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Abstract: In the paper the influence of both bearing surfaces roughness and porosity of one bearing surface on the pressure distribution 
and load-carrying capacity of a thrust bearing surfaces is discussed. The equations of motion of a pseudo-plastic fluid of Rotem-Shinnar, 
are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using 
the Morgan-Cameron approximation and Christensen theory of hydrodynamic lubrication the modified Reynolds equation is obtained. 
The analytical solutions of this equation for the cases of squeeze film bearing and externally pressurized bearing are presented. As a result 
one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing with squeezed film is consid-
ered as a numerical example. 
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1. INTRODUCTION 

Viscosity of lubricating oils decreases with an increase 
of temperature. This viscosity increases with the additives concen-
tration and it is relatively independent on temperature and usually 
exhibits a non-linear relation between the shear stress and the 
rate of shear in shear flow. There is no generally acceptable 
theory taking into account the flow behavior of non-Newtonian 
lubricants. Studies have been done on fluid film lubrication em-
ploying several models such as micropolar (see e.g.: Walicka, 
1994), couple-stress (Walicki and Walicka, 1998), mixture (Khon-
sari and Dai, 1992), viscoplastic (Lipscomb and Denn, 1984; 
Dorier and Tichy, 1992), pseudo-plastic (Wada and Hayashi, 
1971; Swamy et al., 1975; Rajalingam et al., 1978). Naturally, this 
list is not complete and given only to present possibility of mathe-
matical modeling. More complete list may be found in (Walicka, 
2002; Walicki, 2005). 

In recent years, a considerable amount of tribology research 
has been devoted to the study of the effect of surface roughness 
or geometric imperfections on hydrodynamic lubrication because 
the bearings surfaces, in practice, are all rough and the height 
of the roughness asperities may have the same order as the 
mean bearing clearance. Under these conditions, the surface 
roughness affects the bearing performance considerably. 

The work in this area has mainly been confined to impermea-
ble surfaces. The well-established stochastic theory of hydrody-
namic lubrication of rough surfaces developed by Christensen 
(1970) formed the basis of this paper. In a series of works (Bu-
jurke et al., 2007; Lin, 2000; 2001; Prakash and Tiwari, 1985; 
Walicka 2009; 2012; Walicka and Walicki, 2002a; 2002b) the 
model was applied to the study of the surface roughness of vari-
ous geometrical configurations. 

Porous bearings have been widely used in industry for a long 
time. Basing on the Darcy model, Morgan and Cameron (1957) 

first presented theoretical research on these bearings. To get 
a better insight into the effect of surface roughness in porous 
bearings, Prakash and Tiwari (1984) developed a stochastic 
theory of hydrodynamic lubrication of rough surfaces proposed by 
Christensen (1970). 

The modified Reynolds equation (Gurujan and Prakash, 1999) 
applicable to two types of directional roughness structure were 
used by Walicka and Walicki (2002a; 2002b) to find bearing pa-
rameters for the squeeze film between two curvilinear surface. 

In this paper the Rotem-Shinnar fluid model is used to de-
scribe the pseudo-plastic behaviour of a lubricant. The modified 
Reynolds equation is derived and its solution for the curvilinear 
thrust bearing is presented. The analysis is based on the assump-
tion that the porous matrix consists of a system of capillaries 
of very small radii which allows a generalization of the Darcy law 
and use of the Morgan-Cameron approximation for the flow in 
a porous layer. According to Christensen’s stochastic model 
(1970), different forms of Reynolds equations are derived to take 
account of various types of surface roughness. Analytical solu-
tions for the film pressure are presented for the longitudinal and 
circumferential roughness patterns. 

