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Abstract: The paper deals with application of the finite element method in modelling and simulation of nanostructures. The finite element 
model is based on beam elements with stiffness properties gained from the quantum mechanics and nonlinear spring elements with force-
displacement relation are gained from Morse potential. Several basic mechanical properties of structures are computed by homogenization 
of nanostructure, e.g. Young's modulus, Poisson's ratio. The problems connecting with geometrical parameters of nanostructures are con-
sidered and their influences to resulting homogenized quantities are mentioned.  
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1. INTRODUCTION 

The carbon structures attract the attention of researchers 
since the beginning of their investigation. Especially, electrical and 
mechanical properties of nanostructures have been widely inves-
tigated during last decade due to their interesting behaviour. The 
strength and stiffness characteristics of mechanical properties of 
nanostructures are much higher than those of steels. However, 
there is a problem with connection of carbon structure as a fibre 
with a steel matrix.  

Nowadays, the analysis of nanostructure properties is based 
mostly on the following methods: molecular mechanics, molecular 
dynamics, continuum mechanics and experimental measure-
ments. Tsai and Tu  (2010) used molecular dynamics simulation 
for prediction of mechanical properties of graphene sheets. Con-
tinuum mechanics is well established for continuum theories 
of rods, beams, springs, shells, etc. (Li and Chou,2003; Meo and 
Rossi, 2006; Tserpes and Papanikos, 2005). The experimental 
measurements of mechanical properties of nanostructures are 
made in an atomic force microscope by nanoindentation (Lee et 
al., 2008). 

The paper is devoted to investigation of Young's modulus and 
Poisson's ratio of nanostructure. These material characteristics 
are very important but still there are great uncertainties in their 
accurate determination. In the paper are investigated graphene 
sheets with different chiralities, widths, and lengths. The 
nanostructures are modelled using the MSM approach by either 
beam or spring elements. The carbon atoms are considered to be 
finite elements nodes and the interatomic interactions are repre-
sented by the structural elements (Li and Chou, 2003; Meo and 
Rossi, 2006; Hosseini and Moshrefzadeh, 2013). 

2. GRAPHENE SHEET IN MOLECULAR MECHANICS 

The graphene sheets can be regarded in molecular mechan-
ics as large molecules consisting of carbon atoms and the atomic 
nuclei as material points. The motion of atomic nuclei is described 
by laws of force field. This field is expressed in the form of steric 
potential energy (Tserpes and Papanikos, 2005). The total steric 
potential energy (Saito et al., 1998; Thostenson et al., 2005) is 
a sum of energies due to valence or bonded interactions and non-
bonded (van der Walls) interactions. It can be expressed by rela-
tion 

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑟 + ∑ 𝑈𝜃 + ∑ 𝑈𝜙 + ∑ 𝑈𝜔 + ∑ 𝑈𝑣𝑑𝑤, (1) 

where 𝑈𝑟 , 𝑈𝜃 , 𝑈𝜙 , 𝑈𝜔, 𝑈𝑣𝑑𝑤 are a bond stretching, a bond angle 

bending, a dihedral angle torsion, an improper (out of plane) 
torsion and a non-bonded van der Waals interaction, respectively 
(Mayo et al., 1990; Shokrieh and Rafiee, 2010; Tserpes and 
Papanikos, 2005). 

2.1. Properties of beam element  

The properties of beam element are related to the first four 
terms of equation (1). By adopting the simplest harmonic forms 
and merging dihedral angle torsion and out-of-plane torsion into 
a single equivalent term, we can write the following relations 

𝑈𝑟 =
1

2
𝑘𝑟(𝑟 − 𝑟0)2 =

1

2
𝑘𝑟(Δ𝑟)2, (2) 

𝑈𝜃 =
1

2
𝑘𝜃(𝜃 − 𝜃0)2 =

1

2
𝑘𝜃(Δ𝜃)2, (3) 

𝑈𝜏 = 𝑈𝜙 + 𝑈𝜃 =
1

2
𝑘𝜏(Δ𝜙)2, (4) 

where 𝑘𝑟 , 𝑘𝜃 , 𝑘𝜏 , Δ𝑟, Δ𝜃, Δ𝜙 are the bond stretching force con-
stant, bond angle bending force constant, torsional resistance, the 
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bond stretching increment, the bond angle variation and the angle 
variation of bond twisting, respectively (Brenner, 1990; Cornell et 
al., 1995; Rappe et al., 1992). 

