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Abstract: This paper studies a thermoelastic anisotropic bimaterial with thermally imperfect interface and internal inhomogeneities. Based
on the complex variable calculus and the extended Stroh formalism a new approach is proposed for obtaining the Somigliana type integral
formulae and corresponding boundary integral equations for a thermoelastic bimaterial consisting of two half-spaces with different thermal
and mechanical properties. The half-spaces are bonded together with mechanically perfect and thermally imperfect interface, which model
interfacial adhesive layers present in bimaterial solids. Obtained integral equations are introduced into the modified boundary element
method that allows solving arbitrary 2D thermoelacticity problems for anisotropic bimaterial solids with imperfect thin thermo-resistant inter-
facial layer, which half-spaces contain cracks and thin inclusions. Presented numerical examples show the effect of thermal resistance
of the bimaterial interface on the stress intensity factors at thin inhomogeneities.
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1. INTRODUCTION

Bimaterial parts and structures with different thermal and me-
chanical properties of their components are widely used in mod-
ern engineering design due to their useful anisotropic properties,
which thus operate different way in different directions. As a result
of such bondage of different materials a thin interfacial layer with
finite thickness appears at the interface, which affects the temper-
ature and stress fields in the obtained bimaterial solid. In modeling
of the effect of this layer, due to small thickness of the latter it can
be reduced to consideration of certain boundary conditions
of imperfect interface at the surface of material bondage. Howev-
er, besides the imperfect interface, another inhomogeneities (such
as cracks, thin inclusions etc.) are usually present in structural
materials. Therefore, in the study of bimaterial solids one should
account for both. Thus, the development of effective methods for
modeling of thermal and mechanical fields” distribution in bimate-
rial solids with imperfect interface and internal thin inhomogenei-
ties is an important practical problem.

Development of efficient techniques for analysis of thermoe-
lasticity problems is very important in the study of contact and
friction problems, especially those accounting for thermal emis-
sion. Polish scientists vastly develop these studies. Those are
Z. Baczynski, J. Ignaczak, A. Kaczynski, M. Kuciej, S.J. Matysiak,
V. Pauk, E. Wierzbicki, A. Yevtushenko (e.g. see the recent re-
view by Yevtushenko and Kuciej (2012) and monograph
Jewtusheko et al (2014)).

The study of bimaterial solids is widely covered in scientific lit-
erature (Benveniste, 2006, Kattis and Mavroyannis, 2006, Pan
and Amadei, 1999, Pasternak et al., 2014, Qin, 2007, Wang and
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Pan, 2010). In particular, Pan and Amadei (1999) developed
an efficient boundary element approach for defective elastic ani-
sotropic bimaterial solids. Hwu (1992) obtained analytic solutions
for interfacial cracks in thermoelastic anisotropic dissimilar media.
Wang and Pan (2010) derived thermoelastic Green’s functions
for anisotropic thermoelastic bimaterial with Kapitza-type and
spring-type imperfect interface. Pasternak et al. (2014) obtained
truly boundary integral equations for 2D thermoelectroelasticity
of a defective bimaterial solid with a perfect interface.

However, the thermoelasticity of anisotropic bimaterial solids
with imperfect interface containing internal inhomogeneities is less
studied. In general, there are mainly two types of imperfect inter-
faces in the context of heat conduction (Benveniste, 2006, Chen,
2001, Kattis and Mavroyannis, 2006), namely the weakly conduct-
ing interface (or the well known Kapitza thermal contact resistance
model) and the highly conducting interface. At a weakly conduct-
ing interface it is assumed that the normal heat flux is continuous
across the interface, and the temperature possesses an interfacial
discontinuity, which is proportional to the normal heat flux (Wang
and Pan, 2010).

Therefore, this paper studies the thermoelastic anisotropic bi-
material with thermally imperfect and mechanically perfect inter-
face. It is assumed the weakly temperature conducting interface,
as in Ref (Wang and Pan, 2010), and tractions and displacements
are assumed to be continuous across the interface (perfect me-
chanical contact). The general complex variable approach
of Pasternak et al. (2014) is used to derive closed-form boundary
integral formulae and equations for a bimaterial solid with thermal-
ly imperfect interface.
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2. GOVERNING EQUATIONS OF PLANE ANISOTROPIC
THERMOELASTICITY AND THE EXTENDED STROH
FORMALISM

In a fixed rectangular system of coordinates Ox,;x,x; the
equilibrium, heat balance, and constitutive equations of plane
(ina plane Ox;x,) strain and plane heat conduction for a linearly
thermoelastic anisotropic solid can be written as (Hwu, 2010,
Pasternak, 2012, Ting, 1996):