2. DERIVATION OF THE REYNOLDS EQUATION  
FOR A ROTEM-SHINNAR FLUID 

It may be assumed that lubricating oils, with a viscosity index 
improver added, exhibit the same characteristics as pseudo-
plastic fluids. Rotem and Shinnar (1961) proposed a method for 
expressing empirically the relation between the stress and the 
shear rate as 

𝑑𝛾

𝑑𝑡
=

𝜏

𝜇
(1 + ∑ 𝑘𝑖𝜏

2𝑖𝑛
𝑖=−1 ). (1) 
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Retaining only the first order term (𝑖 = 1) the above equation 
reduces to 

𝜇
𝑑𝛾

𝑑𝑡
= 𝜏 + 𝑘𝜏3. (2) 

Typical flow curves are shown in Fig.1. Since 𝜇 is the tangent 
at the original point of the flow curves, shown in Fig.1, 𝜇 is the 
initial viscosity. If the values of 𝜇 do not vary, the non-linearity of 
the flow curve increases with the value of 𝑘, which means the 
coefficient of pseudo-plasticity. In pseudo-plastic fluids 𝑘 ≠ 0 and 
in Newtonian fluids 𝑘 = 0. 

Therefore, in Newtonian fluids, the initial viscosity becomes 
the viscosity given by Newton’s law. 

The three-dimensional notation of Eq.(2) may be expressed 
as (Walicka, 2002) 

𝜇𝑨1 = 𝜦(1 + 𝑘𝛬2)      where       𝛬 = [
1

2
𝑡𝑟(𝜦2)]

1

2
          (3) 

is the magnitude of the second-order shear stress tensor 𝜦, but 
𝑨1 is the first Rivlin-Ericksen kinematic tensor. 

 

Fig. 1. Flows curves of a Rotem-Shinnar fluid of the first order (𝑖 = 1);  
           symbol NF means a Newtonian fluid 

Let us consider a thrust bearing with a curvilinear profile of the 
working surfaces shown in Fig.2. The upper bound of a porous 
layer is described by the function 𝑅(𝑥) which denotes the radius 
of this bound. The nominal bearing clearance thickness is given 
by the function ℎ(𝑥, 𝑡), while the porous layer thickness is given 
by 𝐻𝑝 = 𝑐𝑜𝑛𝑠𝑡. 

The expression for the film thickness is considered to be 
made up of two parts. 

𝐻 = ℎ(𝑥, 𝑡) + ℎ𝑠(𝑥, ϑ, 𝜉), (4) 

where: ℎ(𝑥, 𝑡) represents the nominal smooth part of the film 

geometry, while ℎ𝑠 = 𝛿𝑟 + 𝛿𝑠 denotes the random part resulting 

from the surface roughness asperities measured from the nominal 
level, 𝜉 describes a random variable which characterizes the 
definite roughness arrangement. An intrinsic curvilinear 
orthogonal coordinate system 𝑥, 𝜗, 𝑦 linked with the upper 
surface of a porous layer is also presented in Fig.2. 

Taking into account the considerations of the works (Walicka, 
2002; Walicki, 2005) one may present the equation of continuity 
and the equations of motion of a Rotem-Shinnar fluid for axial 
symmetry in the form 

1

𝑅

∂(𝑅𝜐𝑥)

∂𝑥
+

∂𝜐𝑦

∂𝑦
= 0,            (5) 

∂Λ𝑥𝑦

∂𝑦
=

∂𝑝

∂𝑥
,            

∂𝑝

∂𝑦
= 0.            (6) 

a) 

 

b) 

 

Fig. 2. Geometry of a curvilinear thrust bearing; (a) squeeze film bearing, 
(b) externally pressurized bearing 

The constitutive equation (3) takes the form: 

𝜇
∂𝜐𝑥

∂𝑦
= Λ𝑥𝑦 + 𝑘Λ𝑥𝑦

3 . (7) 

The problem statement is complete after specification 
of boundary conditions. These conditions for velocity component 
are stated as follows: 

𝜐𝑥(𝑥, 0, 𝑡) = 0,      𝜐𝑥(𝑥, 𝐻, 𝑡) = 0,             (8) 

