heated on its outer surface by the frictional heat flux was 
formulated and analytically solved. This problem was considered 
with three different time profiles of specific friction power (Chichi-
nadze, 1967). Obtained solutions determine transient fields 
of dimensionless temperature in the heated element. Based on 
received results it was established that temporal profile of the 
intensity of frictional heat flux has essential influence on tempera-
ture distribution in the working elements of brakes.  

The main aim of this work is to investigate the influence of se-
lected time profiles of intensity of the frictional heat flux on quasi-
static distribution of the thermal stresses in the friction element.  

2. TEMPERATURE 

It was assumed, that a homogeneous half-space (brake disc), 
from the initial moment  𝑡 = 𝑡0 = 0 to the end of the braking 
process (𝑡 = 𝑡𝑠), is heated on its free surface 𝑧 = 0 (friction sur-
face) (Fig. 1) by the frictional heat flux with intensity proportional 
to the specific power of friction 𝑞𝑖(𝑡) = 𝑞0 𝑞𝑖

∗(𝑡), 𝑖 = 1,2,3 (Chi-
chinadze, 1967): 

𝑞1
∗(𝑡) = 3(1 − 𝑡 𝑡𝑠⁄ )2, 𝑞2

∗(𝑡) = 6 𝑡 𝑡𝑠⁄ (1 − 𝑡 𝑡𝑠⁄ ),
  

𝑞3
∗(𝑡) = 6 (√𝑡 𝑡𝑠⁄ − 𝑡 𝑡𝑠⁄ ) , 0 ≤ 𝑡 ≤ 𝑡𝑠. 

(1) 

where 𝑞0 = 𝑓𝑉0𝑝0. 
Temporal profiles of the heat flux intensities (1) are character-

ized by that the braking work in the moment of standstill is equal 
for all these processes. 
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Fig. 1. Scheme of the problem 

Solutions to above-mentioned formulated thermal problem 
of friction, which were found in the paper (Topczewska, 2017), are 
the following distributions of dimensionless temperature 𝑇𝑖

∗, 𝑖 =

1,2,3 : 

𝑇1
∗(𝜁, 𝜏) = 2√𝜏{3 ierfc𝑍 − 2𝜏∗[2(1 + 𝑍2)ierfc𝑍 − Zerfc𝑍 +

 0.2𝜏∗2[(8 + 18𝑍2 + 4𝑍4)ierfc𝑍 − 𝑍(7 + 2𝑍2)erfc𝑍]},  

 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,      (2) 

𝑇2
∗(𝜁, 𝜏) = 4𝜏∗√𝜏{[2(1 + 𝑍2)ierfc𝑍 − Zerfc𝑍] −  0.2𝜏∗[(8 +

18𝑍2 + 4𝑍4)ierfc𝑍 − 𝑍(7 + 2𝑍2)erfc𝑍]},  

 𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 ,      (3) 

𝑇3
∗(𝜁, 𝜏) = 𝜏∗{3√𝜋𝜏𝑠(erfc𝑍 − 2𝑍ierfc𝑍) − 4√𝜏[2(1 +

𝑍2)ierfc𝑍 − Zerfc𝑍]},  𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠,      (4) 

where 
 

𝜁 =
𝑧

𝑎
, 𝜏 =

𝑘𝑡

𝑎2 , 𝜏𝑠 =
𝑘𝑡𝑠

𝑎2 , 𝑇0 =
𝑞0𝑎

𝐾
, 𝑇𝑖

∗ =
𝑇𝑖−𝑇𝑎

𝑇0
, 𝑍 =

𝜁

2√𝜏
,      (5) 

𝑎 = √3𝑘𝑡𝑠 is effective depth of the heat penetration inside brake 

disc (Chichinadze et al., 1979), 𝑇𝑎 is initial temperature, 𝐾, 𝑘 are 
thermal conductivity and thermal diffusivity, respectively. 

Based on the solutions (2)–(4) and the model of temperature 
bending of a thick plate with unfixed edges, the distributions 
of quasi-static thermal stresses in heated brake disc will be re-
ceived. 