05 =0, hy; =0 (i,j =1,23); (1)
0ij = Cijkm€rem — Bij0, hy = —k;0 5, ()

where: &;; = (u;; +u;;)/2 is a strain tensor; o;; is a stress
tensor; h; is a heat flux; u; is a displacement vector; 6 is a tem-
perature change with respect to the reference one; Cijxm
are elastic moduli; k;; are heat conduction coefficients; g;; =
Cijkm@m (i, j,k,m =1,..,3) are thermal moduli; oy; are
thermal expansion coefficients. Tensors C;jxm, kij, a;j, and B;;
are fully symmetric. Here and further, the Einstein summation
convention is used. A comma at subscript denotes differentiation
with respect to a coordinate indexed after the comma, i.e.

According to the extended Stroh formalism (Hwu, 2010, Ting,
1996) the general homogeneous solution of Egs (1), (2) writes as:

8 = 2Re{g'(z)}, 9 = 2k, Im{g’(z,)},

h, = —19'2, h, = 19,1, ke = ‘/knkzz - k1221

u = 2Re[Af(z,) + cg(z,)],

¢ = 2Re[Bf(z.) + dg(z,)], (3)
Oi1 = —@®i2, Oi2 = Pi1,

Zy = Xq + DeXoy Zg = X1 T PaXa,

f(z.) = [Fi(z1), F2(z2), F3(Z3)]T,

where: 9 is a heat flux function; F,(z,) and g(z,) are complex
analytic functions with respect to their arguments; the complex
constant p; is a root (with a positive imaginary part) of the charac-
teristic equation for heat conduction k,,p? + 2k,,p; + ki =
0. Constant complex matrices A, B, vectors ¢, d, and scalars p,
(a = 1,2,3) are determined from the extended Stroh eigenvalue
problem (Ting, 1996).

Vector f(z,) of Stroh complex functions is related to the real-
valued stress and displacement functions as (Pasternak, 2012):

f(z,) = BTu + AT¢p — BTul — AT¢?,
u‘ = 2Re{cg(z,)}, ' = 2Re{dg(z,)}.

According to Eq (3), the Stroh temperature function g'(z.)
is related to the heat flux and temperature functions as:

g @) =5(0+i7) (5)

()

3. DERIVATION OF THE INTEGRAL FORMULAE
FOR A BIMATERIAL SOLID

Consider plane strain of a medium consisting of two thermoe-
lastic anisotropic half-spaces S; (x, > 0) and S, (x, < 0) (see
Fig. 1). Along the line x, = 0 (actually, the plane Ox,x3), which
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is a bondage line, the conditions of imperfect thermal contact are
satisfied:

9(1)(x1,x2)| =

x2=0 -

9(2)(x1, X5) |x2:0 —PDo (Bflz)(xl, xz))

’
X2=0

19(1)(x1:x2)|x2=0 = 19(2)(x1.x2)|x2:0, (7)
and perfect mechanical contact holds

¢(1)(x1,x2)|x2=0 = d)(z)(xpxz)le:O ) (8)
“(1)(x1,xz)|x2=0 = “(2)(x1'x2)|x2=0 :

Here and further superscripts 1 or 2 denote corresponding
half-space S; or S,, respectively, which the field quantity belongs
to. Boundary conditions (6) and (7) from the physical point of view
correspond to a model of a thin layer, for which according to
Fourier law of heat conduction the temperature difference at the
bimaterial interface is proportional to the heat flux through it. Thus,
the parameter p, in Eq (6) is a thermal resistance of the above-
mentioned layer, and as a consequence, a thermal resistance
of the bimaterial interface. As p, = 0 or p, — o one obtains
perfect thermal contact or thermally insulated bimaterial interface
(adiabatic contact), respectively.

Material 1

Material 2 : : X

Fig. 1. Thermoelastic anisotropic bimaterial medium

It is considered that each of the half-spaces contains systems
of cylindrical holes, which are represented with plane contours
L =V; I"i(l) and I, =y; Q(z), respectively.