𝜐𝑦(𝑥, 0, 𝑡) = 𝑉𝐻 ,      𝜐𝑦(𝑥, 𝐻, 𝑡) =
∂𝐻

∂𝑡
= 𝐻̇. (9) 

Solving the equations of motion (5), (6) and the constitutive 
taking into account equation (7) one obtains the Reynolds equa-
tion [detailed solution may be found in works (Walicka, 2002; 
Walicki, 2005)] 

1

𝑅

∂

∂𝑥
𝑅𝐻3 [

∂𝑝

∂𝑥
+

3

20
𝑘𝐻2 (

∂𝑝

∂𝑥
)

3

] = 12𝜇 (
∂𝐻

∂𝑡
− 𝑉𝐻) (10) 

for a lubricating pseudo-plastic fluid of Rotem-Shinnar. If 𝑘 = 0, 
the above equation is identical to the Reynolds equation for New-
tonian lubricant (Walicki, 1977). 

3. MODIFIED REYNOLDS EQUATION FOR A BEARING  
WITH A POROUS PAD 

To solve Eq.(10) let us study the flow of a Rotem-Shinnar fluid 
in the porous layer. Assume that this layer consists a system of 
capillaries with an average radius rc and porosity 𝜙𝑝. Let the 

porous layer be homogeneous and isotropic and let the flow within 
the layer satisfy the modified Darcy’s law. Thus one has (Walicki, 
2005): 
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𝜐̅𝑥 =
Φ𝑝

𝜇
(−

∂𝑝̅

∂𝑥
) +

Φ𝑝

𝜇

𝑘𝑟𝑐
2

6
(−

∂𝑝̅

∂𝑥
)

3

,

𝜐̅𝑦 =
Φ𝑝

𝜇
(−

∂𝑝̅

∂𝑦
) +

Φ𝑝

𝜇

𝑘𝑟𝑐
2

6
(−

∂𝑝̅

∂𝑦
)

3

,

 (11) 

where: 𝜐̅𝑥, 𝜐̅𝑦 are velocity components in the porous layer and  

Φ𝑝 =
ϕ𝑝𝑟𝑐

2

8
 (12) 

is a permeability of the porous layer but 𝜙𝑝 is a coefficient 

of porosity. 
Since the cross velocity component 𝜐̅𝑦  must be continuous at 

the porous wall-fluid film interface and must be equal to 𝑉𝐻 , we 
have then – by virtue of Eqs (10) and (11) – the following form of 
the modified Reynolds equation 

1

𝑅

∂

∂𝑥
𝑅𝐻3 [

∂𝑝

∂𝑥
+

3

20
𝑘𝐻2 (

∂𝑝

∂𝑥
)

3

] =

= 12𝜇 [
∂𝐻

∂𝑡
−

Φ𝑝

𝜇
{(−

∂𝑝̅

∂𝑦
) +

𝑘𝑟𝑐
2

6
(−

∂𝑝̅

∂𝑦
)

3

}|
𝑦=0

] .
 (13) 

Using the Morgan-Cameron approximation (Morgan and 
Cameron, 1957) one obtains 

{(−
∂𝑝̅

∂𝑦
) +

𝑘𝑟𝑐
2

6
(−

∂𝑝̅

∂𝑦
)

3

}|
𝑦=0

=

= −
𝐻𝑝

𝑅

∂

∂𝑥
𝑅 {(

∂𝑝

∂𝑥
) +

𝑘𝑟𝑐
2

6
(

∂𝑝

∂𝑥
)

3

} .

             (14) 

When formula (14) is inserted into Eq.(13) the modified Reyn-
olds equation takes the form: 

1

𝑅

∂

∂𝑥
𝑅 [(𝐻3 +

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝)
∂𝑝

∂𝑥
+

+
3𝑘

20
(𝐻5 +

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝) (
∂𝑝

∂𝑥
)

3

]  = 12𝜇
∂𝐻

∂𝑡
.