3. THERMAL STRESSES 

Distribution of the transient temperature field in a brake disc 
(2)–(4), due to its free surface heating by the frictional heat flux 
with intensities (1), generate temperature strains and stresses, 
which may initiate the superficial cracks of the disc material. Ex-
perimental research shows that the strongest influence on the 
material cracking along the direction of the disc sliding, according 
to the scheme of the process (Fig. 1), has lateral normal compo-
nent of stress tensor 𝜎𝑦 (acting along the 𝑦-axis) (Jewtuszenko et 

al., 2015). For a one-dimensional model of frictional heating in the 
direction perpendicular to the friction surface – 𝑧, lateral and 
longitudinal normal components of the stresses are equal 
𝜎𝑦 = 𝜎𝑥 = 𝜎 (Timoshenko and Goodier, 1970). However, in case 

of plane state of stresses, normal component of the stress tensor 
𝜎𝑧, which acts in the direction of heating, is negligible.  

In accordance with model of thermal bending of a thick strip 
of the thickness 𝑐 = 𝑎 (𝜁 = 1) with unfixed ends, the dimension-
less field of lateral thermal strains 𝜀𝑦,𝑖

∗ (𝜁, 𝜏) = 𝜀𝑖
∗(𝜁, 𝜏) we find 

from the equation (Timoshenko and Goodier, 1970): 

𝜀𝑖
∗(𝜁, 𝜏) = ∫ 𝑇𝑖

∗(𝜁, 𝜏)𝑑𝜁

1

0

+ 12(𝜁 − 0.5) ∫ (𝜁 − 0.5)𝑇
𝑖

∗(𝜁, 𝜏)𝑑𝜁,

1

0

 

0 ≤ 𝜁 ≤ 1, 0 ≤ 𝜏 ≤ 𝜏𝑠 .       (6) 

where 𝑇𝑖
∗(𝜁, 𝜏), 𝑖 = 1,2,3 are fields of the dimensionless tempera-

ture (2)–(4).  
Writing the thermal strains (6) in the form:  

𝜀𝑖
∗(𝜁, 𝜏) = 𝑇̅𝑖

∗(𝜏)(4 − 6𝜁) + 6𝑀𝑖
∗(𝜏)(2𝜁 − 1),     (7) 

where dimensionless mean temperature 𝑇̅𝑖
∗(𝜏) and temperature 

momentum 𝑀𝑖
∗(𝜏), for three intensities of heat flux (1), we deter-

mine from the equations:  

𝑇̅𝑖
∗(𝜏) = ∫ 𝑇𝑖

∗(𝜁, 𝜏)𝑑𝜁
1

0
,   𝑀𝑖

∗(𝜏) = ∫ 𝜁𝑇𝑖
∗(𝜁, 𝜏)𝑑𝜁

1

0
,     (8) 

and substituting the dimensionless temperatures (2)–(4), to the 
relations (8), we have: 

𝑇̅1
∗(𝜏) = 4𝜏{3𝐼0(𝜏) − 2𝜏∗[2𝐼0(𝜏) + 2𝐼2(𝜏) − 𝐽1(𝜏)] +

0.2𝜏∗2[8𝐼0(𝜏) + 18𝐼2(𝜏) + 4𝐼4(𝜏) − 7𝐽1(𝜏) − 2𝐽3(𝜏)]},      (9) 

𝑀1
∗(𝜏) = 8𝜏√𝜏{3𝐼1(𝜏) − 2𝜏∗[2𝐼1(𝜏) + 2𝐼3(𝜏) − 𝐽2(𝜏)] +

0.2𝜏∗2[8𝐼1(𝜏) + 18𝐼3(𝜏) + 4𝐼5(𝜏) − 7𝐽2(𝜏) − 2𝐽4(𝜏)]},    (10) 

𝑇̅2
∗(𝜏) = 8𝜏𝜏∗{[2𝐼0(𝜏) + 2𝐼2(𝜏) − 𝐽1(𝜏)] − 0.2𝜏∗[8𝐼0(𝜏) +

18𝐼2(𝜏) + 4𝐼4(𝜏) − 7𝐽1(𝜏) − 2𝐽3(𝜏)]},    (11) 

𝑀2
∗(𝜏) = 16𝜏√𝜏𝜏∗{[2𝐼1(𝜏) + 2𝐼3(𝜏) − 𝐽2(𝜏)] − 0.2𝜏∗[8𝐼1(𝜏) +

18𝐼3(𝜏) + 4𝐼5(𝜏) − 7𝐽2(𝜏) − 2𝐽4(𝜏)]},     (12) 

𝑇̅3
∗(𝜏) = 2√𝜏𝜏∗{3√𝜋𝜏𝑠[𝐽0(𝜏) − 2𝐼1(𝜏)] − 8√𝜏[𝐼0(𝜏) + 𝐼2(𝜏) −

0.5𝐽1(𝜏)]},    (13) 