For derivation of the integral formulae for the Stroh complex
functions for bonded half-spaces one can use the Cauchy integral
formula (Muskhelishvili, 2008), which relates values of an arbitrary
analytic function ¢ (t) at the boundary 95 of the domain S with its
value inside this domain:

1 ¢@ar _ ($(2) Vz €S,
2mi fas -z {0 Vz &S, )

where 1,z € C are complex variables, which define the position
of the source and field points, respectively. Herewith, if the do-
main S is infinite it is assumed that the function ¢ (z) vanishes
atz — oo,

3.1. Heat conduction

Due to the linearity of the problem of heat conduction one can
present its solution as a superposition of the homogeneous solu-
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tion given by the functions g;.,(2:") and g, (2 (which
should definitely satisfy the boundary conditions (6)), and the
perturbed solution caused by the presence of the contours I3
and I.
Denote the Cauchy integrals of the complex temperature func-
tions g';(z") as:
(z)ar?
l)(Zt(J)) f ol O )o)t ,
(10)

» PTEQYRO
100) = 1, 2

Zt

and the improper integrals over the infinite path —co < x; <
+o0 as

) +00 9(xq)dx
m (th ) ="

— 00

X1-2Z;
0) +00 0@ (xp)dxy "
pe(z”) = I, T
Integration by parts of the improper integral gives:
+
+00 9 1(x1) _ 9(xp)
Lo xll_zgj)d 1= 1(1') +
oo 9(xq) (12)

————dx; =m';(z ])
—o0 (x1_Z§]))2 1 f( t )
Accounting for the thermal balance conditions, the function
9(x,) tends to zero at the infinity, therefore the first term in Eq
(12) vanishes, and the second term is a derivative of a function

m't(zt(j)). Thus,
+00 9 1(x1) @)
[0 da =t (), (13)

Utilizing Eqs (5), (9)—(11), (13) and accounting for the bounda-
ry conditions at the bimaterial interface the Cauchy integral formu-

lae for the functions g';(z") and g', () write as

m@%—maﬁwzm”@%+
(1)( (1))+ 1 (1)( (1)) poimi(zt(l)),

Vlm(zt(l)) >0 (14)

95(2”) = 95n(2?) 4 307 (7) -
—pt( t(z)) — mt(z(z)) Vlm(zt(z)) <0

4T

4 k(z)

and for determination of the improper integrals (11) through the
Cauchy integrals (10) one obtains the following system of first-
order ordinary differential equations:

Vlm(z(”) >0:q7(z,") = 3oz -

k(z) —zme(z”) =0,
-1 1 1 (1 (15)
)(Zt( )+ Pt( ) - (1)mt(zt ) -
~m (Ztl)) =0,

VIm(zt(Z)) <0: qt(z) (zt(z)) - %pt(zt(z)) + (16)
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mt(zt(Z)) =0,

2k
17 (2) +5p(7) + g2 -
7m (th)) =0.

Satisfying an evident condition that m,(z’) — 0 as z’ -

oo one obtains the solution of systems (15), (16) as:

pe(@”) =207 (") + e (27) +

2’ (z)), (17)
m,(zY) = —ﬁ [e®(z) + 2P ()],
Mﬁ)ZW@%—ﬁU%ﬂ+

e (2] m(2?) = - [ (”( 2+ (18)
oD ()]

New functions e”(z%”) and & (z") are defined though
the following integral formulae

) = 0 K (B - o
e G0) = 0 K (B -

where: K(z) = e?E;(2),

D)) ar®,  (19)

J))) dT(l) (20)

. 1 2
B = ek
po kM kP’
B(z) _ i k(1)+k(2) (21)
T T oo k(l) k(Z)

and E; (2) is an exponential integral defined as
E() = [ dr. (22)

Substltutmg obtained solution into Eq (14) one can derive the
integral formulae for the Stroh complex temperature functions

g'1(z") and g',(z?), which do not contain the improper
integrals over the infinite bimaterial interface:

Vlm(zt(l)) > O:g'l(zt(l)) = g’lw(zt(l)) +
1 _ 2i
LG -0 + ()

().

Vlm(z(z)) >0:9', (z(z)) = g'zoo(z(z)) +
1 th)(Z(Z)) (7(2)(2(2)) 2i ( 1)(2(2)) + o

i |
e®(z))|

Using (5) one can derive the integral formulae for the func-
tions g';(z”) and g',(z) relating them with the boundary
values of temperature 6 and normal component h, = h;n;
ofaheat flux vector (n; is a unit outwards normal vector
to a curve I at its certain point).

According to Eqs (5), (23), and (24), one can obtain the inte-
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gral formulae for temperature and heat flux at the arbitrary point &
of a bimaterial solid:

2Re{g’ (27®)} (vEes), _
2Refg’, (27 ®)} (v € 5)), (25)

S0 (%, )Ry (%) — HT (%, 90 () ]ds (x) +
6 (),

hi(®) =
2k im {(82¢ = 819 )g"1 (27®)} (B €S,
2k {(8, - 8:07)g", (2°®)} (vee sy, 29)

S [0 (X, ©)hy (x) — HIT™ (x,©)0(x)]ds(x) +

6]

where: the functions 8% (&) and h;°(§) define the homogeneous
solution for the unnotched bimaterial

6(8) =

ZR ,100 Zt(l) v Slr
6@ — { elg'sZe @] VEe o
2Re[g'20 ZP(®)] VEES,,
he(§) =
2k Im[(8 — 6107910 ZV(®)] VEE S,
) ) ) (28)
2k, Im[((?zi—(?upt )QIIZoo(Zt (E))] VEES,.