 (15) 

If the film thickness is regarded as a random quantity, a height 
distribution function must be associated. Many real bearing sur-
faces show a roughness height distribution which is closely 
Gaussian, at least up to three standard deviations. From a practi-
cal point of view, the Gaussian distribution is rather inconvenient 
and therefore a polynomial form of its approximation is chosen. 
Following Christensen (1970; 1971; 1973) such a probability 
density function is 

𝑓(ℎ𝑠) = {
35

32𝑐7
(𝑐2 − ℎ𝑠

2)3 ,     − 𝑐 ≤ ℎ𝑠 ≤ +𝑐

0,                                     elsewhere
            (16) 

where c is the half total range of the random film thickness varia-
ble. The function terminates at 𝑐 = ±3𝜎, where σ is the standard 
deviation. 

Inserting expected values in Eq.(15) we get the general form 
of the stochastic Reynolds equation 

1

𝑅

∂

∂𝑥
(𝐸 {𝑅 [(𝐻3 +

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝)
∂𝑝

∂𝑥
+

+
3𝑘

20
(𝐻5 +

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝) (
∂𝑝

∂𝑥
)

3

]}) = 12𝜇
∂𝐸(𝐻)

∂𝑡
 

 (17) 

where E(⋅) is the expectancy operator defined by 

𝐸(⋅) = ∫ (⋅)𝑓(ℎ𝑠)𝑑ℎ𝑠
+𝑐

−𝑐
. (18) 

The problem is now reduced to devising means of evaluating 
the left-hand side of Eq.(17) subject to the specific model 
of roughness. 

The calculation of the mean film pressure distribution would 
require the evaluation of the expected value of various film thick-
ness functions. 

The forms of the distribution function described by Eq.(18) are 
given in (Walicka, 2012). 

4. SOLUTIONS TO THE MODIFIED REYNOLDS EQUATION 

In the present study two types of roughness structure are 
of interest: the longitudinal (radial) one-dimensional roughness 
pattern, having the form of long narrow ridges and valleys running 
in the 𝑥 direction, and the circumferential (transverse) one-
dimensional roughness pattern, having the form of long narrow 
ridges and valleys running in the 𝜗 direction (Walicka and Walicki, 
2002a; 2002b; Walicka, 2009). 

For the longitudinal one-dimensional roughness 

𝐻 = ℎ(𝑥, 𝑡) + ℎ𝑠(ϑ, 𝜉)  (19) 

the stochastic Reynolds equation is 

1

𝑅

∂

∂𝑥
(𝑅 {[𝐸(𝐻3) +

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝]
∂(𝐸𝑝)

∂𝑥
+

+
3𝑘

20
[𝐸(𝐻5) +

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝] [
∂(𝐸𝑝)

∂𝑥
]

3

}) = 12𝜇
∂𝐸(𝐻)

∂𝑡
 ,

 (20) 

but for the circumferential one-dimensional roughness 

𝐻 = ℎ(𝑥, 𝑡) + ℎ𝑠(𝑥, 𝜉)  (21) 

the stochastic Reynolds equation is 

1

𝑅

∂

∂𝑥
(𝑅 {[

1

𝐸(𝐻−3)
+

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝]
∂(𝐸𝑝)

∂𝑥
+

+
3𝑘

20
[

1

𝐸(𝐻−5)
+

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝] [
∂(𝐸𝑝)

∂𝑥
]

3

}) = 12𝜇
∂𝐸(𝐻)

∂𝑡
 .

