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Abstract: The stability of the element of a steel welded girder subjected to bending and shear forces is considered. The considered ele-
ment is a rectangular plate supported on boundary. The type of a plate boundary conditions depend on the types (thickness) of the stiffen-
ers. Considered plate is loaded by in-plane forces causing bending and shear effects. The Finite Element Method was applied to carry out 
the analysis. Additionally the Boundary Element Method in terms of boundary-domain integral equation was applied to evaluate the critical 
shear loading.  
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1. INTRODUCTION AND PROBLEM FORMULATION 

The correct determination of the critical load is essential in the 
design process. This issue was investigated and solved in an 
analytical way by Timoshenko et al. (1962). The Finite Element 
Method (FEM) is applied to a numerical investigation of the stabil-
ity of the steel welded girder with the bending and the shear forc-
es included. Suitable numerical algorithms of FEM were present-
ed e.g. by Rakowski and Kacprzyk (2005). Others e.g. Shi (1990), 
Chinnaboon et al. (2007 )have used the Boundary Element Meth-
od (BEM) to solve the buckling problem of thin plates of any 
shape including plates with holes. Garstecki and Rzeszut (2009) 
solved the stability problem of thin walled cold formed sigma 
profiles with geometrical imperfection. Marcinowski (2007) ana-
lysed stability of relatively deep segments of spherical shells 
loaded by external pressure. The non-linear stability of elastic thin 
walled structures considering unilateral constraints was investi-
gated by Rzeszut and Garstecki (2011). The direct non-singular 
formulation of the boundary element method using the fundamen-
tal solutions given by Ganowicz and its application to a static 
analysis of plates with intermediate thickness was presented by 
Litewka and Sygulski (2010). The analysis of the influence of the 
fire load on the class of cross-section of steel structural elements 
was presented by Rzeszut and Polus (2013). The stability prob-
lem of thin walled girders considering initial imperfections was 
investigated by Rzeszut and Garstecki (2013) and Chybinski et al. 
(2013). Biegus and Kowal (2013) presented that the insufficient 
buckling strength may lead to disaster. Gosowski (1999) analysed 
spatial buckling of thin-walled steel-construction beam-columns 
with discrete bracings. Load capacity and the stability of steel thin-
walled beams with local stiffening elements were analysed by 
Chybiński (2015).  

The stability of steel welded girders subjected to in-plane 
complex loading is presented in the paper. The part of the main 
structure is indicated in the Fig. 1. The element being a part of the 

steel welded girder is considered as the square plate, simply-
supported with a clamped edge (Fig. 2a) and simply-supported 
(Fig 2b). 

 
Fig. 1. Steel girder with vertical stiffeners 

 
Fig. 2. Considered element 

It usually works as a part of the structure under bending and 
shear load. It is assumed that the material is linear-elastic. The 

considered plates are subjected to 𝑁𝑥  and 𝑁𝑥𝑦 in-plane forces 

with linear and constant distributions respectively (Fig. 2a and 2b). 

2. AN APPLICATION OF THE FEM  

The differential equation qoverning of plate initial stability has 
the form: 
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𝐷 ⋅ ∇4𝑤 = −𝑝̅, (1) 

where 𝑝̅ is the substitute load 

𝑝̅ = 𝑁𝑥 ⋅
∂2𝑤

∂𝑥2
+ 2𝑁𝑥𝑦 ⋅

∂2𝑤

∂𝑥 ∂𝑦
.  (2) 

The Finite Element Method is applied to solve the initial 
stability problem described by equation (1). In the current analysis 
four types of finite elements are applied: (i) the rectangular four 
node shell elements with three degrees of freedom (DOF) per 
node (deflection and angle of rotations in two perpendicular 
directions); (ii) the triangular three node shell elements with three 
DOF per node; (iii) the rectangular eight node shell elements with 
three DOF per node (deflection and angle of rotations in two 
perpendicular directions); (iv) and the triangular six node shell 
elements with three DOF per node. The reduced integration of all 
shape functions will be applied too. Applying the FEM in pure form 
leads to the generalized eigenvalue problem (Rakowski and 
Kacprzyk, 2005) 

(𝐾 − 𝜆 ⋅ 𝐾𝐺) ⋅ 𝑞̃ = 0, (3) 

where: 𝜆 = 𝑁𝑐𝑟  is critical multiplier, 𝐾 is the stiffness matrix, 𝐾𝐺  

is the geometric stiffness matrix and 𝑞̃ is the vector of nodal dis-
placement with non-zero elements. 

