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Abstract: In the paper, computational homogenization approach is used for recognizing the macroscopic permeability from the microscop-
ic representative volume element (RVE). Flow of water, at both macro and micro level, is assumed to be ruled by Darcy law. A special  
averaging constraint is used for numerical flow analysis in RVE, which allows to apply macroscopic pressure gradient without the necessity 
to use directly Dirichlet or Neumann boundary conditions. This approach allows arbitrarily shaped representative volumes and eliminates 
undesirable boundary effects. Generated effective permeability takes into account the structuring effects, what is an advantage over other 
homogenization methods, like self-consistent one.  
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1. INTRODUCTION 

In broad class of disordered porous materials with clear ma-
trix-inclusions internal structure, the flow of fluid can be described 
by Darcy equation at both, micro and macro level. This is for 
example the case of concrete and sand-clay soils. In order to 
determine the macroscopic response with accurate account for 
microstructural characteristics and evolution, computational ho-
mogenization strategy can be exploited (see Geers et al., 2001, 
Feyel, 2003; Kousnietsova et al., 2010). When using this micro - 
macro strategy there is actually no necessity to define homoge-
nized macroscopic constitutive equations. Instead, the constitutive 
behavior at macroscopic integration points is determined by aver-
aging the response of the deforming microstructure. This enables 
a straightforward application of the method to geometrically and 
physically non-linear problems, making it a particularly valuable 
tool for the modeling of evolving non-linear heterogeneous micro-
structures under complex macroscopic loading paths. 

Computational homogenization needs, at each macroscopic 
integration point, a microscopic representative volume to be de-
fined and boundary value problem (BVP) to be solved. One of the 
concerns in homogenization theory is the kind of boundary condi-
tions (BCs) which should be applied to this BVP. Recently, new 
concept in this area has been proposed, called minimal kinematic 
boundary conditions (see Mesarovic S.D. and Padbidri J., 2005; 
Inglis at al., 2008; Wojciechowski M. and Lefik M., 2016). This 
approach consists in applying special averaging constraint to the 
microscopic problem, instead of usual Dirichlet or Neumann 
boundary conditions. This allows for arbitrary shapes of RVE and 
eliminates undesirable boundary effects which may appear when 
e.g. periodic BCs are applied. 

In the paper we use the computational approach for recogniz-
ing the macroscopic permeability from the microscopic repre-
sentative volume element (RVE), which takes into account propor-

tions, arrangement and shape of the material constituents. In the 
following, the homogenization scheme is formulated, the solution 
by finite element method is presented and the illustrative example 
is shown. Paper ends with some discussion and conclusions. 

2. HOMOGENIZATION FRAMEWORK 

Let’s consider microstructurally complex porous material for 
which a representative volume element (RVE) 𝛺 can be defined. 

In case of laminar flow, local flux 𝑢𝑖 in the RVE is given by Darcy 
equation (skipping source terms): 

𝑢𝑖 = −
𝑘𝑖𝑗

𝛾
𝑝,𝑗  (1) 

where 𝑝,𝑗 : is a pressure gradient, 𝑘𝑖𝑗  is a permeability tensor 

depending on the position in RVE (in velocity units) and 𝛾 is a 
specific weight of the fluid. Averages of the microscopic fluxes and 
pressure gradients over domain 𝛺 are given by: 

𝑃,𝑗 =
1

𝛺
∫ 𝑝,𝑗𝑑𝛺

𝛺

, (2) 

𝑈𝑖 =
1

𝛺
∫ 𝑢𝑖𝑑𝛺

𝛺

. (3) 

These values are assumed to be related via the effective permea-

bility tensor 𝐾𝑖𝑗 , such that: 

𝑈𝑖 = −
𝐾𝑖𝑗

𝛾
𝑃,𝑗 . (4) 

The above equation describes macroscopic behavior of the com-
posite. The fundamental concept from which the existence and 
consistency of the above averages can be derived is the Hill 
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macrohomogeneity condition (Hill, 1965), which in case of Darcy 
flow is written as (Du X. and Ostoja-Starzewski M., 2006): 

∫ 𝑢𝑖𝑝,𝑖𝑑𝛺
𝛺

=
1

𝛺
∫ 𝑢𝑖𝑑𝛺

𝛺

∫ 𝑝,𝑖𝑑𝛺.
𝛺

 (5) 

