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Abstract: Identification of isomorphic kinematic chains is one of the key issues in researching the structure of mechanisms. As a result the 
structures which duplicate are eliminated and further research is carried out on kinematic chains that do not duplicate. This dilemma has 
been taken up by many scholars who have come up with a variety of ideas how to solve it. The review of the methods for identifying the 
isomorphism of kinematic chains suggested by researchers is contained in this study, including Hamming Number Technique, eigenvalues 
and eigenvectors, perimeter graphs, dividing and matching vertices.  The spectrum of methods applied to the issue of identifying the iso-
morphism of mechanisms reflects the researchers’ efforts to obtain a precise result in the shortest time possible.  
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1. INTRODUCTION 

Topological methods are applied in researching the structure 
of mechanism. Topology is the study of those properties of objects 
that do not change when homeomorphisms are applied. Homeo-
morphism or topological isomorphism is a continuous function that 
has a continuous inverse function. The word ‘isomorphism’ 
is used when describing the structure of mechanisms. Structural 
invariants are the following: 

 number of links with their conjunctivity, 

 number of kinematic pairs with their classes, 

 joining of links of a specific conjunctivity through kinematic 
pairs of given classes (Conjunctivity of a link is a number 
of kinematic pairs that the link is composed of, which equiva-
lently determines the number of links it can be joined with).  
Fig. 1 presents an exemplary topological transformation that 

kinematic chains are subject to. Those kinematic chains are com-
posed of seven links: three binary and four ternary links as well as 
nine kinematic pairs. A closer analysis of the figure indicates that 
individual links in all kinematic chains are joined together via 
identical kinematic pairs. For example, in all kinematic chains  
a kinematic pair A joins a binary link 1 with a ternary link 4. Other 
kinematic pairs are involved in similar connections. Each kinemat-
ic chain selected for this example, is made of four loops that 
consist of three, four, five and six links respectively. Individual 
contours form the following outer loops: six-link (Fig. 1a), five-link 
(Fig. 1b), four-link (Fig. 1c) and three-link (Fig. 1d). In terms 
of structure these examples are identical or in other words iso-
morphic because each one of them can be obtained from the 
remaining ones by applying isomeric transformation in which the 
earlier mentioned invariants have been maintained. 

To identify isomorphic structures is significant because after 
defining the structure of mechanisms further research is carried 
out for non-repeating solutions. It relates to structural synthesis in 
particular, whereby a sets of solutions can be obtained that fulfill 
specific structural formulae (Ding et al., 2011; 2012; Romaniak, 
2010; 2011). 
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Fig. 1. Isomorphic kinematic chains 

The isomorphism of kinematic chains has been taken up 
by many researchers who came up with a number of methods 
for solving this dilemma. This study discusses selected solution 
methods. It presents how the isomorphism of kinematic chains 
can be identified with the use of Hamming Number Technique 
(Rao and Raju, 1991), eigenvalues and eigenvectors (Chang 
et al., 2002; Cubillo and Wan, 2005; He et al., 2003; 2005; Uicker 
and Raicu, 1975), perimeter graphs (Ding and Huang, 2007; 
2009), dividing and matching vertices (Zeng et al., 2014). This 
methods relate exclusively to the isomorphism of plane kinematic 
chains and do not cover spatial mechanisms. In study attempts to 
extend the research regarding the isomorphism of kinematic 
chains to the mechanisms of all groups by using new notation 
of spatial mechanisms. 
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2. METHODS FOR IDENTIFYING THE ISOMORPHISM 
OF KINEMATIC CHAINS 

The isomorphism of the three seven-link kinematic chain spa-
tial mechanisms with 1-DOM was investigated.  The set of labels 
for those mechanisms in group 0 includes: {555555221, 
555555311, 555554321, 555554411, 555554222, 555553331, 
555553322, 555544421, 555544331, 555544322, 555543332, 
555444431, 555444422, 555444332, 555443333, 554444441, 
554444432, 554444333, 544444442, 544444433, 444444443}. 

Researching isomorphism required that the mechanisms were 
presented in a form of diagrams and structural graphs, and the 
adjacency matrices were determined of which elements took the 
value of 1 when links were adjacent and 0 when links were not 
adjacent. The kinematic chains were marked C1, C2, C3 and 
structural graphs G1, G2, G3 respectively. 

