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Abstract: In this work, the constitutive model, derived with the use of thermodynamic of irreversible processes framework is presented. 
The model is derived under the assumption of small strains. Plastic strain induced martensitic phase transformation is considered 
in the austenitic matrix where the volume fraction of the martensite is reflected by a scalar parameter. The austenitic matrix is assumed 
as the elastic-plastic material and martensitic phase is assumed as randomly distributed and randomly oriented inclusions. Both phases 
are affected by damage evolution but there is no distinction in the model between damage in austenite and martensite. 
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1. INTRODUCTION 

In this work a material that is susceptible to several coupled 
dissipative phenomena: plasticity, damage, and phase transfor-
mation, that are formalized on the macroscopic level by the use 
of a proper set of state variables, is considered. Other phenome-
na, like discontinuous yielding are not taken into account here 
(Egner and Skoczeń 2010, Skoczeń et al., 2014). 

Among metallic materials, that are characterized by the men-
tioned above dissipative phenomena, we can find austenitic stain-
less steels. These materials preserve ductility practically down to 
0K, thus they are applied for components of superconducting 
magnets and cryogenic transfer lines: tubes, cylinders, thin walled 
shells (like bellows expansion joints) or massive parts like vacuum 
barriers (Ryś, 2015). In the present paper 316L stainless steel is 
chosen as a field of application of the constitutive description.  

The first model of plastic strain induced austenite to marten-

site (𝛾 → 𝛼′) phase transformation was proposed by Olson and 
Cohen (1975). The authors, on the basis of micromechanical 
observations, developed a three parameter model capable 
of describing the experimentally verified sigmoidal curve that 
represents the volume fraction of martensite as a function 
of plastic strain. Later on, this model was widely used by others 
(Stringfellow et al., 1992; Tomita and Iwamoto, 2001; Iwamoto, 
2004). Moreover, Stringfellow et al., (1992) expanded on Olson 
and Cohen’s law by incorporating the effect of stress triaxiality on 
the phase transformation. Tomita and Iwamoto (1995) generalized 
the model proposed by Stringfellow et al., (1992) by taking into 
account the effect of strain rate. Micromechanical model was 
developed by Diani et al. (1995) and later on Cherkaoui et al. 
(1998) proposed a micromechanical model of martensitic trans-
formation induced plasticity in austenitic single crystal. Another 
micromechanical model was proposed by Fischer and Schlögl 
(1995), the Authors investigated the local stress state in a marten-
sitically transforming micro-region including plastic anisotropy. 

In the paper published by Fischer et al. (2000) the authors devot-
ed their attention to explanation of the martensitic transformation 
in polycrystalline materials subjected to non-proportional loading 
paths. A simple phenomenological stress independent transfor-
mation law to describe the deformation – induced martensite 
formation in stainless steel was also proposed by Santacreu et al. 
(2006). Santacreu’s et al. model was further generalized by Beese 
and Mohr (2011) who proposed a stress-state-dependent trans-
formation kinetics law that incorporates the effect of the Lode 
angle parameter in addition to the stress triaxiality. However, 
in the present work the Santacreu’s et al. (2006) model in his 
basic form is chosen to use. 

Other constitutive models of materials undergoing phase 
transformation are due to: Narutani et al. (1982); Cherkaoui et al. 
(2000); Fischer and Reisner (1998); Diani and Parks (1998); 
Levitas et al. (1999); Heung Nam Han et al. (2004); Kubler et al. 
(2011); Ziętek and Mróz (2011), and many others. 

In contrast to the beneficial properties, martensitic transfor-
mations may also have a detrimental effect on the thermomechan-
ical response of a material. This occurs if the martensitic product 
phase is relatively hard and brittle, and provides nucleation sites 
for crystalline damage. Moreover, crystalline damage eventually 
may lead to crack formation at a higher length scale.  

There exists some evidence for the presence of micro-
damage fields within the martensite sites (cf Baffie et al., 2000; Le 
Pecheur, 2008). It seems that the bain strain, associated with 
formation of the martensite inclusions, can promote local devel-
opment of damage fields. Also, the martensite platelets are sup-
posed to be carriers of the short cracks that contribute to the 
general state of damage (see Fig. 2). For this reason the evolution 
of damage fields has been postulated both in the matrix and in the 
inclusions. However, there is no distinction between the type 
of damage in austenite and martensite in the model. Thus, the 
average content of damage in the RVE (representative volume 
element) is described by one single scalar parameter. This simpli-
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fication is strong because martensitic phase is hard and behaves 
rather like rock-like material (Egner et al. 2015a, Stolarz 2001). 
However, it is very difficult to estimate damage content in each 
phase separately, what justifies the above assumption. On the 
other hand, as the boundaries between the inclusions and the 
matrix are coherent, the micro-damage related to some sort 
of delamination or decohesion within the boundaries has not been 
taken into account. 

For other approaches of damage modeling in austenitic steels 
see Suiker and Turteltaub (2006, 2007); Egner et al., (2015a, b); 
Garion and Skoczeń (2003).  

 
Fig. 1. Propagation of a short crack across an island of martensite  
           (Baffie et al., 2000) 

As was mentioned above, the scalar damage parameter, 𝐷 

(with condition: 𝐷 = 0 – initial undamaged state, 𝐷 = 1 – final 
fractured state), is used to reflect the damage state in the RVE. 
This concept was proposed first by Kachanov (1958) and then 
modified by Rabotnov (1968, 1969), and may be interpreted as 
the fraction of decrease in the effective area due to damage de-
velopment (Murakami, 2012). In the constitutive modelling dam-
age parameter is used to take into account the influence of voids 
and cracks accumulation in material on the stress concentration 
and reduction of the stiffness of the material.   

The classical laws of kinematic and isotropic hardening are 
postulated in the present work. Since the phase transformation 
has strong influence on hardening process during the plastic 
deformation, the volume fraction of martensite affects the parame-
ters of both kinematic and isotropic hardening. The kinetic laws for 
state variables are derived from the normality rule applied to the 
plastic potential, while the consistency multiplier is obtained from 
the consistency condition applied to the yield function (Chaboche 
2008). 