𝑀3
∗(𝜏) = 4𝜏𝜏∗{3√𝜋𝜏𝑠[𝐽1(𝜏) − 2𝐼2(𝜏)] − 8√𝜏[𝐼1(𝜏) + 𝐼3(𝜏) −

0.5𝐽2(𝜏)]},    (14) 

where integrals 𝐼𝑘(𝜏) and 𝐽𝑘(𝜏) are defined by the following for-
mulas: 

𝐼𝑘(𝜏) = ∫ 𝑍𝑘ierfc𝑍
𝑋

0
𝑑𝑍, 𝑘 = 0,1,2 …   (15) 

𝐽𝑘(𝜏) = ∫ 𝑍𝑘erfc𝑍
𝑋

0
𝑑𝑍, 𝑘 = 0,1,2 …   (16) 

where 𝑍 has the form (5) and 𝑋 = (2√𝜏)−1.  

Integrals 𝐼𝑘(𝜏) (15), we transform to the following form: 

𝐼𝑘(𝜏) =
1

√𝜋
𝑁𝑘(𝜏) − 𝐽𝑘+1(𝜏), 𝑘 = 0,1,2 …    (17) 

where 𝑁𝑘(𝜏) = ∫ 𝑍𝑘𝑒−𝑍2𝑋

0
𝑑𝑍, 𝑘 = 0,1,2 …    (18) 

Applying the recursive formula (Prudnikov et al., 1998): 

𝐽𝑘(𝜏) =
𝑘(𝑘−1)

2(𝑘+1)
𝐽𝑘−2(𝜏) + (𝑋2 −

𝑘

2
)

𝑋𝑘−1

𝑘+1
erfc𝑋 −

𝑋𝑘𝑒−𝑋2

√𝜋(𝑘+1)
 ,   (19) 

and 𝐽0(𝜏) = √𝜋
−1

− ierfc𝑋, 𝐽1(𝜏) =
1

4
erfc𝑋 −

1

2
𝑋ierfc𝑋,   (20) 

integrals 𝐽𝑘(𝜏), 𝑘 = 0,1,2 … (16) we write in the form: 

𝐽2(𝜏) =
1

3√𝜋
[1 − 𝑒−𝑋2

(𝑋2 + 1)] +
𝑋3

3
erfc𝑋,   (21) 

𝐽3(𝜏) =
1

8
[

3

2
erf𝑋 −

𝑋𝑒−𝑋2

√𝜋
(2𝑋2 + 3)] +

𝑋4

4
erfc𝑋,   (22) 

𝐽4(𝜏) =
2

5√𝜋
[1 − 𝑒−𝑋2

(
1

2
𝑋4 + 𝑋2 + 1)] +

𝑋5

5
erfc𝑋,   (23) 
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𝐽5(𝜏) =
5

8
[

1

2
erf𝑋 −

𝑋𝑒−𝑋2

3√𝜋
(

4

5
𝑋4 + 2𝑋2 + 3)] +

𝑋6

6
erfc𝑋,   (24) 

𝐽6(𝜏) =
6

7√𝜋
[1 − 𝑒−𝑋2

(
1

6
𝑋6 +

1

2
𝑋4 + 𝑋2 + 1)] +

𝑋7

7
erfc𝑋,   (25) 

Using the relations (Prudnikov et al., 1986): 

𝑁𝑘(𝜏) =
𝑘−1

2
𝑁𝑘−2(𝜏) −

𝑋𝑘−1

2
𝑒−𝑋2

, 𝑘 = 0,1,2 …   (26) 

where  𝑁0(𝜏) =
√𝜋

2
(1 − erfc𝑋),  𝑁1(𝜏) =

1

2
(1 − 𝑒−𝑋2

),   (27) 

we find the integrals 𝑁𝑘(𝜏), 𝑘 = 0,1,2 … (18): 

𝑁2(𝜏) =
1

4
√𝜋erf𝑋 −

𝑋

2
𝑒−𝑋2

,   (28) 

𝑁3(𝜏) =
1

2
[1 − 𝑒−𝑋2

(𝑋2 + 1)],   (29) 

𝑁4(𝜏) =
3

8
√𝜋erf𝑋 −

𝑋

2
𝑒−𝑋2

(𝑋2 +
3

2
),   (30) 

𝑁5(𝜏) = 1 − 𝑒−𝑋2
(

1

2
𝑋4 + 𝑋2 + 1).   (31) 

Substituting the relations (20)–(25) and (27)–(31) to the formu-
la (17) we obtain:  