According to Egs (3), (23), (24) the kernels of the heat con-
duction integral formulae are as follows:

X € 51 A E € 51:
ITC* __1 1,1 7 (11
¢} (X, E) = WRe{ant + anVt

+(K — DLOFD)},

ngl) ﬁgl)

" 1 Zln 1,1
H'TC*(x,§) = —Im{ Gt gl)K(B(DW( ))}
t

5(1) ( 1 1
{ t(1,1) + Wc(l'l)

)

HITE (x £ = —QRF) s® ng) B ﬁgl)
i ’ 21 t (w wt 1)) (Wt(l'l))z

2in (1,1)
+ fl)( (1)K(B(1)W )_W(u))>}

XES,AEE S1
@ITC*(X E)

07" (x,§) =

(2) Re{Inw,*? + K(BOW,*V)},
* 2) (2,1)
HITC* (%, E) _Wlm{lnt K(BOW, )}
0" (%,8) = —- nlk(z‘) Im{i‘st(l)K(B(l)M/t(z'l))}
t
HITC**(X E) —
L Re {5(1) @ ( B(l)K(B(l)W(Z 1)) — 1))}

xeSl/\EeS2

@ITC*( E) (1) {anVt(lrz)+K(B(2)VVLL(L2))},

HITC*(X, £ =— k(Z) Im{ingl)K(B(Z)VVt(lrz))},
ke

acta mechanica et automatica, vol.10 no.1 (2016)

C*x* — 1 H (2) (1'2)
0 D) = Im{is@K(BOW, )],
HITC**(X E) —
—Re {6(2) = (LB(Z)K(B(Z)W(l D) - —(12))}
X € 52 AEE 52
0Tt (x,8) = (2) Re{an(2 A4 an(2 2)

(29)
~(K + 1)L<Z)(sz )

(2) =(2)
. 1 n n 2i n 2,2
HITC (x,8) = — Im{ (tz'z) 7(tz’2) kfz) K(B(Z)W( ))}
Wi Wy

0" (x,5) =

1 @f 1 1
_Elm{gf ( <”>+w<“>+ K(B(Z)W(ZZ))>}
_, (D (2) =(2)
HITE (%,8) = = Re{a§2>< AR
(w; ) (A

_2ial® (
Pokgz)

where:

)

VVt(lJ) — ZEI)(X) Z(])(E) M_/t(lJ) — Z_El)(X) _ Zt(])(z)!
g’ =m0 —p"m (0,67 = 6, — pP 61,
LO(z) =K(BWz) + Inz.

According to Eqgs (3) and (4), for derivation of integral formu-
lae for extended displacement and extended stress function one

should evaluate the anti-derivatives of functions g';(z"”),
m.(z), and p,(z) as:

ai(z”) = [ g'(z)dz, (30)

M. (z) = [m(z)dz = — f_+: In(x; — 2)9(x)dx;,  (31)

P.(z) = [pi(2)dz = — f_t: In(x; — 2)0(x;)dx;,. (32)
Utilizing Eqs (23), (24), one obtains:

Vlm(zt(l)) >0:

91(251)) = gloo(zt(l)) tom

+(1 - K0P () + (K -

—[0"(z") - k@ ()
D (2 E) + e ),
P(z”) = A= K007 (7)) - A + K@ (27)
+(1+K) ( 2)(251)) + e(l)(zt(l)))
M (2) = —2ik (1 - K)[Q° () + 0 ()

( 2)(2(1)) + e(l)(z(l)))] (33)
Vlm(zt(z)) <0:
92(27) = 9200 (2) + = [07 () + K QP ()
+ A+ 0000 () - (& + 1) (6P (&) + 6P (7))

P.(z?) = (1 - )P (z?) - (1 + K)QL(z?)
+@+K) (e (27) + 22 (2?)),
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M(2) = 2ikP 1 + O[O (27) + 07 (27)

~ (PP +2 ()] (34)

where according to Egs (5) and (28), (29),

0@ = [0 @dz =~ f, (70 () = 2)h(s)dis

+ % Ji, (n2(s) - s (s)) In(# &) ~2)0()ds, ()
H@ = q’@dz = 5 [ f(°() = 2)ha(5)ds

+%f[‘ ("z(s) P(l)n1(5)) ln(Tt(i)(S) - Z) 6(s)ds,
fr (@) =z(n@ - 1), K = (k& = kP) /(P + k2.