2. CONSTITUTIVE DESCRIPTION OF THE ELASTIC-
PLASTIC-DAMAGE TWO PHASE MATERIAL 

The author considers a material that is susceptible to three 
coupled dissipative phenomena: plasticity, damage evolution and 
phase transformation. The motions within the considered thermo-
dynamic system obey the fundamental laws of continuum me-
chanics (conservation of mass, conservation of linear momentum, 
conservation of angular momentum) and two laws of thermody-

namics, written here in the local form: 
─ conservation of energy 

𝜌𝑢̇ − 𝜖𝑖̇𝑗𝜎𝑖𝑗 − 𝑟 + 𝑞𝑖,𝑖 = 0          (1) 

─ Clausius-Duhem inequality 

𝜋 = −𝜌(𝜓̇ + 𝑠𝜃̇) + 𝜖𝑖̇𝑗𝜎𝑖𝑗 − 𝑞𝑖
𝜃,𝑖

𝜃
≥ 0       (2) 

where 𝜋 denotes the rate of dissipation per unit volume, 𝜌 is the 
mass density per unit volume; 𝜎𝑖𝑗  are the components of the 

stress tensor; 𝑢 stands for the internal energy per unit mass; 𝜖𝑖𝑗  

denote the components of the total strain tensor; 𝑟 is the distribut-

ed heat source per unit volume; 𝑞𝑖 is the outward heat flux; 𝑠 de-

notes the internal entropy production per unit mass, 𝜓 stands for 

Helmholtz’ free energy and 𝜃 is the absolute temperature. 
The RVE based constitutive model presented in the paper is 

based on the following assumptions (see also Egner et al. 2015 
a,b; Ryś, 2014): 
─ the martensitic platelets are randomly distributed 

and randomly oriented in the austenitic matrix,  
─ both phases are affected by damage, 
─ rate independent plasticity is assumed, 
─ small strains are assumed,  
─ mixed isotropic/kinematic plastic hardening affected by the 

presence of martensite fraction is included,  
─ isothermal conditions are considered. 

Applying infinitesimal deformation theory to elastic – plastic – 
damage - two phase material the total strain 𝜖𝑖𝑗  can be expressed 

as a sum of the elastic part, 𝜖𝑖𝑗
𝑒  plastic, 𝜖𝑖𝑗

𝑝
 and Bain strain 

𝜖𝑏𝑠 = 1/3𝛥𝑣𝐼, denoting the additional strain caused by phase 
transformation. 

𝜖𝑖𝑗 = 𝜖𝑖𝑗
𝑒 + 𝜖𝑖𝑗

𝑝
+ 𝜉𝜖𝑖𝑗

𝑏𝑠              (3) 

In order to include in the model variation of the material prop-
erties caused by the damage development the mechanical behav-
ior of a damaged material is usually described by using the notion 
of the effective state variables, together with the hypothesis 
of mechanical equivalence between the damaged and undam-
aged configuration.  

The current state in representative volume element (RVE) of a 
real, damaged configuration, Bt, (Fig 1a) is specified by the pairs 
of state variables: 

(𝜎𝑖𝑗 , 𝜖𝑖𝑗
𝑒 ), (𝑅𝑝, 𝑟

𝑝
), (𝑋𝑖𝑗

𝑝
, 𝛼𝑖𝑗

𝑝
), (𝑍, 𝜉), (−𝑌, 𝐷)        (4) 

It is also assumed the exisctence of the fictitious undamaged 

configuration, 𝐵𝑓, (Fig 1b) which has the identical total strain 

energy 𝑊𝑇 to that of 𝐵𝑡  and hence is mechanically equivalent to 

𝐵𝑡  (Saanouni et. al, 1994, Murakami, 2012). 
It is assumed further that the mechanical state of the RVE in 

fictitious undamaged configuration is described by the set of the 
effective variables corresponding to Eq. 7. 

(𝜎̃𝑖𝑗 , 𝜖𝑖̃𝑗
𝑒 ), (𝑅̃

𝑝
, 𝑟̃

𝑝
), (𝑋̃𝑖𝑗

𝑝
, 𝛼̃𝑖𝑗

𝑝
), (𝑍, 𝜉), (𝑌 = 0, 𝐷 = 0)      (5) 

Thus, the hypothesis of total energy equivalence employed in 
the present work can be formulated as: The mechanical behaviour 
of a damaged material in the current damaged configuration 𝐵𝑡  
(Fig 2a) is derived from state and dissipation potentials defined in 

the fictitious undamaged configuration 𝐵𝑓  (Fig 2b) by repleacing 

the state variables in them by the corresponding effective state 
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variables (Saanouni et al., 1994; Murakami, 2012; Saanouni, 
2012). 

Accordingly, the application of this energy equivalence princi-
ple leads to: 

𝑊𝑇(𝜖𝑖𝑗
𝑒 ; 𝛼𝑖𝑗

𝑝
, 𝑟𝑝, 𝜉, 𝐷) = 𝑊𝑇(𝜖𝑖̃𝑗

𝑒 ; 𝛼̃𝑖𝑗
𝑝
, 𝑟̃𝑝, 𝜉, 𝐷 = 0)        (6) 

 
Fig. 2. Hypothesis of total energy equivalence 

Since the total energy 𝑊𝑇 can be devided into elastic part 𝑊𝐸  
and parts corresponding to kinematic 𝑊𝐾 and isotropic 𝑊𝐼 hard-
ening the following relations should be satisfied (Murakami, 2012, 
Saanouni, 2012): 

𝑊𝐸(𝜖𝑖𝑗
𝑒 , 𝐷) = 𝑊𝐸(𝜖𝑖̃𝑗

𝑒 , 𝐷 = 0) =
1

2
𝜎𝑖𝑗𝜖𝑖𝑗

𝑒 =
1

2
𝜎̃𝑖𝑗𝜖𝑖̃𝑗

𝑒         (7) 

𝑊𝐾(𝛼𝑖𝑗
𝑝
, 𝐷) = 𝑊𝐾(𝛼̃𝑖𝑗

𝑝
, 𝐷 = 0) =

1

2
𝑋𝑖𝑗

𝑝
𝛼𝑖𝑗

𝑝
=

1

2
𝑋̃𝑖𝑗

𝑝
𝛼̃𝑖𝑗

𝑝    (8) 

𝑊𝐼(𝑟
𝑝, 𝐷) = 𝑊𝐼(𝑟̃

𝑝, 𝐷 = 0) =
1

2
𝑅𝑝𝑟𝑝 =

1

2
𝑅̃𝑝𝑟̃𝑝     (9) 

It is worth to point it out that phase transformation is assumed 
here not affected by the damage evolution. 