The elastic moduli of beam elements are evaluated from me-
chanical considerations – relations between the sectional stiffness 
parameters in structural mechanics and the force constants in 
molecular mechanics.  In case the sections of beams representing 
carbon-carbon bonds, are assumed to be identical and circular, 

then the moments of inertia are Ix = Iy = I. Three stiffness 

parameters EA, EI and GJ are obtained from this assumption and 
from linkage among the energy terms in molecular mechanics and 
continuum mechanics. It is possible write relations 
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where UA is the strain energy of a uniform beam of length L 

subjected to axial force N, ΔL is axial elongation, UM is the strain 

energy of a uniform beam under bending moment M, α is the 

rotational angle at the ends of the beam, UT is the strain energy 
of a uniform beam under tension T and Δβ is the relative rotation 
between the ends of the beam (Li and Chou, 2003; Tserpes and 
Papanikos, 2005). 

Comparision of equations (2)-(4) and (5)-(7) leads to relations 

𝐸𝐴

𝐿
= 𝑘𝑟 ,

𝐸𝐼

𝐿
= 𝑘𝜃 ,

𝐺𝐽

𝐿
= 𝑘𝜏. (8) 

On the basis of these equations a beam element (Fig. 1) is 
created and its elastic properties for further computations are 

𝑑 = 4 √
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2 , (9) 

 

Fig. 1. Hexagon unit cell of graphene sheet with beam elements 

where constants kr, kθ, kτ, L are kr = 6.52 × 10−7 Nnm−1, 
kθ = 8.76 × 10−10 N nm rad−1, kτ = 2.78 ×
10−7 N n m rad−2 and L = aC−C = 0.1421 nm (Marenić et 
al., 2013). 

Accordingly, the quantities from equations (9) are calculated 

and we come to diameter d = 0.147 nm, elastic modulus 
E = 5.4875 TPa and G = 0.871 TPa for beam elements. 

2.2. Properties of spring elements  

The properties of spring elements come from the Morse po-
tential. The Morse potential is used for evaluation of interactions 
of C-C bond stretching and C-C-C bond angle bending. The 
Morse potential for C-C and C-C-C bonds is computed according 
to eqs. (10)-(11). All necessary parameters for computations are 
given in Tab. 1 (Machida, 1999; Rafiee and Heidarhaei, 2012). 

𝑢𝑟 = 𝐷𝑒 {[1 − 𝑒−𝛽(𝑟−𝑟0)]
2

},  (10) 

𝑢𝜃 =
1

2
𝑘𝜃(𝜃 − 𝜃0)2[1 + 𝑘𝑠𝑒𝑥𝑡𝑖𝑐(𝜃 − 𝜃0)4]. (11) 

In this paper C-C and C-C-C bonds are modelled with nonlin-
ear spring elements. The knowledge of force-displacement rela-
tionship for C-C bonds is necessary and this quantity is derived 
from the Morse potential using eq. (10) (Rafiee and Heidarhaei, 
2012)  

𝐹(𝑟 − 𝑟0) = 2𝛽𝐷𝑒[1 − 𝑒−𝛽(𝑟−𝑟0)]𝑒−𝛽(𝑟−𝑟0).  (12) 

Function for C-C-C bonds is derived by using eq. (11) and the 
result is expressed by equation (Rafiee and Heidarhaei, 2012] 

𝑀(𝜃 − 𝜃0) = 𝑘𝜃(𝜃 − 𝜃0)[1 + 3𝑘𝑠𝑒𝑥𝑡𝑖𝑐(𝜃 − 𝜃0)4]. (13) 

Tab. 1. Parameters for the Morse potential 

parameter value 

𝐷𝑒 6.03105 × 10−19 Nm 

𝛽 2.6259 × 1010 m−1 

𝑟0 0.1421 nm 

𝑘𝜃 0.9 × 10−18 N
m

rad2 

𝑘𝑠𝑒𝑥𝑡𝑖𝑐  0.754 rad4 

𝜃𝜃  2.094 rad 

Every hexagon of graphene sheet is modelled by 12 nonlinear 
springs. Six outer springs represent bond stretching and six inner 
springs represent bond angle bending (Fig. 2). Bond angle torsion 
is not considered in the frame of this spring model. 