The kinematic chains as shown were used to illustrate a few 
isomorphism identification methods. The first method selected 
is the one in which the Hamming Number Technique is applied 
(Rao and Raju, 1991). This method defines a specific equivalence 
whereby number sk= 0 is ascribed to two elements aik, ajk in rows 
i, j and a column k when these elements are the same (aik = ajk), 
or the number sk = aik + ajk , which is the sum of the numbers 

when the elements are different (aik  ajk). For example, the 
number s1 = a11 + a21 = 1 was calculated for an adjacency matrix 

Mp1 where a11  a21.  Then the Hamming number matrix has been 
generated with Hamming numbers as elements obtained from the 
following formula: 

ℎ𝑖𝑗 = ∑ 𝑠𝑘
𝑛
𝑘=1  .          (1) 

The h12 element of the H1 matrix is the sum of sk numbers with 
k = 1,..., 7 ascribed to the elements a1k, a2k  of the adjacency 
matrix Mp1 (h12 = 1 + 1 + 1 + 1 + 0 + 1 + 1 = 6). 

For adjacency matrices Mp1, Mp2, Mp3  the three Hamming 
matrices H1, H2, H3 were determined respectively.  

When identifying the isomorphism of kinematic chains the 
following definitions are in use: 

 the Hamming link which corresponds to the i – th link 
of a kinematic chain and is the sum of all elements in the i – th 
row of the Hamming matrix H. For example the Hamming link 
for the first link of a kinematic chain (see Fig.2a) is the number 
28 obtained by summing up all elements from the first row 
of the Hamming matrix H1, 

 the Hamming chain for any kinematic chain is a sum of all 
Hamming links. The Hamming chain for H1, H2, H3 matrixes 
equals the number 152, 

 the string of the Hamming link for any i – th link of a kinematic 
chain is a string of numbers made up of the Hamming link and 
all the integers from 0 to n in the i – th row of the Hamming 
matrix (n is the dimension of the adjacency matrix and the 
Hamming matrix). For example, for the first row of the 
Hamming matrix H1 a corresponding string of the Hamming 
link are the numbers: 28 and 13000111, where the Hamming 
link is 28 implying that the first row of the Hamming matrix  H1 

comprises of one 7, three 6s, no 5s, no 4s, no 3s, one 2, one 
1 and one 0, 

 the Hamming chain string contains a Hamming chain and the 
Hamming chain strings in diminishing order. 

 

H1 = 





























0241506

2041526

4405342

1150617

5536051

0241506

6627160

,   H2 = 





























0215226

2033424

1306335

5360533

2435044

2233406

6453460

, 

 

H3 = 





























0323424

3016335

2105226

3650533

4325044

2323406

4563460

.  

 

The following sequences of Hamming chains have been 
obtained: 

 matrix H1    152, 28, 13000111,    18, 01110112,   25, 
01301011, 21, 11100031, 22, 00131101,    20, 
01110211,    18, 01110112, 

 matrix  H2  152, 28, 02121001,  20, 01012201,  22, 
00131101,    25,01203001,   21, 01103011,   18, 00022201,   
18,01100311, 

 matrix  H3  152, 28, 02121001,  20, 01012201,  22, 
00131101,    25,01203001,   18, 01100311,   21, 01103011,  
18, 00022201. 
The ultimate criteria when identifying isomorphism is a com-

parison of the sequences of Hamming chains. In the case of the 
example discussed, the sequences of Hamming chains for H2 
and  H3 matrices are identical, hence the kinematic chains C2, C3 

are identical in terms of structure. 
Another method identifies the isomorphism of kinematic chains 
by applying eigensystem i.e. those kinematic chains are not 
isomorphic for which the eigenvalues of adjacency matrix are 
different (Chang et al., 2002; Cubillo and Wan, 2005; He et al., 
2003; 2005; Uicker at al., 1975). 

The following sequences of Hamming chains have been 
obtained: 

 matrix H1    152, 28, 13000111,    18, 01110112,   25, 
01301011, 21, 11100031, 22, 00131101,    20, 
01110211,    18, 01110112, 

 matrix  H2  152, 28, 02121001,  20, 01012201,  22, 
00131101,    25,01203001,   21, 01103011,   18, 00022201,   
18,01100311, 

 matrix  H3  152, 28, 02121001,  20, 01012201,  22, 
00131101,    25,01203001,   18, 01100311,   21, 01103011,  
18, 00022201. 