The above relations (Eq. 7 - 9) are always satisfied if the  
effective state variables are defined as follows (Murakami, 2012, 
Saanouni, 2012): 

𝜎̃𝑖𝑗 =
𝜎𝑖𝑗

√(1−𝐷)
, 𝜖𝑖̃𝑗

𝑒 = √(1 − 𝐷)𝜖𝑖𝑗
𝑒            (10) 

𝑋̃𝑖𝑗
𝑝

=
𝑋𝑖𝑗

𝑝

√(1−𝐷)
, 𝛼̃𝑖𝑗

𝑝
= √(1 − 𝐷)𝛼𝑖𝑗

𝑝           (11) 

𝑅̃𝑝 =
𝑅𝑝

√(1−𝐷)
, 𝑟̃𝑝 = √(1 − 𝐷)𝑟𝑝           (12) 

The presented model is based on the framework of thermody-
namics of irreversible processes with internal state variables, 

where Helmholtz free energy 𝜓 is postulated as a state potential. 
The state potential depends on the elastic part 𝜖𝑖𝑗

𝑒  of the total 

strain ϵij, and set of internal state variables {𝛼𝑖𝑗
𝑝
, 𝑟𝑝 , 𝜉, 𝐷}, which 

define the current state of the material:  

𝜓 = 𝜓(𝜖𝑖𝑗
𝑒 ; 𝛼𝑖𝑗

𝑝
, 𝑟𝑝 , 𝜉, 𝐷)                (13) 

where 𝛼𝑖𝑗
𝑝
, 𝑟𝑝 , 𝜉, 𝐷 are variables related to the kinematic harden-

ing, isotropic hardening, volume fraction of martensite and dam-
age parameter, respectively. Moreover, the damage parameter, 

𝐷, reflects the average state of damage in whole RVE. There 
is also the assumption of the existence of thermodynamic forces 
corresponding to the internal variables  

{𝑋𝑖𝑗
𝑝
, 𝑅𝑝, 𝑍, −𝑌}                     (14) 

where 𝑋𝑖𝑗
𝑝
, 𝑅𝑝 , 𝑍, −𝑌 denote, respectively, kinematic and iso-

tropic hardening conjugated forces, thermodynamic conjugated 
force associated to phase transformation and the associated 
thermodynamic conjugated force with the isotropic damage varia-

ble D. 
The Helmholtz free energy of the material can be written as a 

sum of elastic (E), inelastic (I) and chemical (CH) terms (Abu Al-
Rub and Voyiadjis, 2003; Egner et al., 2015a): 

𝜓 = 𝜓𝐸 + 𝜓𝐼 + 𝜓𝐶𝐻                   (15) 

In the present paper the Helmholtz free energy (Eq. 6) 
is a quadratic function of all of the strain-like variables and in the 
fictive configuration it is formulated as (Saanouni, 2012, Besson 
et. al, 2010): 

𝜓𝐸 =
1

2
𝜖𝑖̃𝑗

𝑒 𝐸𝑖𝑗𝑘𝑙𝜖𝑘̃𝑙
𝑒 =

1

2
(1 − 𝐷)𝜖𝑖𝑗

𝑒 𝐸𝑖𝑗𝑘𝑙𝜖𝑘𝑙
𝑒         (16) 

𝜓𝐼 =
1

3
𝐶𝑝(𝜉)𝛼̃𝑖𝑗

𝑝
𝛼̃𝑖𝑗

𝑝
+

1

2
𝑅∞

𝑝
(𝜉)(𝑟̃𝑝)2 =

1

3
(1 −

𝐷)𝐶𝑝(𝜉)𝛼𝑖𝑗
𝑝
𝛼𝑖𝑗

𝑝
+  

1

2
(1 − 𝐷)𝑅∞

𝑝
(𝜉)(𝑟𝑝)2          (17) 

Term ψCH in Eq. 15 represents the chemically stored energy: 

𝜓𝐶𝐻 = (1 − 𝜉)𝜓𝛾
𝐶𝐻 + 𝜉𝜓𝛼′

𝐶𝐻             (18) 

The terms 𝜓𝛾
𝐶𝐻  and 𝜓𝛼′

𝐶𝐻  are the chemical energies of the re-

spective phases, cf. Hallberg et al. (2010), Mahnken and Schneidt 
(2010). This internally stored energy is different for the two phases 
and it will affect the generation of heat during phase transfor-
mation, as well as the transformation itself. 

Using the Clausius-Duhem inequality for isothermal case, one 
obtains: 

𝜋𝑚𝑒𝑐ℎ = 𝜎𝑖𝑗𝜖𝑖̇𝑗 − 𝜓̇ ≥ 0               (19) 

where 𝜋𝑚𝑒𝑐ℎ  is defined as mechanical dissipation. 
The time derivative of Helmholtz free energy (Eq. 15) as 

a function of internal state variables is given by: 

𝜓̇ =
𝜕𝜓

𝜕𝜖𝑖𝑗
𝑒 𝜖𝑖̇𝑗

𝑒 +
𝜕𝜓

𝜕𝛼
𝑖𝑗
𝑝 𝛼̇𝑖𝑗

𝑝
+

𝜕𝜓

𝜕𝑟𝑝 𝑟̇𝑝 +
𝜕𝜓

𝜕𝜉
𝜉̇ +

𝜕𝜓

𝜕𝐷
𝐷̇        (20) 

Substituting the rate of the Helmholtz free energy into Clausi-
us-Duhem inequality the following thermodynamic constraint 
is obtained: 

(𝜎𝑖𝑗 −
𝜕𝜓

𝜕𝜖𝑖𝑗
𝑒 ) 𝜖𝑖̇𝑗

𝑒 + 𝜎𝑖𝑗𝜖𝑖̇𝑗
𝑝

−
𝜕𝜓

𝜕𝛼
𝑖𝑗
𝑝 𝛼̇𝑖𝑗

𝑝
− 

𝜕𝜓

𝜕𝑟𝑝 𝑟̇𝑝  −
𝜕𝜓

𝜕𝜉
𝜉̇ −

𝜕𝜓

𝜕𝐷
𝐷̇ ≥ 0                                (21) 