𝐼0(𝜏) =
1

4
erfc𝑋 +

𝑋

2√𝜋
𝑒−𝑋2

−
𝑋2

2
erfc𝑋,   (32)  

𝐼1(𝜏) =
1

6√𝜋
(1 − 𝑒−𝑋2

) +
1

3
𝑋2ierfc𝑋,   (33) 

𝐼2(𝜏) =
1

16
erf𝑋 +

𝑋

8√𝜋
𝑒−𝑋2

(2𝑋2 − 1) −
𝑋4

4
erfc𝑋,   (34)  

𝐼3(𝜏) =
1

10√𝜋
[1 + 𝑒−𝑋2

(2𝑋4 − 𝑋2 − 1)] −
𝑋5

5
erfc𝑋,   (35) 

𝐼4(𝜏) =
1

16
erf𝑋 +

𝑋

24√𝜋
𝑒−𝑋2

(4𝑋4 − 2𝑋2 − 3) −
𝑋6

6
erfc𝑋,   (36)  

𝐼5(𝜏) =
1

7√𝜋
[1 + 𝑒−𝑋2

(𝑋6 −
1

2
𝑋4 − 𝑋2 − 1)] −

𝑋7

7
erfc𝑋.   (37) 

Substituting the solutions (20)–(25) and (32)–(37) to the di-
mensionless mean temperature 𝑇̅𝑖

∗(𝜏) and temperature momen-
tum 𝑀𝑖

∗(𝜏) (9)-(14), and received results to the equation (7),  
we obtain fields of dimensionless lateral deformations εi

∗(ζ, τ), i =
1,2,3.  

Knowing the dimensionless temperature (2)–(4) and thermal 
strains (7), distributions of the dimensionless thermal stresses 
𝜎𝑖

∗(𝜁, 𝜏) in the brake disc for three intensities of the frictional heat 
flux (1), we determine from the equations (Timoshenko and 
Goodier, 1970): 

𝜎𝑖
∗(𝜁, 𝜏) = 𝜀𝑖

∗(𝜁, 𝜏) − 𝑇𝑖
∗(𝜁, 𝜏),    (38) 

0 ≤ 𝜁 ≤ 1, 0 ≤ 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2,3 

where  𝜎𝑖(𝜁, 𝜏) = 𝜎0𝜎𝑖
∗(𝜁, 𝜏), 𝜎0 =

𝛼𝐸𝑇0

1−𝜈
.    (39) 

E is Young’s modulus, α is linear thermal expansion coeffi-
cient and ν is Poisson’s ratio.   

4. NUMERICAL ANALYSIS 

Based on obtained analytical solutions, numerical analysis 
of the transient distributions of the temperature and quasi-static 
thermal stresses in a brake disc (half-space) for selected braking 
modes, i.e. for three different intensities of frictional heat fluxes 
(1). The following dimensionless parameters: spatial coordinate 𝜁, 
time 𝜏 and braking time 𝜏𝑆 = 1, which are determined by the 
equations (5) were used to perform numerical calculations.  

Spatio-temporal distributions of the dimensionless tempe-
rature 𝑇𝑖

∗(𝜁, 𝜏), 𝑖 = 1,2,3  generated due to frictional heating 

of the working surface 𝜁 = 0 by the heat fluxes with three 
intensities (1) and corresponding distributions of the quasi-static 
normal thermal stresses 𝜎𝑖

∗(𝜁, 𝜏), 𝑖 = 1,2,3 were presented in the 
Fig. 2. As follows from the functions (equations (1)), which 
describe the intensities of the frictional heat fluxes effects on the 
working surface of the brake disc, the profile of the first one 𝑞1

∗(𝜏) 
is characterized by the fact, that the maximum value occurs at the 
initial moment of braking (𝜏 = 0) and afterwards it decreases with 
time to zero at the moment of standstill  𝜏 = 𝜏𝑆 = 1. However 
intensities 𝑞𝑖

∗(𝜏), 𝑖 = 2,3 increase from zero at the initial moment  

(𝜏 = 0) to the maximum values at 0.5𝜏𝑠 for 𝑖 = 2 and at 0.25𝜏𝑠 

for 𝑖 = 3. After reached maximum value of the heat flux 
intensities they decrease to zero at the stop moment. Distributions 
of the temperature inside the brake disc, generated due to heating 
friction surface by the heat flux with the foregoing intensities, are 
shown in Fig. 2 a,c,e. Conducted analysis of the spatio-temporal 
distributions of temperature allow to establish, that the time of 
appearance of the maximum heat flux value has crucial influence 
both on the time of appearance maximum temperature on the 
friction surface, and on the temperature distribution inside the 
brake disc. If the maximum value of heat flux occurs in the initial 
stage of braking (𝑞1