 
Fig. 2. Hexagon unit cell of graphene sheet with 12 nonlinear spring 

elements 

The change of length of nonlinear spring of C-C-C bond leads 
to change of bond angle. This fact can be described by equation 
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∆𝜃 =
2(∆𝑅)

𝑟0
, (14) 

where ∆θ is variation of bond angle, r0 is C-C bond length and 
∆R is change of spring element length. Accordingly, force-
displacement relationship in eq. (13) is rewritten into form of rela-
tion 

𝐹(𝑅−𝑅0) =
4

𝑟0
2 𝑘𝜃(𝑅 − 𝑅0) [1 +

48

𝑟0
4 𝑘𝑠𝑒𝑥𝑡𝑖𝑐(𝑅 − 𝑅0)4]. (15) 

The nonlinear behaviour of this spring is shown in Fig. 3 and 
Fig. 4. 

 
Fig. 3. Force-displation curve for nonlinear spring representing bond 

stretching 

 
Fig. 4. Force-displation curve for nonlinear spring representing change of 

bond angle 

3. NUMERICAL RESULTS 

The numerical computations are accomplished by the finite 
element program Ansys. The structural response of the graphene 
sheets under axial loads is analyzed for both model types (Figs. 5-
6). Carbon atoms are considered to be nodes in structure and the 
nodes are joined by beam elements or nonlinear spring elements. 
To simulate the uniaxial load, one side of the graphene sheet is 
restrained in all direction. The graphene sheets are stretched by 

applying an axial displacement on the opposite side. From these 
simulations the Young's modulus E, the Poisson's ratio μ of  gra-
phene sheets are obtained. The two graphene sheets with arm-
chair chirality (6,6) and zigzag chirality (10,0) are modelled and 
analyzed. The width of the graphene sheet (6,6) and (10,0) is 
2.5578 nm and 2.4612 nm, respectively. The length of the gra-
phene sheets varied in interval 3 nm to 100 nm. 

 
Fig. 5. Graphene sheet with beam elements and boundary conditions 

 
Fig. 6. Graphene sheet with nonlinear spring elements and boundary 

conditions 

Young's moduls E is calculted from equation 

𝐸 =
𝜎

𝜀
=

𝐹/𝑊𝑡

∆𝐿/𝐿
, (16) 

where F is reaction force, W is width, t is thickness,  ∆L is elon-

gation and L is length of graphene sheet. The thickness of gra-
phene sheet is assumed to be 0.34 nm. Poisson's ratio is com-
puted from equation 

𝜇 =
∆𝑊/𝑊

∆𝐿/𝐿
, (17) 

where ∆W is constriction of graphene sheet. 
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All computed values of Young's moduls E and the Poisson's 
ratio μ are shown in Figs. 7-8.  

 
Fig. 7. Young's modulus of graphene sheet with diferent elements, length 

and width 

 
Fig. 8. Poisson's ratio of graphene sheet with diferent elements, length 

and width 

 
Fig. 9. Strain energy of graphene sheet with dimensions 2.4612 x 

8.3858 nm subjected to axial tension obtained from beam and 
spring model 

4. CONCLUSION 

The Young's modulus E increases slightly with the size of the 
sheets and depends on the chirality. The beam and spring models 
give almost the same results for E with the obtained values being 
in good agreement with literature (Hartmann et al., 2013; Meo and 
Rossi, 2006; Rafiee and Heidarhaei, 2012; Scarapa et al., 2009; 
Tserpes and Papanikos, 2005). For the Poisson's ratio μ the 
beam and spring models give strongly different results. Depending 
on the chirality, values of μ between 0.08 and 0.06 are obtained 
for the beam model. For the spring model values of μ vary be-
tween 0.28 and 0.31 and accordingly there are no strong size and 
chirality dependencies for the same model. Although the beam 
and spring models give different results for μ all values are within 
the range reported in literature (Hartmann et al., 2013; Hem-
masizadeh et al., 2008; Ru, 2000; Sakhaee-Pour, 2009; Tsai and 
Tu, 2010). It is assumed that different values of μ depend on the 
different representation of the bond angle bending in the beam 
and spring models. In order to see the influence of the bond angle 
bending, the total strain energy of the stretched graphene sheets 
is estimated for both models. The results from numerical computa-
tions are shown in Fig. 9. For the spring model the total strain 
energy can be split into a bond stretching and a bond angle con-
tribution. It can be seen that the total strain energy of the spring 
model is much higher than the strain energy of the beam model, 
where stronger contribution comes from the bond angle bending 
deformations. This shows the bond angle bending is probably not 
correctly represented in the beam model. This may lead to the 
relatively small Poisson’s ratio of this model and may cause fur-
ther issues for loading cases where bond angle bending is im-
portant. By comparison between strain energy of the spring model 
and corresponding harmonic potentials it is also shown that gra-
phene sheets work in linear elastic area up to a stretch of approx-
imately 10 percent. Due to the assumptions made for the beam 
elements no non-linear behavior can be observed for this model. 
Hence, it is valid only for small deformations. 