Eq. 21 results in the following thermodynamic state laws 
for the conjugate thermodynamic forces: 

𝜎𝑖𝑗 =
𝜕𝜓

𝜕𝜖𝑖𝑗
𝑒 = (1 − 𝐷)𝐸𝑖𝑗𝑘𝑙

0 (𝜖𝑘𝑙 − 𝜖𝑘𝑙
𝑝

− 𝜉𝜖𝑘𝑙
𝑏𝑠)        (22) 

𝑋𝑖𝑗
𝑝

=
𝜕𝜓

𝜕𝛼
𝑖𝑗
𝑝 =

2

3
(1 − 𝐷)𝐶𝑝(𝜉)𝛼𝑖𝑗

𝑝           (23) 

𝑅𝑝 =
𝜕𝜓

𝜕𝑟𝑝 = (1 − 𝐷)𝑅∞
𝑝
(𝜉)𝑟𝑝           (24) 

𝑍 =
𝜕𝜓

𝜕𝜉
= 𝜌

𝜕𝜓𝐼

𝜕𝜉
+ (𝜌𝜓𝛼′

𝐶𝐻 − 𝜌𝜓𝛾
𝐶𝐻)         (25) 

𝑌 = −
𝜕𝜓

𝜕𝐷
= 𝑌𝐸+𝑌𝐼𝑁 =

1

2
𝜖𝑖𝑗

𝑒 𝐸𝑖𝑗𝑘𝑙
0 𝜖𝑘𝑙

𝑒 +
1

3
𝐶𝑝(𝜉)𝛼𝑖𝑗

𝑝
𝛼𝑖𝑗

𝑝
+

1

2
𝑅∞

𝑝
(𝜉)(𝑟𝑝)2                 (26) 
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Thermodynamic force, 𝑌, conjugated to the damage parame-

ter, D, is the strain energy density release rate and in the case 
when the hypothesis of total energy equivalence is employed 
represents the contribution from elasticity, kinematic hardening, 
and isotropic strain hardening.  

It is assumed here that all dissipative mechanisms are gov-
erned by plasticity with a single dissipation potential F (Lemaitre 
1992): 

𝐹 = 𝐹𝑝(𝜎𝑖𝑗 , 𝑋𝑖𝑗
𝑝
, 𝑅𝑝, 𝜉) + 𝐹𝑇𝑅(𝑄, 𝜉) + 𝐹𝐷(−𝑌, 𝐷)     (27) 

Plastic potential Fp has the following form: 

𝐹𝑝 = 𝑓𝑝 +
1

2

𝑏

𝑅∞
𝑝

(𝜉)
(𝑅̃𝑝)

2
+

1

2

𝛾

𝐶𝑝(𝜉)

3

2
𝑋̃𝑖𝑗

𝑝
𝑋̃𝑖𝑗

𝑝             (28) 

where, fp is von Mises yield function: 

𝑓𝑝 = 𝐽2(𝜎̃𝑖𝑗 − 𝑋̃𝑖𝑗
𝑝
) − 𝜎𝑦 − 𝑅̃𝑝 =

√
3

2
(𝜎̃𝑖𝑗

𝐷 − 𝑋̃𝑖𝑗
𝑝
) (𝜎̃𝑖𝑗

𝐷 − 𝑋̃𝑖𝑗
𝑝
) − 𝜎𝑦 − 𝑅̃𝑝         (29) 

where, σ̃ij
D is the deviatoric part of the Cauchy stress tensor. 

The phase transformation dissipation potential is assumed 
here in the following form: 

𝐹𝑇𝑅 =
1

√1−𝐷
(𝜉𝑚𝑎𝑥 − 𝜉)𝑚𝐴(𝐴𝑝)𝑚−1𝑄𝑇𝑅 − 𝐵𝑇𝑅          (30) 

The quantity QTR = σijϵij
bs − Z is conjugated to the trans-

formation rate ξ̇ and can be treated as a thermodynamic force that 
drives the phase front through the material (cf. Hallberg et al., 
2007, 2010), p is accumulated plastic strain, A, m, ξmax are the 
model parameters that have to be found through experimental 
validation of the model, and Btr is the barrier force for phase 
transformation (cf. Mahnken and Schneidt, 2010; Fisher et al., 
2000).  

Damage dissipation potential is as follows (Bonora, 1997): 

𝐹𝐷 =
1

2

𝑆

√1−𝐷
(

𝑌

𝑆
)

2 (𝐷𝐶−𝐷)(𝛼−1)/𝛼

𝑝(𝑛+2)/𝑛            (31) 

where DC is the critical value of damage variable for which ductile 

failure occurs, S is a model parameter, n is the material hardening 
exponent, while α is an exponent characterizing the damage 
development. 

Normality rule involves only one plastic multiplier, determined 
from the consistency condition. The equations involving the dissi-
pation potentials take the form: 

𝜖𝑖̇𝑗
𝑝

= 𝜆̇𝑝 𝜕𝐹𝑝

𝜕𝜎𝑖𝑗
=

𝜆̇𝑝

√1−𝐷

3

2

(𝜎𝑖𝑗
𝐷−𝑋𝑖𝑗

𝑝
)

𝐽2(𝜎𝑖𝑗
𝐷− 𝑋

𝑖𝑗
𝑝
)
               (32) 

𝑝̇ = √
2

3
𝜖𝑖̇𝑗

𝑝
𝜖𝑖̇𝑗

𝑝
=

𝜆̇𝑝

√1−𝐷
              (33) 

𝛼̇𝑖𝑗
𝑝

= −𝜆̇𝑝 𝜕𝐹𝑝

𝜕𝑋𝑖𝑗
= 𝜖𝑖̇𝑗

𝑝
− 𝛾𝜆̇𝑝𝛼𝑖𝑗

𝑝
= 𝜖𝑖̇𝑗

𝑝
− 𝛾𝑝̇√1 − 𝐷𝛼𝑖𝑗

𝑝     (34) 

𝑟̇𝑝 = −𝜆̇𝑝 𝜕𝐹𝑝

𝜕𝑅𝑝 =
𝜆̇𝑝

√1−𝐷
(1 − 𝑏√1 − 𝐷𝑟𝑝) = 𝑝̇(1 −

𝑏√1 − 𝐷𝑟𝑝)                  (35) 

𝜉̇ = 𝜆̇𝑝 𝜕𝐹𝑇𝑅

𝜕𝑄𝑇𝑅 = (𝜉𝑚𝑎𝑥 − 𝜉)𝑚𝐴(𝐴𝑝)𝑚−1𝑝̇         (36) 

It has to be mentioned here that the phase transformation dis-
sipation employed in the form of Eq. 30 allows to obtain kinetic 
law of phase transformation orginally proposed by Santacreu et al. 