∗(𝜏)) maximum value of temperature 𝑇1,max
∗ =

1.2 is reached at  𝜏max ≅ 0.317 𝜏𝑠. The time of appearance of the 
maximum temperature on the working surface of the disc 
increases with increasing the time to reach maximum value of 
frictional heat flux. For the intensities of heat flux 𝑞2

∗(𝜏) time 
 𝜏max = 0.75 𝜏𝑠 (𝑇2,max

∗ = 1.17) and for 𝑞3
∗(𝜏)  𝜏max ≅ 0.62 𝜏𝑠  

(𝑇3,max
∗ = 1.09) .  

In Fig. 2b,d,f, the dimensionless distributions of the quasi-
static thermal stresses 𝜎𝑖

∗, 𝑖 = 1,2,3 are presented, corres-
ponding to the spatial-time distributions of the dimensionless 
temperature (Fig. 2a,c,e.) in the brake disc. Overall character of 
the change of stresses state in the consider zone of the brake disc  
0 ≤ 𝜁 ≤ 1 is similar for all analyzed time profiles of the frictional 
heat flux intensities. In the initial stage of braking, in the 
subsurface region of the disc 0 ≤ 𝜁 ≤ 0.2, the compressive 
stresses 𝜎𝑖

∗ < 0 are generated. Value of these stresses 
decreases with time, to the sign change – which means that the 
tensile stresses take place. The time of change compressive 
stresses 𝜎𝑖

∗ < 0 into tensile stresses 𝜎𝑖
∗ > 0 depends on the time 

of appearance of maximum temperature value on the friction 
surface of the disc, i.e. the faster the maximum temperature is 
reached, the earlier becomes that change. In the case of heat flux 
intensity 𝑞1

∗(𝜏)  when the temperature achieved the greatest value 
at the time moment  𝜏max ≅ 0.317 𝜏𝑠 the time of the change of 
stress sign (appearance of the isoline of zero stress level) on the 
working surface and inside the disc is equal to 𝜏 = 0.53 (Fig. 2b). 
Whereas for the fluxes 𝑞𝑖

∗(𝜏), 𝑖 = 2,3 the change of the 
compressive stresses into tensile stresses, in the consider zone 
0 ≤ 𝜁 ≤ 0.2 , occurs at the time 𝜏 = 0.88 (Fig. 2d) and 𝜏 = 0.8 

(Fig. 2f). Similar character of the stresses appearance and its 
change can be observed in the region 0.75 ≤ 𝜁 ≤ 1. In the early 
stage of the heating process, the compressive stresses are 
generated, but their values are lower in comparison with the 
subsurface zone of the disc. Afterwards the stresses values 
decreases with time, to the sign change and the tensile stresses 
appear, in the similar way as in the subsurface region but also 
with lower values. 
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Fig. 2. Spatio-temporal distributions of the dimensionless temperatures 𝑇𝑖
∗:  𝑎) 𝑖 = 1;  𝑐) 𝑖 = 2;  𝑒) 𝑖 = 3; and the transverse thermal 

           stresses 𝜎𝑖
∗: 𝑏) 𝑖 = 1;  𝑑) 𝑖 = 2;  𝑓) 𝑖 = 3; inside the brake disc, for three time profiles of the heat flux intensities 

Between the above-mentioned regions, in the initial stage 
of braking, the tensile stresses are generated, which in the all 
consider cases of frictional heating is present in the whole time 
interval 0 < 𝜏 ≤ 𝜏𝑠. The greatest value of the normal compressive 
stresses in this region occurs in the case of the frictional heating 
of the disc by the heat flux with intensity 𝑞1

∗(𝜏)  and is equal 
𝜎1

∗ = 0.08 (Fig. 2b). Stresses appear in this zone, in the early 
stage of braking – at time moment 𝜏 ≈ 0.04. The time of 
occurrence of the maximum compressive stresses is almost equal 
to the time of appearance of the maximum values of tensile 
stresses on the heated surface, and for intensities of frictional 
heat fluxes 𝑞𝑖

∗(𝜏), 𝑖 = 2,3 is 𝜏 ≈ 0.4 (Fig. 2d) and 𝜏 ≈ 0.16 
(Fig. 2f), respectively. After reaching the maximum value, these 
stress decrease with time, and the region of its occurrence 

"narrows" and "moves" towards the depth 𝜁 = 1, to the 
replacement of the compressive stresses, adjacent to this region.  