REFERENCES 

1. Brenner D.W. (1990), Empirical potential for hydrocarbons for use in 
simulating the chemical vapor deposition of diamond films, Physical 
Review B, Vol. 42, 9458. 

2. Cornell W.D., Cieplak P., Bayly C.I. (1995), A second generation 
force-field for the simulation of proteins, nucleic-acids, and organic-
molecules, Journal of American Chemical Society, 117, 5179-5197. 

3. Hartmann M.A., Todt M., Rammerstorfer F.G., Fisher F.D., Paris 
O. (2013), Elastic properties of graphene obtained by computational 
mechanical tests, Europhysics Letters, 103, 68004-p1-68004-p6. 

4. Hemmasizadeh A., Mahzoon M., Hadi E., Khandan R. (2008), A 
method for developing the equivalent continuum model of a single 
layer graphene sheet, Thin Solid Films, 516, 7636-7640. 

5. Hosseini K.S.A., Moshrefzadeh S.H. (2013), Mechanical properties 
of double-layered graphene sheets, Computational Materials 
Science, 69, 335-343. 

6. Lee C., Wei X., Kysar J.W., Hone J. (2008), Measurement of the 
elastic properties and intrisic strength of monolayer graphene, 
Science, 321, 385-388. 

7. Li Ch., Chou T.W. (2003), A structural mechanics approach for the 
analysis of carbon nanotube, International Journal of Solids and 
Structures, 40, 2487-2499. 

8. Machida K. (1999), Principles of Molecular Mechanics, Kodansha 
and John Wiley & Sons Co-publication, Tokyo. 



Jozef Bocko, Pavol Lengvarský                             DOI 10.1515/ama-2017-0018 
Application of Finite Element Method for Analysis of Nanostructures 

120 

9. Marenić E., Ibrahimbegovic A., Sorić J., Guidault P.A. (2013), 
Homogenized elastic properties of graphene for small deformations, 
Materials, 6, 3764-3782. 

10. Mayo S.L., Olafson B.D., Goddard W.A. (1990), Dreiding–a generic 
force-field for molecular simulations, Journal of Physical Chemistry, 
94, 8897–8909. 

11. Meo M., Rossi M. (2006), Prediction of Young's modulus of single 
wall carbon nanotubes by molecular-mechanics based finite element 
modelling, Composite Science and Technology, 66, 1597-1605. 

12. Rafiee R., Heidarhaei M. (2012), Investigation of chirality and 
diameter effects on the Young's modulus of carbon nanotubes using 
non-linear potentials, Composite Structures, 94, 2460-2464. 

13. Rappe A.K., Casewit C.J., Colwell K.S. (1992), A full periodic-table 
force-field for molecular mechanics and molecular dynamics 
simulations, Journal of American Chemical Society, 114, 10024-
10035. 

14. Ru C.Q. (2000), Effective bending stiffness of carbon nanotubes, 
Physical Review B, 62, 9973-9976. 

15. Saito S., Dresselhaus D., Dresselhaus M.S. (1998), Physical 
Properties of Carbon Nanotubes, Imperical College Press, London. 

16. Sakhaee-Pour A. (2009), Elastic properties  of single-layered 
graphene sheet, Solid State Communications, 149, 91-95. 

17. Scarapa F., Adhikari S., Srikantha P. (2009), Effective elastic 
mechanical properties of single layer graphene sheets, 
Nanotechnology, 20, 065709. 

18. Shokrieh M.M, Rafiee R. (2010) Prediction of Young's modulus of 
graphene sheets and carbon nanotubes using nanoscale continuum 
mechanics approach, Materials & Design, 31, 790-795. 

19. Thostenson E.T., Chunyu L., Chou T.W. (2005), Nanocomposites 
in context, Composite Science and Technology, 65, 491-516. 

20. Tsai J.L., Tu J.F. (2010), Characterizing mechanical properties of 
graphite using molecular dynamics simulation, Materials & Design, 
31, 194-199. 

21. Tserpes K.I., Papanikos P. (2005), Finite element modelling of 
single-walled carbon nanotubes, Composites Part B, 36, 468-477. 

This work was supported by grants from the Slovak Grant Agency VEGA 
no. 1/0731/16. 

 