(2006). 
The choice of the damage potential (Eq. 31) leads to the fol-

lowing damage kinetic evolution with the effective accumulated 
plastic strain (Bonora, 1997): 

𝐷̇ =
𝜆̇𝑝

√1−𝐷
(

𝑌

𝑆
)

(𝐷𝐶−𝐷)(𝛼−1)/𝛼

𝑝(𝑛+2)/𝑛 = 𝑌
(𝐷𝐶−𝐷)(𝛼−1)/𝛼

𝑆

𝑝̇

𝑝(𝑛+2)/𝑛     (37) 

Bonora in his works used the strain energy equivalence hy-
pothesis which results, in accordance with symbols in the present 

article, that Y = YE. In the case of isotropic material elastic part 
of Y can be expressed as a function of the von Mises equivalent 

stress σEQ and the stress triaxiality (defined as a ratio of the 

hydrostatic stress and von Mises stress, σH/σEQ) (Lemaitre, 

1992; Murakami, 2012):  

𝑌𝐸 =
(𝜎𝐸𝑄)

𝟐

2𝐸(1−𝐷)2
(

2

3
(1 + 𝜐) + 3(1 − 2𝜐) (

𝜎𝐻

𝜎𝐸𝑄
)

2

) =

(𝜎𝐸𝑄)
𝟐

2𝐸(1−𝐷)2
𝑓 (

𝜎𝐻

𝜎𝐸𝑄
)                   (38) 

Moreover, Bonora proposed to use the Ramberg – Osgood re-
lation 

𝑝 = (
𝜎𝐸𝑄

(1−𝐷)𝐾
)

𝑛

                 (39) 

what gives 

𝐷̇ =
𝐾2

2𝐸𝑆
𝑓 (

𝜎𝐻

𝜎𝐸𝑄
) (𝐷𝐶 − 𝐷0)

(𝛼−1)/𝛼 𝑝̇

𝑝
           (40) 

It can be shown (Murakami, 2012) that integration of this rela-

tion under uniaxial tenstion with the initial condition of p = ϵD 
and D = D0, and then applying the fracture condition ϵ = ϵR, 

D = DC one can obtain the reliation: 

𝐾2

2𝐸𝑆
= 𝛼

(𝐷𝐶−𝐷0)1/𝛼

ln (𝜖/𝜖𝐷)
                 (41) 

Finally, we can obtain the following kinetic equation of the 
damage evolution: 

𝐷̇ = 𝛼
(𝐷𝐶−𝐷0)1/𝛼

ln(𝜖𝑓)−ln (𝜖𝑡ℎ)
𝑓 (

𝜎𝑚

𝜎𝐸𝑄
) (𝐷𝐶 − 𝐷)(𝛼−1)/𝛼 𝑝̇

𝑝
             (42) 

where, D0 is the initial damage state in the material microstruc-

ture, ϵth and ϵf are threshold strain at which damage process 
starts and the strain to failure in the uniaxial state of stress, re-
spectively.  

The use of the total energy equivalence, in the present work, 

imply that Y = YE+YIN. Moreover, as denoted by Saanouni 

et al. (1994) the contribution of the inelastic part, YIN, in the total 
damage energy release rate, Y, is significant and should not be 
neglected. Hence, in the present work, the basic form (Eq. 37) 
of the kinetic equation of the damage evolution is used in which 

the relation Y = YE+YIN is applied. 

The consistency multiplier λ̇p is obtained from the consistency 
condition:  

𝑓̇𝑝 =
𝜕𝑓𝑝

𝜕𝜎𝑖𝑗
(𝜎̇𝑖𝑗−𝑋̇𝑖𝑗

𝑝
) +

𝜕𝑓𝑝

𝜕𝑅𝑝 𝑅̇𝑝 +
𝜕𝑓𝑝

𝜕𝐷
𝐷̇ +

𝜕𝑓𝑝

𝜕𝜉
𝜉̇ = 0     (43) 

The evolution equations for thermodynamic conjugated forces 
are obtained by taking time derivatives of quantities defined by 
equations 22 - 24. In particular, the force rates appearing in con-
sistency condition (Eq. 43) are given by the following formulae:
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𝜎̇𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙(𝐷)(𝜖𝑘̇𝑙 − 𝜖𝑘̇𝑙
𝑝

− 𝜉̇𝜖𝑘𝑙
𝑏𝑠) − 𝐸𝑖𝑗𝑘𝑙

0 (𝜖𝑘𝑙 − 𝜖𝑘𝑙
𝑝

−

𝜉𝜖𝑘𝑙
𝑏𝑠)𝐷̇                 (44) 

𝑋̇𝑖𝑗
𝑝

=
2

3
(1 − 𝐷)𝐶𝑝(𝜉)𝛼̇𝑖𝑗

𝑝
− (

𝐷̇

1−𝐷
−

1

𝐶𝑝(𝜉)

𝜕𝐶𝑝(𝜉)

𝜕𝜉
𝜉̇) 𝑋𝑖𝑗

𝑝   (45) 

𝑅̇𝑝 = (1 − 𝐷)𝑅∞
𝑝 (𝜉)𝑟̇𝑝 − (

𝐷̇

1−𝐷
−

1

𝑅∞
𝑝 (𝜉)

𝜕𝑅∞
𝑝 (𝜉)

𝜕𝜉
𝜉̇) 𝑅𝑝      (46) 

In the present work, the simplest, linear form of functions 

Cp(ξ) and R∞
p

(ξ) is assumed, namely: 

𝐶𝑝(𝜉) = 𝐶0
𝑝(1 + ℎ𝐶𝜉),             (47) 