 
Fig. 1. Scheme of the computational homogenization for Dacy flow 

Homogenization problem considered here is formulated as fol-

lows: find solution 𝑝 of the compatibility equation 𝑢𝑖,𝑖 = 0 defined 

on 𝛺, subject to some macroscopic pressure gradient 𝑃,𝑗  in such 

a way that equation (2) is fulfilled. From this solution microscopic 

𝑢𝑖 and macroscopic 𝑈𝑖 and 𝐾𝑖𝑗  are then derived (see Figure 1 for 

homogenization scheme). The above can be viewed as a problem 
of minimization of total potential energy (see again Du X. and 
Ostoja-Starzewski M., 2006) with additional averaging constraint: 

min
𝑝

[∫ −𝑝,𝑖

𝑘𝑖𝑗

𝛾
𝑝,𝑗

𝛺

𝑑𝛺]   subject to  

− 𝛺𝑃,𝑘 + ∫ 𝑝,𝑘𝑑𝛺
𝛺

= 0 

(6) 

which can be converted to unconstrained minimization by means 

of Lagrange multipliers 𝜆𝑘  (Bertsekas, 1982): 

min
𝑝

[∫ −𝑝,𝑖

𝑘𝑖𝑗

𝛾
𝑝,𝑗

𝛺

𝑑𝛺 + 𝜆𝑘 (−𝛺𝑃,𝑘 + ∫ 𝑝,𝑘𝑑𝛺
𝛺

)]. (7) 

3. FINITE ELEMENT METHOD FORMULATION 

Solutions 𝑝 of the above homogenization problem have to be-

long to the Sobolev functional space 𝐻1(𝛺) (at least), and this is 
assured by piecewise polynomial base functions used in FEM 
discretizations (see e.g. Babuška I. and Strouboulis T., 2001; 

Brenner S.C. and Scott R., 2007). Let’s assume the domain 𝛺 is 

discretized into 𝑒 = 1, … , 𝐸 elements such that 𝛺 = 𝛺1 ∪ … ∪
𝛺𝐸 = ∑ 𝛺𝑒𝑒 . Let’s assume also, that each element has 𝑛 =
1, … , 𝑁 nodes in which the solution will be known. Pressures and 
its spatial derivatives inside elements are then given by linear 
combinations: 

𝑝𝑒(𝐱) = 𝜙𝑒𝑛(𝐱) 𝑝𝑒𝑛 , 

𝑝𝑒,𝑖(𝐱) = 𝜙𝑒𝑛,𝑖(𝐱) 𝑝𝑒𝑛 
(8) 

where: 𝑝𝑒𝑛 are the nodal pressures and 𝜙𝑒𝑛(𝐱) are element 
interpolation functions defined on global Cartesian coordinates. 
For numerical integration pressure values at Gauss points inside 
elements need to be known. If number of these points per element 

is marked as 𝑔 = 1, … , 𝐺, then arrays of pressures and their 
derivatives for the discretized domain are written as: 

𝑝𝑒𝑔 = 𝜙𝑒𝑔𝑛𝑝𝑒𝑛 , 

𝑝𝑒𝑔𝑖 = 𝜙𝑒𝑔𝑛𝑖𝑝𝑒𝑛 
(9) 

where: 𝜙𝑒𝑔𝑛, 𝜙𝑒𝑔𝑛𝑖  are appropriate arrays of interpolation func-

tions and their derivatives. Minimization problem (7) can be now 
rewritten with discretized pressure field, replacing integrals with 
sums over elements and integration points: 

min
𝑝

[∑ 𝑝𝑒𝑚

𝑒

(− ∑ 𝑤𝑒𝑔𝜙𝑒𝑔𝑚𝑖

𝑘𝑒𝑔𝑖𝑗

𝛾
𝜙𝑒𝑔𝑛𝑗

𝑔

) 𝑝𝑒𝑛

+ 𝜆𝑘 (−𝛺𝑃,𝑘 + ∑ ∑ 𝜙𝑒𝑔𝑛𝑘𝑝𝑒𝑛

𝑔𝑒

)] = 

min
𝑝

[∑ 𝑝𝑒𝑚

𝑒

𝐴𝑒𝑚𝑛𝑝𝑒𝑛

+ 𝜆𝑘 (−𝛺𝑃,𝑘 + ∑ 𝐵𝑒𝑛𝑘𝑝𝑒𝑛

𝑒

)] 

(10) 

where: 𝑘𝑒𝑔𝑖𝑗  is an array of permeability tensors at Gauss points 

and 𝑤𝑒𝑔  are weights of numerical integration. Moving from Ein-

stein notation to the usual matrix representation of the finite ele-
ment interpolations give us: 

min
𝐩

[∑ 𝐩𝑒
T

𝑒

𝐀𝑒𝐩𝑒 + 𝛌T (−𝛺𝐏 + ∑ 𝐁𝑒
T𝐩𝑒

𝑒

)]. (11) 