3.2. Thermoelasticity of an anisotropic bimaterial

For obtaining the integral formulae of thermoelectroelasticity
one should write the Cauchy integral formula (9) for the Stroh
complex vector functions £ (z™M) and £ @ (2z*), which are
analytic in the domains S; and S, respectively. Since the Cauchy
integral formula define the analytic function that vanishes at the
infinity, the complete solution of the problem can be presented as
a sum of the perturbed solution defined by the Cauchy formula
and a homogeneous solution given by the functions £V (z™)
and £?(2t*), which satisfy boundary conditions (8). Conse-
quently, one obtains

(1)(2(1)) f(l)( (1))"' [fr <(1) (1)> (1)(7(1))

+ d (36)
oY) x 1
+f_oo <x1_zl(1)> f(l)(x1)] (Imzf ) > 0),

Imz(l) > 0:

d 5 +o0 d
Jr < <1>T _(1)> O (D) +/, e X1(1) fOx) =0 (37)
Zg g

ar® -
Jr < (z; (1)> f® (T(z)) f+ - X1(1)f(2)(x1) (38)
FO() = () + 5 [, (5] 1)
+oo [ d (39)
[ X 2
- f—oo <x1_21(2)> f(Z)(xl)] (Ime ) < O)'
Imzlgz) <0:

d o d
I < <1>T <z>> fO() + I e xl(z) fO0,)=0; (40
2

Jr <<2> _(2)> (2)(7(2)) fmxldxl(z) £ (xy), (41)

where: (F(z,)) = diag[F,(z,), F,(z,), F3(z3)],

zéi) =x, + pl(;)x2 B=1,..3).

Utilizing Eqs (4) and (8), the improper integrals in Egs (36)-

(41) can be rewritten as follows:

70

f+oo f(j)d;(;ll) ATm(Z(L)) + BTp(Z(l))

—©
+oo (AjRe[djgj(xl)]+B}‘Re[cjgj(x1)])dx1 ! (42)
-2 f_m X1—Z;;i)
where
6] +00 d(xq)dxq
m(z;’) = ‘1
() - e
0)) +oou(xy)d @3
N _ ptoulxy)dx
p(zﬁ ) f—oo xl—Zéj) '

Integrating by parts the second term in Eq (42) and account-
ing for Eq (4), one can obtain that

f+oo f W,

— X1-2 g)

= ATm(z") + BIp(z}") + mM, (z.)

. (44)
MNP (z ( ) + podim (2 ( é))
o) (2)
_+oo i _d)(% = ATm(Z(l)) +B p(z(l)) + Hth( )
172 (45)
_)\'ZPt ( (l))
where the complex constants y; and A; are defined as:
ki = =5 (ATIm[d;] + B]'Im[c;]),
‘ (46)

A; = ATRe[d;] + B Re[c;]

Denoting the Cauchy integrals of the Stroh complex functions
as:

a,(4) = b, [ ] 0 G)
a;(z°) =1, <(§2’* g)>fo>(r<”)

Egs (36)-(41) can be rewritten as follows:
f(1)(Z£1)) — fS)(Zil)) + L — [‘h (Z(l))
+Z[3‘ 1]3 <AT ( (1)) 1p( (1))> (48)
+<Mt(Z£1))>U1 _<Pt(Z£1))>7\1 + p0<mt(z*(1))>)\1] ;

@ (77) + Alm (z7) + Bp (7) + M. (%7
Pt( (1))}\1 +p0mt( ﬁ ))\1 = O,

a: (%7) - Alm (%) ~ BIp (") = M. (%7) o

+P: (z59) 2, = 0;

(O() =19 () + 5 [ (”)

~S3dp <AT () +BIp(z (2))) (51)

_<Mt (z*(z))>u2 + <Pt(z*(2))>7\2] ;

(49)

(50)
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@ ( (z)) +ATm (Z[E’Z)) +BTp (zéz)) + M, (zéz)) M1
(52)
Pt( (2)) A+ pomy (ZIE’Z))7‘1 =0
4@, (z ( (2)) Alm (Z!gz)) - Blp (Z[gz)) - M, (Z[SZ)) 1P} (53)

+P (z5)%;, =0,
where: I, = diag[1,0,0], I, = diag[0,1,0], I; = diag[0,0,1].
Eqgs (49), (50), (52), (53) allow to express the improper inte-

grals (43) along the infinite path through the path integrals over
the contours I;:

m(Z(l)) (A;Bi' —AB; )" (EIT}H (Zél))
- B3y, (Z;Evl))),

p(Z(l)) = (B,A;' —B,A;) T (KITY1 (Z[(;l)) -

Az Yz( (1)))