The ultimate criteria when identifying isomorphism is a compari-
son of the sequences of Hamming chains. In the case of the 
example discussed, the sequences of Hamming chains for H2 
and  H3 matrices are identical, hence the kinematic chains C2, C3 

are identical in terms of structure. 
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a)                               C1                                      G1 
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  v1 v2 v3 v4 v5 v6 v7 

Mp1=  

  v1 0 1 0 1 0 1 1 
v2 1 0 1 0 0 0 0 
v3 0 1 0 1 0 0 1 
v4 1 0 1 0 1 0 0 
v5 0 0 0 1 0 1 0 
v6 1 0 0 0 1 0 0 
v7 1 0 1 0 0 0 0 

 

 
b)                                C2                                     G2 

7
6 5

3

2

1

4

 
 

6

1

2

3
4

7

5

 

  v1 v2 v3 v4 v5 v6 v7 

Mp2=  

  v1 0 1 0 0 1 1 1 
v2 1 0 1 0 0 0 0 
v3 0 1 0 1 0 0 0 
v4 0 0 1 0 1 0 1 
v5 1 0 0 1 0 1 0 
v6 1 0 0 0 1 0 0 
v7 1 0 0 1 0 0 0 

 

 
c)                                 C3                                   G3 
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  v1 v2 v3  v4 v5 v6 v7 

Mp3= 

v1 0 1 0  0 1 1 1 
v2 1 0 1  0 0 0 0 
v3 0 1 0  1 0 0 0 
v4 0 0 1  0 1 1 0 
v5 1 0 0  1 0 0 0 
v6 1 0 0  1 0 0 1 
v7 1 0 0  0 0 1 0 

 

Fig. 2. Seven-link kinematic chains of mechanisms presented  
            in a form of structural diagrams, adjacency matrices  
            and structural graphs 

The following sequences of Hamming chains have been 
obtained: 

 matrix H1    152, 28, 13000111,    18, 01110112,   25, 
01301011, 21, 11100031, 22, 00131101,    20, 
01110211,    18, 01110112, 

 matrix  H2  152, 28, 02121001,  20, 01012201,  22, 00131101,    
25,01203001,   21, 01103011,   18, 00022201,   18,01100311, 

 matrix  H3  152, 28, 02121001,  20, 01012201,  22, 00131101,    
25,01203001,   18, 01100311,   21, 01103011,  18, 00022201. 
The ultimate criteria when identifying isomorphism is a com-

parison of the sequences of Hamming chains. In the case of the 
example discussed, the sequences of Hamming chains for H2 
and  H3 matrices are identical, hence the kinematic chains C2, C3 

are identical in terms of structure. 
Another method identifies the isomorphism of kinematic 

chains by applying eigensystem i.e. those kinematic chains 
are not isomorphic for which the eigenvalues of adjacency matrix 
are different (Chang et al., 2002; Cubillo and Wan, 2005; He et al., 
2003; 2005; Uicker at al., 1975).  

For the adjacency matrix discussed (Fig.2) the following ei-
genvalues were obtained: Mp1: 0.441, -0.441, 0, -1.178, 1.178, -
2.724, 2.724, Mp2: -1.751, -0.934, -2.165, 0.252, 0.708, 1.157, 
2.733, Mp3: 0.708, 0.252, 1.157, -0.034, -1.751, -2.165, 2.733. As 
the eigenvalues for C1 are different from those obtained for C2 and 
C3 , the kinematic chain C1 is not isomorphic with the C2 and C3 

chains. To identify the isomorphism of C2 and C3 it is necessary to 
determine the eigenvectors. If the eigenvectors are not equivalent, 
the chains are structurally different. The eigenvalues and eigen-
vectors for C2 and C3 are presented in Tab. 1. The kinematic 
chains C2 and C3 have the same eigenvalues and corresponding 
eigenvectors, hence they are isomorphic. 