The finite element analysis was carried out using the Abaqus 
system (Abaqus, 2005).  

3. AN APPLICATION OF THE BEM  

The Boundary Element Method in terms of the boundary – 
domain integral equations is introduced. The initial stability prob-
lem of the plate subjected only to 𝑁𝑥𝑦 in-plane forces is  solved 

as the simple benchmark test in reference to the FEM. The solu-
tion of differential equation (1) can be expressed as the integral 
representation of two boundary-domain integral equations formu-
lated according to the simplified approach (Guminiak and Sygul-
ski, 2003; Guminiak, 2014): 

𝑐(x) ⋅ 𝑤(x) + ∫ [𝑇𝑛
∗(y, x) ⋅ 𝑤(y) +

Γ

−𝑀𝑛𝑠
∗ (y, x) ⋅

𝑑𝑤(𝐲)

𝑑𝑠
− 𝑀𝑛

∗(y, x) ⋅ φ𝑛(y)] ⋅ 𝑑Γ(y) =

= ∫ [𝑇̃𝑛(y) ⋅ 𝑤∗(y, x) − 𝑀𝑛(y) ⋅ φ𝑛
∗ (y, x)] ⋅ 𝑑Γ(y)

Γ
+

+ ∫ 2𝑁𝑥𝑦 ⋅
∂2𝑤

∂𝑥 ∂𝑦
⋅ 𝑤∗(y, x) ⋅ 𝑑Ω(y)

Ω
,

 (4) 

𝑐(x) ⋅ φ𝑛(x) + ∫ [𝑇̅𝑛
∗(y, x) ⋅ 𝑤(y) +

Γ

−𝑀̅𝑛𝑠
∗ (y, x) ⋅

𝑑𝑤(𝐲)

𝑑𝑠
− 𝑀̅𝑛

∗(y, x) ⋅ φ𝑛(y)] ⋅ 𝑑Γ(y) =

= ∫ [𝑇̃𝑛(y) ⋅ 𝑤̅∗(y, x) − 𝑀𝑛(y) ⋅ φ̅𝑛
∗ (y, x)] ⋅ 𝑑Γ(y)

Γ
+

+ ∫ 2𝑁𝑥𝑦 ⋅
∂2𝑤

∂𝑥 ∂𝑦
⋅ 𝑤̅∗(y, x) ⋅ 𝑑Ω(y)

Ω
,

 (5) 

where the fundamental solution of biharmonic equation: 

∇4𝑤∗(y, x) =
1

𝐷
⋅ δ(y, x) (6) 

is given as: 

𝑤∗(y, x) =
1

8π𝐷
⋅ 𝑟2 ⋅ ln(𝑟) (7) 

for a thin isotropic plate, 𝑟 = |𝑦 − 𝑥|, 𝛿 is the Dirac delta, 

𝐷 = 𝐸ℎ3 (12(1 − 𝑣2))⁄  is the plate stiffness, x is the source 

point and y is a field point. The coefficient 𝑐(𝑥) is taken as: 

𝑐(𝑥) = 1, when x is located inside the plate domain, 𝑐(𝑥) =
0.5, when x is located on the smooth boundary and 𝑐(𝑥) = 0, 

when x is located outside the plate domain. The second bounda-
ry-domain integral equation (3) can be obtained by replacing the 
unit concentrated force 𝑃∗ = 1 with the unit concentrated mo-

ment 𝑀𝑛
∗ = 1. Such a replacement is equivalent to the differen-

tiation of the first boundary integral equation (4) with respect to the 

co-ordinate n at the source point x. The expression 𝑇̃𝑛(𝑦)denotes 
shear force for clamped and for simply-supported edges: 

𝑇̃𝑛(𝑦) = 𝑇𝑛(𝑦) is the shear force (distributed reaction of the 

support) on the boundary far from the plate corner or 𝑇̃𝑛(𝑦) =
𝑅𝑛(𝑦) the distributed reaction along the small fragment of the 
boundary close to the corner. Because the relation between 

𝜑𝑠(𝑦) and the deflection is known: 𝜑𝑠(𝑦) = 𝑑𝑤(𝑦) 𝑑𝑠⁄ , the 
angle of rotation 𝜑𝑠(𝑦) can be evaluated  using a finite difference 
scheme of the deflection with two or more adjacent nodal values 
(Guminiak and Sygulski, 2003; Guminiak, 2014). 