Finally, dropping the sum over elements (i.e. performing global 
assembling) we get: 

min
𝐩

[𝐩T𝐀𝐩 + 𝛌T(−𝛺𝐏 + 𝐁T𝐩)] = min
𝐩

[Π(𝐩, 𝛌)] (12) 

where: 𝐩 is global vector of unknown pressures of the length 𝑀 

(𝑀 - total number of nodes in discretization), 𝐀 is a global linear 

operator of the size 𝑀 × 𝑀, 𝐁 is a problem specific matrix of the 
size 𝑀 × 𝐷 (𝐷 - space dimension: 2 or 3), 𝛌 is a vector of un-

known Lagrange multipliers of the length 𝐷, and 𝐏 is a vector of 
known, macroscopic pressure gradient to be applied, also of 
length 𝐷. Solution of the problem is found by differentiation of the  

resulting potential Π with respect to unknown 𝐩 and 𝛌 and equat-
ing derivatives to 0: 

∂Π(𝐩, 𝛌)

∂𝐩
= 𝐀𝐩 + 𝐁𝛌 = 𝟎, (13) 

∂Π(𝐩, 𝛌)

∂𝛌
= 𝐁T𝐩 − 𝛺𝐏 = 𝟎. (14) 

The above is a system of linear equations: 

[
𝐀 𝐁

𝐁T 𝟎
] [

𝐩
𝛌

] = [
𝟎

𝛺𝐏
]. (15) 

For this problem only minimal set of Dirichlet boundary condi-
tions should be applied, without introducing any additional pres-
sure gradient and flux. This is achieved simply by fixing pressure 
at certain level: 𝑝 = 𝑝0 at single, arbitrary boundary point of the 
domain (or at arbitrary boundary node of its discretization). 

Macroscopic, effective permeability can be now calculated 

from the observation, that Lagrange multipliers 𝛌 have interpreta-
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tion of macroscopic average flux, with minus sign, i.e.: 𝛌 = −𝐔 
(see Wojciechowski M. and Lefik M., 2016). Combining equations 
(13) and (14) give us then: 

𝛺𝐏 = (𝐁T𝐀−1𝐁)𝐔, 

𝐔 = 𝛺(𝐁T𝐀−1𝐁)−1𝐏 
(16) 

and from equation (4) we get finally the effective permeability: 

𝐾𝑖𝑗 = 𝐊 = −𝛾𝛺(𝐁T𝐀−1𝐁)−1. (17) 

One should note that there is no direct dependence between 
effective permeability and macroscopic pressure gradient, thus 

the same result will be obtained for any 𝑃,𝑗 . This means that 

explicit solution of the system of linear equations (15) is actually 
not needed. This will be true unless microscopic constitutive 

equation is nonlinear, i.e. unless operator 𝐀 is pressure depend-
ent. In addition one can observe, that equation (17) needs a kind 

of inversion of the operator 𝐀 which might be costly for large 
number of the RVE discretization nodes (or even impossible). 
However, in these cases numerical differentiation can be used. 

4. NUMERICAL EXAMPLE 

Presented homogenization method for Darcy flow has been 
implemented in the frame of finite element package fempy 
(Wojciechowski, 2014). We performed calculations for exemplary 
two-dimensional representative volume of the sand-clay mixture 
(for permeability properties of such materials see e.g. Juang and 
Holtz, 1986; Chapuis, 1990; Revil and Cathles, 1999; Kacprzak, 
2006; Boutin et al., 2011). RVE of the reference size about 5 mm 
is considered, with irregular boundary adjusted to the randomly 
generated grain distribution (see figure 2). Average particle size 
diameter has been chosen uniformly, in a random way, from the 
range 0.1 - 1 mm. The shape of sand grains is also irregular. 
Volume ratio of grains is assumed to be equal to 𝐺 = 0.4. Sand 
grains are assumed to be impermeable. Matrix consists in satu-

rated kaolin clay with the void ratio 𝑒𝑐 = 1. Following the results 
reported by Kacprzak (2006) and Boutin et al. (2011) (see e.g. 
paragraph 4.4 in this second reference) the permeability tensor for 

such clay paste is taken as 𝑘𝑐 = [[10−9, 0], [0, 10−9]] m/s. 

Also, specific weight for water 𝛾 = 9.807 kN/m3 is taken for 
calculations. 