 (22) 

Note that it may present both Eqs (20) and (22) in one com-
mon form as follows: 

1

𝑅

∂

∂𝑥
(𝑅 {[𝐻𝑗

(3)
+

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝]
∂(𝐸𝑝)

∂𝑥
+

+
3𝑘

20
[𝐻𝑗

(5)
+

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝] [
∂(𝐸𝑝)

∂𝑥
]

3

}) = 12𝜇
∂𝐸(𝐻)

∂𝑡
 ,

 (23) 

where 

𝐻𝑗

(3)
= {

𝐸(𝐻3)                for            𝑗 = 𝑙,
1

𝐸(𝐻−3)
            for            𝑗 = 𝑐,

   

𝐻𝑗

(5)
= {

𝐸(𝐻5)                for            𝑗 = 𝑙,
1

𝐸(𝐻−5)
            for            𝑗 = 𝑐

  

the case 𝑗 = 𝑙 refers to the longitudinal one-dimensional rough-
ness, but the case 𝑗 = 𝑐 – to the circumferential one-dimensional 
roughness. 

Consider the case of the Rotem-Shinnar fluid of frequent oc-
currence for which the factor 𝑘𝛬𝑥𝑦

2 < 1; the value of this factor 
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indicates that the solutions to the Reynolds equation (23) may be 
searched in a form of the sum: 

𝐸𝑝 = 𝐸𝑝(0) + 𝐸𝑝(1).  (24) 

Assuming that 𝐸𝑝(1) << 𝐸𝑝(0) and substituting Eq.(24) into 
Eq.(23) we arrive at two linearized equations, the first one 

1

𝑅

∂

∂𝑥
{𝑅 [𝐻𝑗

(3)
+

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝]
∂(𝐸𝑝

(0))

∂𝑥
} = 12𝜇

∂𝐸(𝐻)

∂𝑡
 , (25) 

and the second 

1

𝑅

∂

∂𝑥
{𝑅 [𝐻𝑗

(3)
+

3

2
ϕ

𝑝
𝑟𝑐

2𝐻𝑝]
∂(𝐸𝑝

(1))

∂𝑥
} =

= −
3𝑘

20

1

𝑅

∂

∂𝑥
{𝑅 [𝐻𝑗

(5)
+

5

3
ϕ

𝑝
𝑟𝑐

4𝐻𝑝] [
∂(𝐸𝑝

(0))

∂𝑥
]

3

} .

 (26) 

The boundary conditions for pressure are: 

 for squeeze film bearing (
∂𝐻

∂𝑡
≠ 0)  

∂𝐸𝑝
(0)

∂𝑥
|

𝑥=0
= 0,            𝐸𝑝(0)(𝑥𝑜) = 𝑝

𝑜
,            

∂𝐸𝑝
(1)

∂𝑥
|

𝑥=0
= 𝐸𝑝(1)(𝑥𝑜) = 0,

   (27) 

 for externally pressurized bearing (
∂H

∂t
= 0) 

𝐸𝑝(0)(𝑥𝑖) = 𝑝
𝑖
,            𝐸𝑝(0)(𝑥𝑜) = 𝑝

𝑜
,            

𝐸𝑝(1)(𝑥𝑖) = 𝐸𝑝(1)(𝑥𝑜) = 0.
  (28) 

The solutions of Eqs (25) and (26) are given, respectively, 
as follows: 

𝐸𝑝(𝑥, 𝑡) = 𝑝𝑜 − 12𝜇[𝐹𝑜 − 𝐹(𝑥, 𝑡)]  (29) 

and 

𝐸𝑝(𝑥) = −
3𝑘𝐶3

20
𝐺(𝑥) +

[𝐴(𝑥)−𝐴𝑜](𝑝𝑖+
3𝑘𝐶3

20
𝐺𝑖)

𝐴𝑖−𝐴𝑜
−

[𝐴(𝑥)−𝐴𝑖](𝑝𝑜+
3𝑘𝐶3

20
𝐺𝑜)

𝐴𝑖−𝐴𝑜
 , 

(30) 

where: 

𝐼(𝑥, 𝑡) = ∫
∫ 𝑅

∂𝐸(𝐻)