7)== )~ ()8 )5

~PoM¢ (Zﬁ )7\1,

(54)
()= ) )
m(z(z)) (A;B;' —A;B{ )" (EZ_TY3 (Zf(f))
~B"yi(7")),
p(z?) = (B,A;' — B,AT))" T(A vs(z5”) ~
ATyi(7)),
s (77) =@ (57) = Mo (57 ) o+ P 2 ) )

va(57) =~ (57) - M (7)) + P (557

A2,
—PoMm¢ ( ) Az
Substituting Eqgs (54), (55) into Egs (48), (51), accounting
for Eq (35), one can obtain the integral formulae for the Stroh
complex vector-functions of thermoelastic anisotropic bimaterial

with thermally imperfect interface, which do not contain the im-
proper integrals over the infinite path (bimaterial interface):

f(l)(z(l)) _f(l)(z(l))+ [fh( (1))

53ty (605 () + 60, (7))

+<Q§1> (Z§1>)>5§1> n <Qt(2)(z,fl))> 5V (56)
HeP(e0) + O],
(0(2) = 12() + [0 (=)
S (0 (7)o )

(57)

oG] + (02 )
HeP (@) + 6P (2],

where the constants G and 8 are the same as in Ref (Pas-

acta mechanica et automatica, vol.10 no.1 (2016)

ternak et al., 2014), and
k® = =6 + 26592, k@ = —6P —26P2,.  (58)

Derived equations (56) and (57) for the Stroh complex func-
tions allow writing the integral formulae relating the latter at the
arbitrary point of the bimaterial solid with the boundary values
of temperature, heat flux, displacement and traction at the con-
tours I;. Therefore, using Egs (3), (4), (56), (57) and (Pasternak,
2012, Ting, 1996) one can obtain the following extended
Somigliana integral identity for a thermoelastic bimaterial solid
with imperfect thermal contact at its interface:

u® = u” (@) + [[UP"(x, Hrx)ds(x) —
ST (% Du@)ds () + [or'TC(x,)x)ds(x) +
Jp v & DRy (0)ds (x),

0;(8) = o7 (®) + [ D)™ (x, Ht(x)ds(x) —
[.SP™(x, Du)ds(x) + [ g (x, HOx)ds(x) +
Jow/TC &, Oy (x)ds (x),

where: the kemels UP™(x,€), TP™(x, %), DP™(x, ), S™ (x, )
are the same as those derived by Pasternak et al. (2014)
for a thermoelectroelastic bimaterial with perfect thermal and
mechanical interface, and others kernels are defined by the fol-
lowing equations:

XES, NEES;:
r'7¢(x,§) = —lIm {Al ((an(1’1)> n®
o ()
—(K(B(”Wftil’”))k“))) +2 (K = DAPLO(WY)
5 (P — 7P )),
Vo0, 8) = 2m {A, [~(f () )y
-y3, <f* (W“'”)) Gil)l,;ﬁl n i(l) <f*(V'7t(*1'1) )551)
20 Y] — o [ ()
) S )
0= ot (e

1 1 _(1 1 1
e 1)> G( )l n® — g ) <<W(1.1)> (8§ T+ k™)
W b

_3(1)<K(B(1)Wt§1'1))>}<(1))]

a4y gy ([ng) _ n? Zl"t K(BOWED
2 Ot W(u) BTG RO ( )
W/, = L1m {B, 5% [(1nm“'”)u1
ST N A
_<K(3(1)W<1'1>)>K(1))]

”‘(11) s (nw, MY + mw MY + (k - DLO(WS 1))}

+35 <1 Wit 1)> GVIa® - =

+X5o

(60)
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XES,NEES;:

r'¢(x,8) = — % Im {Ai [ZZ’=1 <anB(2‘1)> Ggl)lﬁn(z)
1,® (<1nm§2'1)> 50) - <K(B(1>M4§2'1>)>K<1)]

+2 (K - 1)n§2)L<1>(M4(2'1))},

VITC(X, E) — % Im {Al [22:1 <f* (%(2,1))> Ggl)lﬂ Hy
R

Zk(z)

ic;(1-K) R pocy (K? —1) @D
) PR
1 1
Q" (x,§) = >Im {Blaf” [Z%=1 <W> G5 ;n
B
-2 )t

__id (2)5(1)K(B(1)W(21))}

(1)

1 )
w,-"C 8 = 21m {86 [%5, (1w, *?) 6{ 1,

o ()l — (koW )|
d
b LW, 1)