3.1. Construction of set of algebraic equations  

The plate boundary is discretized by elements of the constant 
type. Two approaches of constructing the boundary-domain inte-
gral equations are considered. According to the first approach, 
singular, the collocation points are located exactly on the plate 
boundary. According to the second approach, non-singular, the 
collocation points are located outside of the plate boundary 
(Abaqus, 2005). The plate domain is divided by rectangular sub-
domains associated with a single collocation point. The set 
of algebraic equations has the following form: 

[
GBB −λ ⋅ GBκ

GκB −λ ⋅ Gκκ + I
] ⋅ {B̃

κ
} = {

0
0

}, (8) 

where: the critical force Ncr is expressed by eigenvalue multiplier 

𝜆 = 𝑁𝑥𝑦 = 𝑁𝑐𝑟 .   

Integration of suitable fundamental functions is done in a local 
coordinate system ni, si connected with ith boundary element and 
next, these integrals must be transformed to nk, sk coordinate 
system, connected with kth element (Guminiak and Sygulski, 
2003; Guminiak, 2014). For a non-singular approach, the localiza-

tion of a collocation point is defined by the parameter 𝛿 which 
determines the distance from a plate edge or by non-dimensional 

parameter 𝜀 = 𝛿 𝑑⁄  where d is the element length (Guminiak and 
Sygulski, 2003; Guminiak, 2014).  

The vector of unknowns consist: 𝐵̃ = {𝐵, 𝜑𝑠} – the vector 

of boundary independent variables, 𝜑𝑠 – the vector of additional 
parameters of the angle of rotation in the tangential direction, 
which depends on the boundary deflection in case of the free 

edge and 𝜅 – the vector specifying curvatures 𝜅𝑥𝑦 inside a plate 

domain. The matrix 𝐺𝐵𝐵 groups boundary integrals dependent on 

the type of boundary. The matrix 𝐺𝐵𝜅  includes values of funda-
mental functions w∗ and 𝑤̅∗ established in internal collocation 
points associated with internal rectangular sub-domains. The 

matrix 𝐺𝜅𝐵 groups boundary integrals dependent on the type of 
boundary (integration from internal collocation points over bound-

ary elements), the matrix 𝐺𝜅𝜅  groups values of fundamental func-

tions 𝑤∗ and 𝑤̅∗ established in internal collocation points associ-
ated with internal rectangular sub-domains (integration from inter-
nal collocation points over internal sub-domains) and I is the unit 
matrix. The second matrix equation (8)2 can be derived by double 
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differentiation of the equation (4).  
In the present examples only supported plate edges (clamped 

or simply-supported) are considered, hence the vector φs has all 

elements equal to zero thus 𝐵̃ = 𝐵. The analysis of plates with 
external in-plane loading acting directly along free edges (edges 
without any constraints) requires a broader analysis. Elimination 
of boundary variables 𝐵 and from matrix equation (8) allows to 
obtain the standard eigenvalue problem (Guminiak and Sygulski, 
2003; Guminiak, 2014): 

{A − λ̃ ⋅ I} ⋅ κ = 0, (9) 

where: λ̃ = 1/λ and 

A = {Gκκ − (GκB) ⋅ [GBB]−1 ⋅ GBκ} . (10) 

3.2. Modes of buckling  

The set of the algebraic equations indispensable to calculate 

the elements of eigenvector w has the form 

[
GBB 0
GwB I

] ⋅ {
B
w

} = {
λ ⋅ GBw ⋅ κ
λ ⋅ Gww ⋅ κ

}, (11) 

where elements of the eigenvector κ are obtained after solution 
of the standard eigenvalue problem (9). The first equation (11)1 
is obtained from the first equation of (8) and the second equation 
(11)2 is got by construction of the boundary integral equations for 
calculating the plate deflection in internal collocation points. The 
displacement vector w can be calculated directly by elimination 

of boundary variables B (Guminiak and Sygulski, 2003; Guminiak, 
2014): 

w = λ ⋅ [Gww − (GwB) ⋅ [GBB]−1 ⋅ GBw] ⋅ κ. (12) 

4. NUMERICAL EXAMPLES  

The initial stability problem of square plates with various 
boundary and load conditions is considered. The critical value 
of the external loading is investigated. The plate properties are: 
Young modulus E = 205 GPa, Poisson ratio v = 0.3. The following 
notations are assumed: BEM I – singular formulation of governing 
boundary-domain integral equations (4) and (5); BEM II – non-
singular formulation of governing boundary-domain integral equa-
tions (4) and (5), the collocation point of single boundary element 

is located outside, near the plate edge, 𝜀 = 𝛿 𝑑⁄ =0.001 
(Guminiak and Sygulski, 2003); FEM – ABAQUS system with 
finite elements of the S4R and S8R  types are applied (for square 
plates without holes). The critical force Ncr is expressed using 

non-dimensional term: 𝑁𝑐𝑟 = 𝑁𝑐𝑟 ⋅ 𝑎2 𝐷⁄ , where 𝐷 is the plate 
stiffness and a is dimension of the plate edge. 