Tab. 1. Eigenvalues and eigenvectors for kinematic chains C2 and C3 
C2 Eigenvalues 

-1.751 -0.934 -2.165 0.252 0.708 1.157 2.733 

Eigenvectors 

0.421 -0.121 0.52 0.346 0.28 -0.259 0.523 

-0.535 -0.268 -0.17 0.088 0.659 0.307 0.279 

0.516 -0.371 -0.151 -0.324 0.186 0.614 0.24 

-0.368 -0.079 0.498 -0.17 -0.527 0.403 0.377 

0.159 -0.512 -0.456 -0.417 -0.21 -0.272 0.461 

-0.331 0.679 -0.029 -0.281 0.098 -0.459 0.36 

-0.03 0.215 -0.47 -0.697 -0.349 0.125 0.329 

C3 Eigenvalues 

0.708 0.252 1.157 -0.034 -1.751 -2.165 2.733 

Eigenvectors 

0.28 0.346 0.259 0.121 0.421 0.52 -0.523 

0.659 0.088 -0.307 0.268 -0.535 -0.17 -0.279 

0.186 -0.324 -0.614 -0.371 0.516 -0.151 -0.24 

-0.529 -0.17 -0.403 0.079 -0.368 0.498 -0.377 

-0.349 0.697 -0.125 -0.215 -0.03 -0.47 -0.329 

-0.21 -0.417 0.272 0.512 0.159 -0.456 -0.461 

0.098 -0.281 0.459 -0.697 -0.331 -0.029 -0.36 

 
Graphs such as: perimeter, canonical perimeter, characteristic 

perimeter, together with adjacency matrices obtained for each 
individual graph are used by the authors of yet another kinematic 
chain isomorphism identifying method (Ding and Huang, 2007; 
2009). The loops that form a given kinematic chain constitute the 
base for research. Tab. 2 presents six loops which were obtained 
for each kinematic chain. In further discussions the key elements 
are the loops with the highest number of links i.e. the longest. The 
kinematic chain C1 takes two loops i.e. K3 and K5, whereas 
kinematic chains C2 and C3 take the K3 loop. 
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Tab. 2. Loops forming kinematic chains in Fig. 3 

Loops Kinematic chain 
C1 

Kinematic chain 
C2 

Kinematic chain 
C3 

K1 1 2 3 7 1 1 2 3 4 7 1  1 2 3 4 5 1 

K2 1 2 3 4 1 1 2 3 4 5 1  1 2 3 4 6 1 

K3 1 2 3 4 5 6 1 1 2 3 4 5 6 1  1 2 3 4 6 7 1 

K4 1 7 3 4 1  1 7 4 5 1 1 7 6 1  

K5 1 7 3 4 5 6 1  1 7 4 5 6 1 1 7 6 4 5 1 

K6 1 4 5 6 1 1 5 6 1 1 6 4 5 1 

 
Perimeter graphs were formed adopting the longest loop as 

external. The K3 loop was selected for all kinematic chains (Fig.3).  

 
a)             1234561  

7

6

5

4
3

2

1

 






























0000101

0010001

0101000

0010101

1001010

0000101

1101010

1p
M  

b) 1234561  

6

1

2

3
4

7

5

 





























0001001

0010001

0101001

1010100

0001010

0000101

1110010

2p
M

 

 c) 1234671 1234561 

6

1

2

3
4

7

5

 

57

3

2

1

6

 































0001001

0010001

0101001

1010100

0001010

0000101

1110010

3p
M  

 
Fig. 3. Structural graphs: perimeter = canonical perimeter and adjacency  
            matrix for the C1 chain (a),  perimeter = canonical perimeter  
            and adjacency matrix for the C2 chain (b),perimeter,  canonical  
            perimeter and adjacency matrix for the C3 chain (c) 

 
The structural graphs in Figs.  2a and 2b are simultaneously 

perimeter graphs in Figs. 3a and 3b. Renumbering the vertices 
so that each external vertex takes a consecutive integer trans-
forms a perimeter graph into a canonical perimeter graph. 
By analogy, for consecutive longest loops two graphs are formed. 

In the example for both loops K2 and K3 the same canonical pe-
rimeter graph was obtained. For a graph with several elements 
in the canonical adjacency matrix set, the matrix with the highest 
number of the binary string contained in the upper-right triangle 
of the matrix in the canonical adjacency matrix is defined as char-
acteristic adjacency matrix, and the corresponding canonical 
perimeter graph is defined as characteristic perimeter graph. If for 
any two given graphs their characteristic perimeter graphs are 
identical, then the graphs are regarded as isomorphic. In the 
example the canonical perimeter matrices are identical for C2 and 
C3  hence these kinematic chains are isomorphic. 