XES, AEES,:

r'’f(x,%) = %Im {Az [2133=1 <ln%(1'2)> Gf)lﬁn(z)
n % n® (<ant92)>552) _ <K( 3(1)”451.2)))}{(2))]
+2 (K + DLW, D)},

VITC(X’ £) = 1Im {A1 [22:1 <f* (Wﬁ(l'z)» 621,
[ Oh2Je ~ 22 )

Zk(l)

. 1,2 K?-1 1,2
o R UAREE T (S S]
t

/"¢ (x,§) = {326(2) [ZB < T 2>> G;”1;n®
I?

e <<W<11,z>> (62 + @)
t*
n B(2><K(3(2)V|/tgl'2>)>,<(2))]

_ Ldz s @K(BOW,™ 2))}
pOkt

w7008 = —im (Ba5® [5h (n ) 6 o
()~ (5 )

k(1;d2 w8 LA (W 2))} (62)

XES,NEES,:
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r'7C(x,§) = — % Im {Az ((an*(Z,Z)>n(2)
—Yha <1nl/_|/ﬁ(2'2)> 621 — iﬁg) (<1nVT/t£2'2)>8§1)
—<K(B(2)I/I_/t(2'2))>}<(2)>> _ C_zﬁgz)L(z)(Wt(z,Z))
* 2
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(2) (<an(2 2)>8(2) (63)

e p =

—Yha <1nV|—/g(2’2)> ng)lﬁl_lz
_<K(B(2>W(212))>K<2))]

d 77 (2, 7 (2
1(22)5@) (1 W — I 2 —(1+K)L(2)(m(22)))}.

The following constants and functions are used for contracting
the notations:

p; = ATRe[pt’)d 1+ BJ-TRe[th)c]]
n® = Am, (%) - pim (3,270 = x; + s,

@D — @ _ 7\ @D — 7@ _ 7\
WD = 200 - 2P @ W = 2000 - 27,
WD = 2060 - 209,69 = (8, - 5up).

The proposed complex variable approach allow not only to de-
rive the boundary integral formulae for anisotropic thermoelastici-
ty, but also to derive singular boundary integral equations for
solving the boundary value problems for thermoelastic bimaterial
solids with thermally imperfect interface. In particular, for deriva-
tion of the boundary integral equations it is convenient to apply the
Sokhotskii-Plemelj formula (Muskhelishvili, 2008), which relates
the limit value of the Cauchy integral over a smooth closed con-
tour with its principal value. Thus, according to Eq (59) and (Mus-
khelishvili, 2008, Pasternak, 2012), for a smooth closed contours
I' in a thermoelastic bimaterial one can obtain the following
boundary integral equations for determination of the unknown
boundary functions;
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~0(y) = 0°(y) + RPV [0/ (x, y)hy, (x)dls (%) —
CPV [LH* (x,y)8(x)ds (%),

“u(y) = u(§) + RPY [ UM (x, y)t®)ds(x) = (g5)
CPV [ TP™(x,y)u(x)ds(x) +

RPV [T (x,y)0 (x)ds(x) +

v Y hy () ds (%),

where RPV stands for a Riemann Principal Value and CPV
for a Cauchy Principal Value of an integral.

The integral equations (65) degenerate, when separate closed
contours [ of a line T" are the faces of mathematical cuts I7; (the
simple opened arcs). In this case it is necessary to apply the
theory of dual hypersingular integral equations (Pasternak et al.,
2013a, Pasternak, 2012).

According to (Pasternak et al., 2013a), the stress and dis-
placement discontinuity functions at the tips of thin inhomogenei-
ties, which are not placed at the bimaterial interface, possess
square root singularity. And the stress field in the vicinity of inclu-
sion’s tip is completely defined by the generalized stress intensity
factors. The latter are related to the displacement and stress
discontinuities at thin inhomogeneity with the following equations

1) — i n 2) _ . s
k® = lim =L Au(s), k@ = —151_13\[;&(5), (66)
where: kO = [Ky1, Kip, Kag]™, K@ = [K2, K2 Ky
K;; are generalized stress intensity factors (SIF) (Pasternak et al,

2013b, Sulym, 2007); and L = —2v—1BBT is a real Bamett -
Lothe tensor (Sulym et al., 2014).

Obtained dual boundary integral equations along with the
models of thin thermoelastic inclusions (Pasternak et al., 2013a)
allow solving thermoelastic problems for a bimaterial solid with
thermally imperfect interface, which components contain thin
inhomogeneities.