4.1. Example 1 

The square plate of dimensions a = 2.0 m, clamped along one 
edge and simply-supported along other edges (Fig. 3) is consid-

ered. The plate are subjected to 𝑁𝑥𝑦 in-plane forces.  Plate edges 

were divided into 128 boundary elements and the number 
of internal square sub-domains is equal 256. The number of finite 
element is equal 1600. The results of calculation are presented in 

Tab. 1 in column a). The first buckling mode is shown in Fig. 4. 
Column b) contains resuts of calculation for the plate simply sup-
ported along all edges. 

 
Fig. 3. The plate subjected to in-plane tangential loading 

Tab. 1. Critical loading values Ñcr 

Ñcr = Ñxy a) b) 

BEM I 106.971 93.009 

BEM II 106.996 93.051 

FEM (S4R) 100.601 92.601 

FEM (S8R) 101.323 92.799 

[1] – 92.182 

 
 
 
 

            
Fig. 4. The first buckling mode for square plate clamped along one edge  

  and simply-supported along other edges  

4.2. Example 2 

The element of the steel welded girder is considered and 
modelled as the square simply-supported plate. The plate edge 

dimensions is a = 2.0 m. The plate is subjected to 𝑁𝑥  and 𝑁𝑥𝑦 in-

plane forces with linear and constant distributions respectively 
(Fig. 5). The finite element discretization is the same as in Exam-
ple 1. The results of the calculation are presented in Tab. 2. The 
first buckling mode is shown in Fig. 6. 

 
Fig. 5. Considered element of the steel welded girder 

 y 
x 

z 
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 Tab. 2. Critical loading value Ñcr. Assumed the comparative 
compressing loading: Ñx 

Ñxy/Ñx  0.0 0.025 0.05 0.1 0.15 

S4R 251.837 250.498 247.032 236.685 224.229 

S8R 250.069 248.705 245.227 235.037 222.884 

 

            
Fig. 6. The first buckling mode for simply-supported square plate  
            (Ñxy/Ñx = 0.1) 

4.3. Example 3 

The square element of the steel welded girder is considered 
and modelled as the square plate clamped along one edge and 
simply-supported along other edges. The plate egde dimension 

is a = 2.0 m. The plate is subjected to 𝑁𝑥  and 𝑁𝑥𝑦 in-plane forces 

with linear and constant distributions respectively (Fig. 7). The 
finite element discretization is the same as in Example 1. 

 
Fig. 7. Considered element of the steel welded girder 

The results of the calculation are presented in Tab. 3. The first 
buckling mode for Ñxy/Ñx = 0.1 is shown in Fig. 8. 

 Tab. 3.  Critical loading value Ñcr. Assumed the comparative    
  compressing loading: Ñx 

Ñxy/Ñx  0.0 0.025 0.05 0.1 0.15 

S4R 259.794 256.013 251.596 241.294 229.720 

S8R 261.093 257.527 253.306 243.324 231.972 

         

             
Fig. 8. The first buckling mode for square plate clamped along one edge 

  and simply-supported along other edges (Ñxy/Ñx = 0.1) 

4.4. Example 4 

The square element of a steel welded girder with the symmet-
rically square hole is considered and modelled as the square 
plate. The plate edge dimension is a = 2.0 m. The plate is sub-
jected to 𝑁𝑥  and 𝑁𝑥𝑦 in-plane forces with linear and constant 

distributions respectively (Fig. 9).  
 

 
Fig. 9. Considered element of the steel welded girder with square hole 

Dimensions of the hole are: c = 0.25∙a, d = 0.375∙a. The total 
number of finite elements is equal 1745 (Fig. 10). 

 

          
Fig. 10. Considered element of steel welded girder with square hole 

The results of the calculation are presented in Tab. 4. The first 
buckling mode for Ñxy/Ñx = 0 is shown in Fig. 11. 