Evolutions of the dimensionless thermal stresses on the 
friction surface of the disc for three frictional heating modes are 
presented in Fig. 3. On the friction surface 𝜁 = 0 , the maximum 
values of the dimensionless compressive stresses 𝜎1,min

∗ =

−0.29 , 𝜎2,min
∗ = −0.12 , 𝜎3,min

∗ = −0.13  are reached at the time 

moments 𝜏 = 0.04 , 𝜏 = 0.4 and 𝜏 = 0.16, respectively. After 
achieving the greatest value of the temperature (Fig. 2 a,c,e), 
compressive stresses on the heated surface disappear with time, 
and at the moments 𝜏 = 0.53  (𝑞1

∗(𝜏)), 𝜏 = 0.88  (𝑞2
∗(𝜏)) and 

𝜏 = 0.8  (𝑞3
∗(𝜏)) the sign of thermal stress change and tensile 

stresses appear, accompanied by the temperature decrease to 
the standstill moment. In cases 𝑞𝑖

∗(𝜏), 𝑖 = 2,3 tensile stresses 



Katarzyna Topczewska                                                                                                                                                                                                   DOI 10.1515/ama-2017-0043 
Thermal Stresses Due to Frictional Heating with Time-Dependent Specific Power of Friction  

284 

monotonically increase and reach maximum values 𝜎2,max
∗ =

0.05  and 𝜎3,max
∗ = 0.04  at the end of the braking process 

𝜏 = 𝜏𝑆 = 1. Whereas, in the process 𝑞1
∗(𝜏)  stresses increase, 

reaching the maximum value 𝜎1,max
∗ = 0.04  at the moment 

𝜏 = 0.88  and next, we can observe a slight fall of this value to the 
standstill. 

 

Fig. 3. Evolutions of the dimensionless transverse thermal 
            stresses 𝜎𝑖

∗, 𝑖 = 1,2,3  for three temporal profiles  
            of the intensities of frictional heat flux, on the working 
            surface of the disc 𝜁 = 0. 

5. CONCLUSIONS 

In this paper fields of the dimensionless thermal stresses 
in the brake disc heated by the frictional heat flux with intensity 
defined by three different temporal profiles were analytically 
determined. Conducted analysis allow us to make the following 
conclusions: 

 in the initial stage of braking, adjacent to the friction surface 
the compressive stresses appear, subsequently decrease to 
zero, then the tensile stress zone arise and persist until the 
end of braking; 

 increase of the time of achieving the maximum value of the 
specific friction power, results in increase of the time of 
occurrence of stress sign change on the heated surface; 

 rapid decrease of the disc temperature before the stop 
moment, causes the appearance of the tensile stresses with 
higher value on the friction surface. Exceed of the ultimate 
strength of the friction material by the value of this stress can 
cause the initiation of the superficial thermal cracks; 

 values and distribution of the thermal stresses, generated 
inside the heated brake disc, depends mainly on temporal 
profile of the specific friction power. 

 
Nomenclature: 𝑎 – effective depth of heat penetration [m]; 𝑐 – thickness 

of the strip [m]; 𝐸 – Young’s modulus [MPa]; erf(x) – Gauss error func-

tion; erfc (x) = 1 − erf(x) – complementary error function; ierfc(x) =

 π−1 2⁄ exp(−x2) − xerfc(x) – integral of complementary error func-
tion; 𝐾 – thermal conductivity [W K-1 m-1]; 𝑘 – thermal diffusivity [m2 s-1]; 

𝑞 – intensity of the heat flux [W m-2]; 𝑞∗ – dimensionless intensity of the 

heat flux; 𝑇 – temperature [K]; 𝑇∗ – dimensionless temperature;  

𝑇𝑎 – initial temperature [K]; 𝑇0 –temperature scaling factor [K]; 𝑡 – time 

[s]; 𝑡𝑠– braking time [s]; 𝑥𝑦𝑧 – spatial coordinates [m]; α – linear thermal 

expansion coefficient [K-1]; 𝜀∗ – dimensionless thermal strain; 𝜎0 –stress 

scaling factor [MPa]; 𝜎 – normal component of stress tensor [MPa]; 𝜎∗ – 

dimensionless component of stress tensor; 𝜏 – dimensionless time (Fou-

rier number); 𝜏𝑠 – dimensionless braking time; 𝜁 – dimensionless depth. 
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