4. NUMERICAL EXAMPLES

Similarly to (Pasternak et al., 2013a, Pasternak, 2012), ob-
tained integral formulae and equations (25), (26), (59) are intro-
duced entered into the computational algorithm of the modified
boundary element method (Pasternak et al., 2013a, 2014) that
allows numerical solution of a wide range of 2D problems for an
anisotropic thermoelastic bimaterial solid with thermally imperfect
interface containing internal inhomogeneities. Several numerical
examples are considered here for a bimaterial containing thin
thermoelastic inclusions. The boundary element mesh consists of
only 20 discontinuous three-node boundary elements including
two special for convenient determination of stress intensity factors
atinclusion’s tips.

Consider an anisotropic thermoelastic bimaterial (Fig. 2) con-
sisting of two half-space that have identical mechanical and ther-
mal properties. The bimaterial contains a thin rectilinear elastic
isotropic inclusion of length 2a and thickness 2h = 0.02a
placed at the upper half-space x, > 0 parallel to the interface.
The centre of the inclusion is placed at the distance d to the bima-
terial interface. In the lower half-space x, < 0 at the distance
d/2 to the interface and at the distance a to the central vertical
axis a heat source and a heat drain both of the same magnitude

acta mechanica et automatica, vol.10 no.1 (2016)

are placed. The half-spaces of the bimaterial possess the same
thermal and mechanical properties of glass/epoxy: E; = 55 GPa,
E, =21GPa, G, =9.7GPa, v;, =0.25 a;; =6.3"
107 K-1,  ay, =2.0-105K1,  kyy = 3.46 W/(mK),
ky, = 0.35 W/(m'K). Material symmetry axes coincide with the
reference coordinates. Plane stress is considered.

a b
01 K /K‘ d=3 0 K. /K d=3
-0.0002 7
i S —
-0.0004+—  -0.004+
i -
-0.0006 8
-0.0008: d=05 -0.008 d=0.5
0.001+—m" 1
-0.0012 T T T T T T 1 -0.012 T T T T T T
8 4 0 4 n -8 -4 0 4 n
G d
01 K, /K _
| i d=3 0167k /K, d=05
0024 0.12-
-0.44—m 0.08 —
-0.06 405 0.04 d=3
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-8 -4 0 4 n -8 -4 0 4 n

Fig. 3. Generalized stress intensity factors at the right tip of the inclusion,
which relative rigidity is 102 (a-b) or 1072 (c-d)

Fig. 3 presents the dependence of the generalized stress in-
tensity factors (SIF) at the right tip of the inclusion on the parame-
ter ), which define the thermal resistance of the interface as p, =
a/k11 -107. The normalization factor is equal to K, =

vma - E; - a;1/kqi; - q. Plots are obtained for different values
of the parameter d and the relative rigidity k = G'/G,, of the
inclusion, where G! is a shear modulus of inclusion’s material. It is
assumed that the inclusion does not possess thermal expansion.
One can see in Fig. 3 that the closer are the heat sources
and the inclusion to the bimaterial interface, the higher are the
values of generalized SIF. Decrease in inclusion’s rigidity consid-
erably increases stress intensity. It should be mentioned that the
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most significant growth of all generalized SIF occurs, when the
parameter n of normalized thermal resistance of the bimaterial
interface is near zero.

0K /K, 0+ K., /K, d=3

-0.08- - 1
d d=10.5 0.08
-0.14
- 1 =3
B
8 -4 0 4 7 8 -4 0 4 1

Fig. 4. Generalized stress intensity factors at the right tip of the inclusion,
which relative rigidity is 103 (a-b) or 1075 (c-d)

The increase in inclusion’s relative rigidity (Fig. 4, a-b) causes
a significant growth in the magnitude of the generalized SIF, and,
in general, their behavior is the same, as well as in case
of a softer inclusion. The same conclusion can be made, when
relative rigidity of inclusion is equal to107°.

5. CONCLUSION

The paper presents a general complex variable straightfor-
ward approach for obtaining the boundary integral equations and
integral formulae for a defective bimaterial solid with thermally
imperfect interface. The kernels of these equations are obtained
explicitly and in closed-form that allows developing the efficient
boundary element approach for the analysis of thermoelastic
anisotropic bimaterial solids with imperfect interface containing
internal inhomogeneities. The influence of the thermal resistance
of the interface on the field intensity factors at the tips of thin
inhomogeneities is studied. It is shown that thermal resistance of
the interface causes significant influence on the stress intensity at
the tips of cracks even in the bimaterial consisting of two half-
spaces with identical thermal and mechanical properties. Also
several examples are considered for bimaterials with thin ther-
moelastic inclusions, and the intensity of heat flux and stress at
their tips is studied.
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