 Tab. 4. Critical loading value Ñcr. Assumed the comparative  
 compressing loading: Ñx 

Ñxy/Ñx  0.0 0.025 0.05 0.1 0.15 

FEM1 116.411 114.277 110.584 101.183 91.164 

FEM2 115.047 112.654 108.589 98.601 88.266 

 
The following designations are assumed: FEM1 - four node 

rectangular finite elements (S4R) and three node triangle finite 
elements, with three degrees of freedom per node; FEM2 - eight 
node rectangular finite elements (S8R) and six node triangle finite 
elements, with three degree of freedom per node. 

 

                    
Fig. 11. The first buckling mode for simply-supported square plate with  

square hole (Ñxy/Ñx = 0) 
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The first buckling mode for Ñxy/Ñx = 0.025 is shown in Fig. 12. 

                      
Fig. 12. The first buckling mode for simply-supported square plate  

 with square hole (Ñxy/Ñx = 0.025) 

4.5. Example 5 

The square element of a steel welded girder with the symmet-
rically hexagonal hole is considered and modeled as the simply-
supported plate. The plate edge dimension is a = 2.0 m. The plate 

is subjected to tensile Nx in-plane forces with constant distribu-
tions respectively (Fig. 13). 

 
Fig. 13. Considered element of steel welded girder with hexagonal hole 

Dimensions of the hole are: c = 0.3268∙a, d =0.1732∙a,   
e = 0.3∙a, f = 0.1∙a, g = 0.2∙a. The total number of finite elements 
equals 1685 (Fig. 14). 

 

             
Fig. 14. Considered element of steel welded girder with hexagonal hole 

The results of the calculation are presented in Tab. 5. 

 Tab. 5. Critical loading value Ñcr = Ñx 

FEM1 FEM2 

488.371 479.810 

The first buckling mode is shown in Fig. 15. 
 

             
Fig. 15. The first buckling mode for simply-supported square plate  
              with hexagonal hole 

4.6. Example 6 

The 2-meter-long part of the web of the two-span beam was 
analysed (Fig. 16). It was assumed that the beam was under 
continuous restraint and was not susceptible to lateral-torsional 
buckling. There was no shear lag effect. However, the web was 
with cross section of class 4 (Fig. 17), in which local buckling may 
occur.   

 
Fig. 16. Analysed steel welded-girder 

              
Fig. 17. Analysed steel welded-girder cross-section 

For this reason, transverse stiffeners were used every two 
meters. In this example, the steel square plate was checked for 
local buckling using the Abaqus finite element system. 

The analysed part of the steel welded girder is loaded by 
bending and shear forces according to Fig. 18. The proportion 
between shear and bending loading are assumed similarly. 

 z 
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Fig. 18. Analysed steel welded-girder cross-section 

This part was divided into 1600 finite elements of S8R type. 
The boundary conditions are as indicated in Fig. 19.  
 

       
Fig. 19. Boundary conditions: a) blocked transverse displacement u3=0   

and b) blocked in plane displacements u1=0 and u2=0 at select-
ed points (1) and (2)      

The results of the calculation are presented in Tab. 6.  

 Tab. 6. Critical loading value Ncr [kN/m] 

Only shear Only bending Shear and bending 

119.53 87.533 77.407 

 
Due to transverse stiffeners, local buckling did not occur. One 

can find that there was influence of the shear forces on the eigen-
value. 

5. FINAL CONCLUSIONS  

The analysis of initial stability of steel welded girders was car-
ried out in this paper. The BEM was proposed to solve the simple 
benchmark test of the plate subjected to shear in-plane forces 
with constant distribution. The FEM was applied to the complex 
analysis. The impact of additional tangential in-plane loading 
cannot be avoided which is confirmed by numerical experiment. 
Special attention should also be paid to girders with holes. In this 
case tensile in-plane forces (Example 5) cause compressing 
in the area near the hole. Note that the problem of plate stability 
is sensitive on the type of finite element and modeling of boundary 
conditions. The stress singularities in hole vertices were not spe-
cifically considered. The boundary conditions of considered plates 
are conventional to some extent. It depends on the thickness 
of the stiffeners, as well as lower and upper flange plates. Exam-
ple 6 demonstrates the significant effect of shear on the value 
of critical loading Ncr which is shown in Tab. 6 (the critical load 
was reduced by more than 10 percent). Therefore good  estima-
tion of critical force is primary importance for the reasonable 
designing of the plane girder.   
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