In another method for detecting the isomorphism of kinematic 
chains, the authors applied structural graphs and adjacency ma-
trices (Zeng, 2014). Within an adjacency matrix the sub-blocks 
were selected which are defined as square sub-matrices of the 
adjacency matrix along the principal diagonal (Fig 4). The degrees 
of vertices of a graph are organised in a descending sequence 
making up lists denoted as List (d). If lists are different, the graphs 
are not isomorphic. In the case in question the degree lists for 
graphs G1, G2, G3 are identical and form a list {4, 3, 3, 2, 2, 2, 2}. 
Each list of the List (d) constitutes the base for an adjacency 
matrix and the lists’ vertices follow the order set up by the lists. 
Within those matrices, sub-blocks made by vertices of the same 
degree are selected (Fig. 5a,b,c). Then in the sub-blocks 
for individual vertices a sum of squares of degrees of the  vertices 
adjacent to them is calculated, which is called the expanded 
square degree of the vertex and denoted by S. For example, 
in the sub-block made up by vertices {v2, v3, v4} in Fig. 4 the vertex 
v2 has one adjacent vertex v3; vertex v3 has two adjacent vertices 
v2 and v4; vertex v4 has one adjacent vertex v3. Thus the sum 
S of the vertex v2 is the square of degree of v3 and equal to four, 
S of v3 is the sum of squares of the degrees of v2 and v4 and equal 
to five; S of v4 is the square of the degree of v3 and equal to four. 

In the next step a list of expanded square degrees is created, 
which contains the descending sequence of S sums of all vertices 
in a sub-block and is denoted as List (S). For the sub-block 
{v2,v3,v4} in Fig.4 the list(S) is {5,4,4} and corresponds to vertices 
{v3,v4,v2}. 

 
  v1 v2 v3 v4 v5 v6 v7 

Mp1= 

v1 0 1 0 1 0 1 1 

v2 1 0 1 0 0 0 0 
v3 0 1 0 1 0 0 1 
v4 1 0 1 0 1 0 0 

v5 0 0 0 1 0 1 0 
v6 1 0 0 0 1 0 0 
v7 1 0 1 0 0 0 0 

 

Fig. 4. Exemplary sub-blocks obtained for graph G1 

The equivalence of the expanded square degree lists 
is a necessary condition for isomorphism. For individual graphs 
(Fig. 5 a,b,c), the expanded square degree lists were established 
for three sub-blocks. The following was obtained: 

 G1: List(S) sub-block {v1} – {0}; List(S) sub-block  {v3,v4} – 
{4,4}; List(S) sub-block  {v2,v5,v6,v7} – {1,1,0,0} corresponding 
to vertices {v5,v6,v2,v7}, 

 G2: List(S) sub-block {v1} – {0}; List(S) sub-block  {v4,v5} – 
{4,4}; List(S) sub-block  {v2,v3,v6,v7} – {1,1,0,0}, 

 G3: List(S) sub-block {v1} – {0}; List(S) sub-block  {v4,v6} – 
{4,4}; List(S) sub-block  {v2,v3,v5,v7} – {1,1,0,0}. 
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a) b) 

 

  v1 v3 v4 v2 v5 v6 v7 

Mp1=  

  v1 0 0 1 1 0 1 1 

v3 0 0 1 1 0 0 1 
v4 1 1 0 0 1 0 0 

v2 1 1 0 0 0 0 0 
v5 0 0 1 0 0 1 0 
v6 1 0 0 0 1 0 0 
v7 1 1 0 0 0 0 0 

  v1 v4 v5 v2 v3 v6 v7 

Mp2=  

  v1 0 0 1 1 0 1 1 

v4 0 0 1 0 1 0 1 
v5 1 1 0 0 0 1 0 

v2 1 0 0 0 1 0 0 
v3 0 1 0 1 0 0 0 
v6 1 0 1 0 0 0 0 
v7 1 1 0 0 0 0 0 

 

c) d) 