𝑅∞
𝑝 (𝜉) = 𝑅∞,0

𝑝 (1 + ℎ𝑅𝜉)            (48) 

3. LOCAL INTEGRATION SCHEME 

In the present work elastic predictor – plastic corrector proce-
dure is used where the Newton-Raphson scheme is adopted to 
solve all nonlinear equations. Applying the forward Euler scheme, 
equations of time-independent plasticity, Eq. 32, 34-37 and 29 can 
be written in the following residual form:  

𝑅𝑖𝑗
𝜖 = 𝜖𝑖𝑗

𝑝,𝑛+1
− 𝜖𝑖𝑗

𝑝,𝑛
−

∆𝜆𝑝

√1−𝐷𝑛+1

3

2

(𝜎𝑖𝑗
𝐷,𝑛+1

−𝑋𝑖𝑗
𝑝,𝑛+1

)

𝐽2(𝜎𝑖𝑗
𝐷,𝑛+1−𝑋

𝑖𝑗
𝑝,𝑛+1

)
            (49) 

𝑅𝑖𝑗
𝛼 = 𝛼𝑖𝑗

𝑝,𝑛+1
−

1

1+𝛾∆𝜆𝑝 (𝛼𝑖𝑗
𝑝,𝑛

+ ∆𝜖𝑖𝑗
𝑝
)          (50) 

𝑅𝑟 = 𝑟𝑝,𝑛+1 −
1

1+𝑏∆𝜆𝑝 (𝑟𝑝,𝑛 +
∆𝜆𝑝

√1−𝐷
)          (51) 

𝑅𝐷 = 𝐷𝑛+1 − 𝐷𝑛 −
∆𝜆𝑝

√1−𝐷
(

𝑌𝑛+1

𝑆
)

(𝐷𝐶−𝐷𝑛+1)(𝛼−1)/𝛼

𝑝(𝑛+2)/𝑛        (52) 

𝑅𝜉 = 𝜉𝑛+1 − 𝜉𝑛 − (𝜉𝑚𝑎𝑥 − 𝜉𝑛+1)𝑚𝐴(𝐴𝑝)𝑚−1 ∆𝜆𝑝

√1−𝐷
      (53) 

𝑅𝑓 = 𝑓𝑝,𝑛+1 =

1

√1−𝐷𝑛+1
√

3

2
(𝜎𝑖𝑗

𝐷,𝑛+1 − 𝑋𝑖𝑗
𝑝,𝑛+1

) (𝜎𝑖𝑗
𝐷,𝑛+1 − 𝑋𝑖𝑗

𝑝,𝑛+1
) − 𝜎𝑦 −

𝑅𝑝,𝑛+1

√1−𝐷𝑛+1
= 0                 (54) 

The stress – like variables involved in the above equations are 
given by: 

𝜎𝑖𝑗
𝑛+1 = (1 − 𝐷𝑛+1)𝐸𝑖𝑗𝑘𝑙

0 (𝜖𝑘𝑙
𝑛+1 − 𝜖𝑘𝑙

𝑝,𝑛+1
− 𝜉𝑛+1𝜖𝑘𝑙

𝑏𝑠)     (55) 

𝑋𝑖𝑗
𝑝,𝑛+1

=
2

3
(1 − 𝐷𝑛+1)𝐶0

𝑝(1 + ℎ𝐶𝜉
𝑛+1)𝛼𝑖𝑗

𝑝,𝑛+1      (56) 

𝑅𝑝,𝑛+1 = (1 − 𝐷𝑛+1)𝑅∞,0
𝑝 (1 + ℎ𝑅𝜉𝑛+1)𝑟𝑝,𝑛+1       (57) 

𝑌𝐸,𝑛+1 =
1

2
(𝜖𝑖𝑗

𝑛+1 − 𝜖𝑖𝑗
𝑝,𝑛+1

− 𝜉𝑛+1𝜖𝑖𝑗
𝑏𝑠)𝐸𝑖𝑗𝑘𝑙

0 (𝜖𝑘𝑙
𝑛+1 −

𝜖𝑘𝑙
𝑝,𝑛+1

− 𝜉𝑛+1𝜖𝑘𝑙
𝑏𝑠)                       (58) 

𝑌𝐼𝑁 =
1

3
𝐶0

𝑝(1 + ℎ𝐶𝜉𝑛+1)𝛼𝑖𝑗
𝑝,𝑛+1

𝛼𝑖𝑗
𝑝,𝑛+1

+
1

2
𝑅∞,0

𝑝 (1 +

ℎ𝑅𝜉𝑛+1)(𝑟𝑝,𝑛+1)2              (59) 

3.1. Elastic predictor – plastic corrector scheme  

There is assumed that the total strain at the end of the time 

step, ϵkl
n+1, is known and defined as follows: 

𝜖𝑘𝑙
𝑛+1 = 𝜖𝑘𝑙

𝑛 + ∆𝜖𝑘𝑙                 (60) 

Moreover, in the elastic – predictor step, the incremental 

strains are assumed to be elastic with no damage such that an 
initial trial stress can be computed as: 

𝜎𝑖𝑗
𝑛+1,𝑡𝑟𝑖𝑎𝑙 = (1 − 𝐷𝑛)𝐸𝑖𝑗𝑘𝑙

0 (𝜖𝑘𝑙
𝑛+1 − 𝜖𝑘𝑙

𝑝,𝑛
− 𝜉𝑛𝜖𝑘𝑙

𝑏𝑠)       (61) 

The trial state (𝜎𝑖𝑗
𝑛+1,𝑡𝑟𝑖𝑎𝑙 , 𝜖𝑖𝑗

𝑝,𝑛
, 𝛼𝑖𝑗

𝑝,𝑛
, 𝑟𝑝,𝑛 , 𝐷𝑛 , 𝜉𝑛) is used 

to check the yield criterion, Eq. 29.  

If 𝑓𝑝,𝑛+1 𝑡𝑟𝑖𝑎𝑙(𝜎𝑖𝑗
𝑛+1,𝑡𝑟𝑖𝑎𝑙𝜖𝑖𝑗

𝑝,𝑛
𝛼𝑖𝑗

𝑝,𝑛
, 𝑟𝑝,𝑛, 𝐷𝑛 , 𝜉𝑛) ≤ 0 then 

𝜎𝑖𝑗
𝑛+1 = 𝜎𝑖𝑗

𝑛+1,𝑡𝑟𝑖𝑎𝑙
 and the increment is completed. 