 

 

Fig. 2. Geometry of the representative volume element (dimensions in millimeters) and part of finite element discretization

 

Fig. 3. Pressures p [kPa] and Darcy flux u [m/s] distribution inside the RVE after application of macroscopic pressure gradient.  
 On the right hand side: zoom on the flux vectors.
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Geometry of the RVE has been discretized into 3-noded, tri-
angular, linear finite elements. Very fine discretization (10647 
nodes, 21003 elements) is used for better handling grain shapes, 
but also coarser mesh should provide acceptable results (it was 
not tested though). In this example the reference pressure has 

been taken as 𝑝0 = 0 kPa at single boundary point of the dis-
cretization, and the macroscopic pressure gradient of the value 

𝑃,𝑗 = [1, 1] kPa/m is applied. 

Results of the calculations are showed in Fig. 3.  The flow oc-
curs from top-right to bottom-left of the RVE, reflecting the applied 
macroscopic pressure gradient. The flux is zero inside the sand 
grains and varies in clay matrix taking the largest values in “bot-
tlenecks” between grains. From this solution the macroscopic 

average flux is established from (3) as: Ui = [−3.74 ∙
10−11, −3.72 ∙ 10−11] m/s. Also the homogenized, macro-
scopic  permeability tensor calculated from equation (17) is equal 
to: 

Kij = [ 3.69 ∙ 10−10 −3.22 ∙ 10−12

−3.22 ∙ 10−12 3.68 ∙ 10−10 ] m/s. 

It’s straightforward to verify, that equation (4) holds for these 
results. 

5. DISCUSSION OF RESULTS 

Macroscopic permeability obtained in numerical example is 
generally anisotropic, but it is almost equal in both Cartesian 

directions, i.e. 𝐾 = 𝐾11 ≅ 𝐾22 ≅ 3.7 ∙ 10−10 m/s. This indi-
cates that the randomly generated RVE is appropriate for the 
considered problem – statistically isotropic at macroscale. The 

difference between 𝐾11 and 𝐾22, and also the small skew com-

ponent  𝐾12 should then tend to zero with increasing size of RVE. 
Comparisons to the oedometric laboratory tests reported by 
Kacprzak (2006) and Boutin et al. (2011) show, that computed 
permeability 𝐾 falls, as expected, into the range of variation of 
experimental results performed for similar volume ratio of sand 
grains and void ratio of clay paste. 

Computational approach provides generally better approxima-
tion of the mixture permeability than  simplified analytical meth-
ods. Self-consistent homogenization scheme for 2D case gives 
effective filtration coefficient equal to: 

𝐾𝑆−𝐶 = 𝑘𝑐 ∙
1 − 𝐺

1 + 𝐺
. (18) 

Exactly the same result will arise also from Mori-Tanaka homoge-
nization scheme. For the parameters used in numerical example 

the above equation gives coefficient 𝐾𝑆−𝐶 = 4.3 ∙ 10−10 m/s, 
which is larger than numerically obtained 𝐾. This could be 
explained by the fact, that the structuring effects, i.e. irregular, 
elongated paths of water flow through the RVE, visible in figure 3, 
have been automatically taken into account in computational 
results, which is not the case in analytical result. One should note 
that the proposed numerical approach will produce reliable 

effective parameters for any 𝐺 and 𝑘𝑐 , also if these parameters 
vary both at microscopic and macroscopic level. Conversely, in 
case of the mentioned analytical self-consistent method special 
extensions with additional grain distribution and concentration 
parameters have to be considered, in order to catch microscopic 
structuring effects (see e.g. Boutin, 2011). 

6. CONCLUSIONS 

Computational homogenization approach is an attractive 
method for dealing with Darcy flow in heterogeneous porous 
media. This is because of the possibility of taking into account 
local proportions, arrangements, shapes and permeability param-
eters of composite constituents. At every integration point of 
macroscopic problem such locally defined representative volume 
elements can be loaded with local macroscopic pressure gradi-
ents, in an average sense, to get the macroscopic flux vectors. In 
general, effective macroscopic permeability is actually not neces-
sary to be explicitly established in this approach. However, as we 
have showed, obtaining it is quite straightforward and reliable. In 
numerical example, the obtained effective permeability takes into 
account the structuring effects in the sand-clay mixture and this is 
an advantage in comparison to other homogenization methods. 

In this paper only an illustrative example of single RVE analy-
sis is presented, without actual macroscopic problem, as the main 
goal was presentation of the computational approach. Also, no 
special analysis is performed for establishing the adequate size 
and discretization of the RVE. Instead we relied on large repre-
sentative volume with fine finite elements. It should be empha-
sized, that the shape of RVE used in this paper is rather unusual 
in numerical homogenization, where square or box shapes are 
commonly used, for easy application of linear or periodic kinemat-
ic BCs (pressure gradients in this case). Irregular shape of RVE is 
possible thanks to the novel method of application of macroscopic 
pressure gradient. The influence of RVE shape on homogeniza-
tion results is however an open topic and should be addressed in 
future works. 
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