 

  v1 v3 v4 v2 v5 v6 v7 

Mp3=  

  v1 0 0 1 1 0 1 1 

v3 0 0 1 0 1 1 0 
v4 1 1 0 0 0 0 1 

v2 1 0 0 0 1 0 0 
v5 0 1 0 1 0 0 0 
v6 1 1 0 0 0 0 0 
v7 1 0 1 0 0 0 0 

  v1 v3 v4 v5 v6 v2 v7 

Mp1=  

  v1 0 0 1 0 1 1 1 

v3 0 0 1 0 0 1 1 
v4 1 1 0 1 1 0 0 

v5 0 0 1 0 1 0 0 
v6 1 0 0 1 0 0 0 

v2 1 1 0 0 0 0 0 
v7 1 1 0 0 0 0 0 

 

e) f) 

 

  v1 v3 v4 v2 v5 v6 v7 

Mp2=  

  v1 0 0 1 1 0 1 1 

v3 0 0 1 0 1 0 1 
v4 1 1 0 0 0 1 0 

v2 1 0 0 0 1 0 0 
v5 0 1 0 1 0 0 0 

v6 1 0 1 0 0 0 0 
v7 1 1 0 0 0 0 0 

  v1 v3 v4 v5 v6 v2 v7 

Mp3=  

  v1 0 0 1 1 0 1 1 

v3 0 0 1 0 1 1 0 
v4 1 1 0 0 0 0 1 

v5 1 0 0 0 1 0 0 
v6 0 1 0 1 0 0 0 

v2 1 1 0 0 0 0 0 
v7 1 0 1 0 0 0 0 

 

Fig. 5. Adjacency matrices with sub-blocks: according to List(d)  
            for graphs G1 (a), G2 (b), G3 (c), according to List(S)  
            for graphs G1 (d), G2 (e), G3 (f) 

According to the lists the vertices of the same expanded 
square degree make a sub-block (Fig. 5d,e,f). For example, after 
obtaining List (S), the vertices in sub-blocks in Fig.5a form sub-
blocks in Fig.5d. Then the correlations between individual sub-
blocks within an adjacency matrix is investigated. For this purpose 
the correlation degree is defined and denoted as vi(gm). 
It specifies the number of vertices from the gm sub-block which the 
vi vertex from  the gn sub-block is adjacent to. In the adjacency 
matrix in Fig.5d, for example, there are four sub-blocks denoted 
as g1, g2, g3, g4. The vertex v4 in g2 has one adjacent vertex v5 
in g3, hence v4(g3) = 1. Another correlation degree list from gn 
to gm is made and denoted as List(gn(gm)) with correlation degrees 
vi(gm) in descending sequence of vertices in the gn sub-block. The 
following correlation lists have been obtained for sub-blocks 
shown in Fig.5d, e, f: 

 graph G1: List(g1(g2)) - {1}, List(g1(g3)) - {1}, List(g1(g4)) - {2}, 
List(g2(g3)) - {1,0} corresponding to vertices {v4,v3}, List(g2(g4)) 
- {2,0} corresponding to vertices v3, v4, List(g3(g4)) - {0,0}, 

 graph G2: List(g1(g2)) - {1}, List(g1(g3)) - {1}, List(g1(g4)) - {2}, 
List(g2(g3)) - {1,0} corresponding to vertices v4, v6, ( List(g2(g4)) 
- {1,1}, List(g3(g4)) - {0,0}, 

 graph G3: List(g1(g2)) - {1}, List(g1(g3)) - {1}, List(g1(g4)) - {2}, 
List(g2(g3)) - {1,0} corresponding to vertices v4, v5, List(g2(g4)) - 
{1,1}, List(g3(g4)) - {0,0}. 
The equivalence of the correlation degree lists of graphs is  

a necessary condition for isomorphism. The correlation degree list 
for the G1 graph is not equivalent with the lists for G2 and G3 , 
hence the G1 graph is not isomorphic with the G2 and G3. 

Each vertex of the adjacency matrix of the G2 and G3 graphs 
belongs to the same sub-block made via the expanded square 
degree division and via the correlation degree division in both 

matrices, which means that both matrices are equal and that the 
G2 and G3 graphs are isomorphic. 

3. RESEARCHING THE ISOMORPHISM OF SPATIAL CHAINS 

Methods presented in Chapter II relate exclusively to the iso-
morphism of plane kinematic chains and do not cover spatial 
mechanisms. It is mainly because the base in these methods are 
diagrams in which kinematic pairs are noted by one symbol i.e.  
a circle. This is possible only for plane mechanisms whereby both 
the revolute and prismatic kinematic pairs are noted with such  
a symbol. 