Alternatively, if the yield function for trial stress is positive  

𝑓𝑝,𝑛+1 𝑡𝑟𝑖𝑎𝑙(𝜎𝑖𝑗
𝑛+1,𝑡𝑟𝑖𝑎𝑙𝜖𝑖𝑗

𝑝,𝑛
𝛼𝑖𝑗

𝑝,𝑛
, 𝑟𝑝,𝑛, 𝐷𝑛 , 𝜉𝑛) > 0,  

it means that current state lies outside of the yield surface. Plastic-
ity has occurred and the state has to be returned to the yield 
surface. Thus, the system of equations from 49 to 54 is linearized 
and has to be solved with respect to the following unknowns 

𝐮 = {𝜖𝑖𝑗
𝑝,𝑛+1

, 𝛼𝑖𝑗
𝑝,𝑛+1

, 𝑟𝑝,𝑛+1, 𝐷𝑛+1, 𝜉𝑛+1, ∆𝜆𝑛+1}  

with the initial condition 

𝜖𝑖𝑗
𝑝,𝑛+1

= 𝜖𝑖𝑗
𝑝,𝑛

;  𝛼𝑖𝑗
𝑝,𝑛+1

= 𝛼𝑖𝑗
𝑝,𝑛

;  𝑟𝑝,𝑛+1 = 𝑟𝑝,𝑛; 

𝐷𝑛+1 = 𝐷𝑛;  𝜉𝑛+1 = 𝜉𝑛;  ∆𝜆𝑛+1 = 0; 

The linearized system of six equations can be solved with the 

use of the Newton-Raphson scheme at iteration (s) what can be 
written in the following general form 

{𝐑}𝑛+1
𝑠 + [

𝜕𝑹

𝜕𝒖
]
𝑛+1

𝑠
{𝛿𝒖}𝑛+1 + ⋯ = {𝟎}                (62) 

where, {𝐑}𝑇 = {𝑅𝑖𝑗
𝜖 , 𝑅𝑖𝑗

𝛼 , 𝑅𝑟 , 𝑅𝐷 , 𝑅𝜉 , 𝑅𝑓}𝑇, [𝜕𝐑/𝜕𝐮]  is the 

Jacobian defined as: 

 [
𝜕𝐑

𝜕𝐮
] =

[
 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝑅𝑖𝑗
𝜖

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝜖

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝜖

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝜖

𝜕𝐷𝑛+1

𝜕𝑅𝑖𝑗
𝜖

𝜕𝜉𝑛+1

𝜕𝑅𝑖𝑗
𝜖

𝜕∆𝜆𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕𝐷𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕𝜉𝑛+1

𝜕𝑅𝑖𝑗
𝛼

𝜕∆𝜆𝑛+1

𝜕𝑅𝑟

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑟

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑟

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝑟

𝜕𝐷𝑛+1

𝜕𝑅𝑟

𝜕𝜉𝑛+1

𝜕𝑅𝑟

𝜕∆𝜆𝑛+1

𝜕𝑅𝐷

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝐷

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝐷

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝐷

𝜕𝐷𝑛+1

𝜕𝑅𝐷

𝜕𝜉𝑛+1

𝜕𝑅𝐷

𝜕∆𝜆𝑛+1

𝜕𝑅𝜉

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝜉

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝜉

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝜉

𝜕𝐷𝑛+1

𝜕𝑅𝜉

𝜕𝜉𝑛+1

𝜕𝑅𝜉

𝜕∆𝜆𝑛+1

𝜕𝑅𝑓

𝜕𝜖𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑓

𝜕𝛼𝑘𝑙
𝑝,𝑛+1

𝜕𝑅𝑓

𝜕𝑟𝑝,𝑛+1

𝜕𝑅𝑓

𝜕𝐷𝑛+1

𝜕𝑅𝑓

𝜕𝜉𝑛+1

𝜕𝑅𝑓

𝜕∆𝜆𝑛+1]
 
 
 
 
 
 
 
 
 
 
 
 

 

Solving the general equation Eq. 62 allows to obtain the cor-
rections 
{𝛿𝐮}𝑇 =

{𝛿𝜖𝑖𝑗
𝑝,𝑛+1

, 𝛿𝛼𝑖𝑗
𝑝,𝑛+1

, 𝛿𝑟𝑝,𝑛+1, 𝛿𝐷𝑛+1, 𝛿𝜉𝑛+1, 𝛿∆𝜆𝑛+1}
𝑇

 for the 

current iteration. Accordingly, the values of the unknowns for the 
next iteration are deduced from: 

(𝜖𝑖𝑗
𝑝,𝑛+1

)
𝑠+1

= (𝜖𝑖𝑗
𝑝,𝑛+1

)
𝑠
+ 𝛿𝜖𝑖𝑗

𝑝,𝑛+1
 

(𝛼𝑖𝑗
𝑝,𝑛+1

)
𝑠+1

= (𝛼𝑖𝑗
𝑝,𝑛+1

)
𝑠
+ 𝛿𝛼𝑖𝑗

𝑝,𝑛+1
 

(𝑟𝑝,𝑛+1)𝑠+1 = (𝑟𝑝,𝑛+1)𝑠 + 𝛿𝑟𝑝,𝑛+1 

(𝐷𝑛+1)𝑠+1 = (𝐷𝑛+1)𝑠 + 𝛿𝐷𝑛+1 

(𝜉𝑛+1)𝑠+1 = (𝜉𝑛+1)𝑠 + 𝛿𝜉𝑛+1 

(∆𝜆𝑛+1)𝑠+1 = (∆𝜆𝑛+1)𝑠 + 𝛿∆𝜆𝑛+1 
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The iteration proceeds until convergence is achieved based 

on an appropriate criterion of type {𝑅}𝑛+1
𝑠 < 𝐸𝑅𝑅𝑂𝑅. 

Obtaining final values of unknowns the values of stress – like 
variables can be easily calculated by using the equations 55-59. 

4. VALIDATION OF THE MODEL 

The constitutive model of coupled phenomena has been vali-
dated by means of loading/unloading test performed at the tem-
perature of liquid helium (4.2 K) (Egner and Skoczeń, 2010, Egner 
et al., 2015a). The experimental stress-strain curve for 316L 
stainless steel subjected to uniaxial tension is shown in Fig. 3. 
The evolution of micro-damage was measured by introducing 
unloading procedure and tracing variations of the unloading 
modulus. Parameters included in the evolution equations 
for thermodynamic forces (isotropic/kinematic hardening laws) 
and kinetic laws of evolution of internal variables (damage and 
phase evolution equations) were found with the use of ISIGHT 
program. 

Accounting for three dissipative phenomena: plasticity, dam-
age evolution and phase transformation in the present constitutive 
model allows to obtain a satisfactory reproduction of the experi-
mental stress-strain curve for 316L stainless steel subjected to 
uniaxial tension at the temperature of 4.2K (see Fig. 3). Hardening 
effect due to phase transformation combined with softening effect 
due to damage evolution enables to model the initially nonlinear 
plastic hardening, followed by plastic plateau and strong nonlinear 
hardening in the final stage of plastic flow.  

To show influence of the particular dissipative phenomena 
(damage evolution and phase transformation) on the model, three 
cases are presented (see Fig. 3): (a) only softening effect of dam-
age was accounted for (no phase transformation); (b) only hard-
ening effect of phase transformation was considered (damage 
development was neglected) and (c) both effects of damage 
evolution and phase transformation are included.  

 
Fig. 3. Stress-strain curve for 316L stainless steel 

The use of Bonora’s law of damage evolution and Santacreu’s 
kinetic model of phase transformation allows to obtain a very good 
agreement of the numerical results with experimental data (see 
Fig. 4). As was mentioned before, the use of total energy equiva-
lence priciple imply that the damage energy release rate contains 

two terms:  𝑌𝐸  is the (classical) contribution of elastic energy and 

𝑌𝐼𝑁 represents the release of the stored energy due to the dam-
age growth (Saanouni, 1994). It is worth to point it out that for 

some materials 𝑌𝐼𝑁 represents more than 50% of the overall 𝑌 

(Saanouni, 1988; Ju, 1989). The significant influence of 𝑌𝐼𝑁 on 
damage evolution can be observed in Fig. 4 where using only 

classical term  𝑌𝐸  (𝑌 = 𝑌𝐸) in Eq. 37 caused about 50% drop of 
damage content in the RVE. The contribution of particular terms 

(𝑌𝐸  and 𝑌𝐼𝑁) in  Y is shown in Fig. 5. 

 

Fig. 4. Numerical and experimental results of damage evolution  
            and martensite content versus plastic strain 

 

Fig. 5. The contribution of terms: 𝑌𝐸  and 𝑌𝐼𝑁  in the total damage energy  
            release rate 𝑌 

 

Fig. 6. Evolution of the drag stress 

To examine the influence of the damage evolution and sec-
ondary phase content in the RVE on the isotropic (drag stress) 
and kinematic hardening (back stress) four cases are presented 
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in Fig. 6 and Fig. 7: (a) pure plasticity (neither damge evolution 
nor phase transformation is present); (b) plasticity and the dam-
age evolutios were accounted for (no phase transformation); 
(c) only hardening effect of phase transformation was considered 
(damage development was neglected) and (d) both effects 
of damage evolution and phase transformation are included. The 
use of the total energy equivalnce principle allowed to obtain full 
coupling between damge evolution and plastic flow, meaningfully 
the damage content effects the plastic modulus (see Eq. 23 and 
24) and the drop of force – like varibles due to damage can be 
observed (Fig. 6 and Fig. 7). The use of simple linear function 
Eq. 47 and 48 also allowed to take into account important phe-
nomenon like the strong influence of seconadary phase content 
on the hardening process (see Fig. 6 and Fig 7). 

 

Fig. 7. Evolution of the back stress 

Tab. 1. Material data for 316L stainless steel at the temperature of 4.2K 

Young modulus [GPa] 206 

Poisson ratio 0.3 

Yield stress [MPa] 402.417 

𝐶0
𝑝

 [MPa] 82041.7 

𝛾 [MPa] 167 

𝑅∞,0
𝑝

 [MPa] 2104.24 

𝑏 22 

ℎ𝐶  1.03 

ℎ𝑅  7.3 

Δ𝑣 0.02 

𝐷0 0 

𝐷𝐶  0.8 

𝛼 200 

𝑛 4.5 

𝑆 [MPa] 48.87 

𝜉𝑚𝑎𝑥  0.9 

𝑚 3.9 

𝐴 5.55 

5. CONCLUSIONS 

The constitutive model presented in the paper results from 
identification of two fundamental phenomena that occur in materi-

als characterized by low stacking fault energy: plastic strain in-
duced phase transformation and evolution of micro-damage re-
flected by decreasing elasticity modulus in the course of defor-
mation. Non-associated theory was applied what allowed to obtain 
nonlinear isotropic and kinematic hardening. The influence 
of martensitic transformation on hardening process was modeled 
by introducing plastic moduli as functions of martensite content 
in the hardening laws. The total energy equivalence hypothesis 
is used to define the effective state variables. This approach 
enables: (1) the definition of internal state variables as well as the 
effective thermodynamic conjugated forces, which can be indiffer-
ently used in stress space and strain space by the use of the 
Legendre-Fenchel transformation; (2) obtaining symmetric physi-
cal properties of material (symmetric stiffness tensor, compliance 
tensor, strain hardening modules) even in the case of anisotropy 
induced by dissipative phenomena; (3) modeling of coupling 
between damage variable and other internal state variables 
in a natural way (Saanouni et. al., 1994). The average content 
of damage in the RVE (representative volume element) is de-
scribed by one single scalar parameter. As was mentioned, this 
simplification is strong because martensitic phase is hard and 
behaves rather like rock-like material. Moreover, in brittle phases 
the stress state has the crucial influence on damage and aniso-
tropic behavior of the material may take place. Thus, in the future 
work two separate scalar or tensorial type damage variable should 
be used (e.g. Kintzel et. al., 2010; Egner et. al., 2015).The model 
was validated through uniaxial tension test of 316L stainless steel, 
and a good agreement between the experimental and numerical 
results was obtained. 
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