For spatial mechanisms the class of kinematic pairs has to be 
considered in their structural diagrams. As an example in the 
parallel mechanism presented in Fig.6 there are four kinematic 
pairs of class III (The class of kinematic pairs depends on the 
number of parameters of kinematic bonds which a given pair 
imposes on the motion that one link can make in relation to the 
other. A link’s free motion can be described by six parameters 
such as three revolutions and three translations along the orthog-
onal axis of the coordinate system. Each independent move which 
one link is able to make in relation to the other is called a degree 
of freedom W. Any constraints imposed on that movement 
is called a parameter of a kinematic bond H with values ranging 
from 1 to 5. Thus W=6-H. Hence a kinematic pair that enables one 
revolution or one translation is a pair of class V, as five out of its 
six degrees of freedom have been restricted.  The pair of class IV 
means that four parameters of a kinematic bond have been im-
posed, the remaining two determine two degrees such as, 
for example, a revolution and a translation.) (three spherical pairs 
at the platform which make three revolutions around a coordinate 
axis possible and one at the base enabling two translations and 
one revolution), one kinematic pair of class IV (the pair at the base 
enabling a translation and a revolution) and one pair of class V 
(at the base enabling one revolution). Hence a structural diagram 
of these mechanisms contains information about the class 
of kinematic pairs (Fig. 6b). 

a) b) c) 
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Fig. 6. Parallel mechanisms (a, d) in the traditional (b, e)  
           and in the generalised structural notation (c, f) 
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Structural analysis of spatial mechanisms indicates that the 
mechanisms can be grouped according to the same graphic 
notation in which individual mechanisms differ in the classes 
of kinematic pairs (Romaniak, 2010; 2011; Uicker and Raicu, 
1975). For example, the parallel mechanism in Fig. 6d can have 
a graphic representation corresponding to the parallel mechanism 
in Fig.6a having provided appropriate classes of kinematic pairs. 
A new generalised notation for spatial mechanisms has been 
proposed whereby classes of kinematic pairs are noted in a form 
of labels next to a graphic diagram (Fig. 6c, f). 

Splitting the structural notation of spatial mechanisms into two 
parts i.e. graphic representation and a label enables the structural 
research used for plane mechanisms to be applied to spatial 
chains whose graphic diagram is identical to that of plane mecha-
nisms. Therefore the methods of structural synthesis as well as 
methods for researching the chains’ isomorphism, presented in 
Chapter II, can be used in here. Closely linked with the graphic 
diagram and determined following current structural formula, the 
labels are the sequences of numbers whose isomorphism is easy 
enough to check. 

The proposed notation of spatial mechanisms attempts to ex-
tend the research regarding the isomorphism of kinematic chains 
to the mechanisms of all groups. However, it is not an ideal meth-
od as the notation in a form of a graphic diagram and a label 
provides a certain set of solutions restricted to various locations 
of kinematic pairs in a given diagram (Fig. 7). 
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Fig. 7. A parallel mechanism with the three non-isomorphic solutions (b)   
           obtained from the generalized notation (a) 

 
After linking the graphic notation with labels the solutions ob-

tained need to be checked again in order to eliminate isomorphic 
chains. 

4. CONCLUSIONS 

A rapidly increasing number of new methods applied to the is-
sue of identifying the isomorphism of mechanisms reflects the 
researchers’ efforts to obtain a precise result in the shortest time 
possible.  In the examples presented in this paper an attempt has 

been made to expand the area of research to include spatial 
mechanisms. It has been made possible by applying a special 
notation for spatial chains, in which the classes of kinematic pairs 
are noted next to their graphic representations. Thus the research 
for diagrams and the labels is carried out separately, and then any 
method developed for flat chains can successfully be used when 
graphic representation is concerned. Every method discussed 
herein leads to an equally correct solution in terms of the isomor-
phism of the chains presented. Although eliminating chains of the 
same graphic representation, those methods do not fully sort out 
the problem of duplicating spatial kinematic chains. What remains 
to be checked is the isomorphism of chains after graphic repre-
sentation has been joined with labels. Then structurally identical 
solutions need to be selected and eliminated. 
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