∂𝑡
𝑑𝑥

𝑅[𝐻𝑗
(3)

+
3

2
ϕ𝑝𝑟𝑐

2𝐻𝑝]
𝑑𝑥,  

𝐽(𝑥, 𝑡) = ∫ {
[𝐻𝑗

(5)
+

5

3
ϕ𝑝𝑟𝑐

4𝐻𝑝]

𝑅3[𝐻𝑗
(3)

+
3

2
ϕ𝑝𝑟𝑐

2𝐻𝑝]
4 [∫ 𝑅

∂𝐸(𝐻)

∂𝑡
𝑑𝑥]

3

} 𝑑𝑥,  

𝐹(𝑥, 𝑡) = 𝐼(𝑥, 𝑡) −
108𝑘𝜇2

5
𝐽(𝑥, 𝑡),    𝐹𝑜 = 𝐹(𝑥𝑜, 𝑡); (31) 

𝐴(𝑥) = ∫
𝑑𝑥

𝑅[𝐻𝑗
(3)

+
3

2
ϕ𝑝𝑟𝑐

2𝐻𝑝]
,      𝐴𝑖 = 𝐴(𝑥𝑖), 

𝐴𝑜 = 𝐴(𝑥𝑜),     𝐶 =
𝑝𝑖−𝑝𝑜

𝐴𝑖−𝐴𝑜
, 

𝐺(𝑥) = ∫
[𝐻𝑗

(5)
+

5

3
ϕ𝑝𝑟𝑐

4𝐻𝑝]𝑑𝑥

𝑅3[𝐻𝑗
(3)

+
3

2
ϕ𝑝𝑟𝑐

2𝐻𝑝]
4 ,           

𝐺𝑖 = 𝐺(𝑥𝑖),         𝐺𝑜 = 𝐺(𝑥𝑜). 

The load-carrying capacity is defined by 

𝑁 = 2𝜋 ∫ (𝐸𝑝 − 𝑝𝑜)𝑅cosϕ𝑑𝑥
𝑥𝑜

0
  (31a) 

or 

𝑁 = 𝜋𝑅𝑖
2𝑝𝑖 + 2𝜋 ∫ 𝐸𝑝𝑅cosϕ𝑑𝑥

𝑥𝑜

𝑥𝑖
  (31b) 

the sense of angle 𝜙 arises from Fig. 2. 
The calculation of the mean film pressure distribution would 

require the calculation of the expected value for various film thick-
ness. For the distribution function given by Eq. (17) we have 
(Walicka, 2012): 

𝐸(𝐻) = ℎ,            𝐸(𝐻3) = ℎ3 (1 +
1

3
𝑌2),          

𝐸(𝐻5) = ℎ5 (1 +
10

9
𝑌2 +

5

33
𝑌4) ,

  

𝐸(𝐻−3) =
1

ℎ3
[1 + ∑

105(𝑛+1)𝑌2𝑛

(2𝑛+3)(2𝑛+5)(2𝑛+7)
∞
𝑖=1 ], (32) 

𝐸(𝐻−5) =
1

ℎ5
[1 + ∑

35(𝑛+1)(𝑛+2)𝑌2𝑛

2(2𝑛+5)(2𝑛+7)
∞
𝑛=1 ],          𝑌 =

𝑐

ℎ
. 

5. RADIAL THRUST BEARING WITH SQUEEZED FILM 

The radial thrust bearing with squeezed film of lubricant 
is modelled by two parallel disks (Fig. 3). 

 
Fig. 3. Squeeze film in a radial thrust bearing 

a)

 
b)

 
Fig. 4. Dimensionless pressure distribution in the squeeze film thrust  

            bearing with rough surfaces for 𝐻̃𝑝 = 0.2, 𝐾𝑝 = 0.2,  

            𝜆 = −0.01 and 𝜆 = 0 and 𝜀 = 0.5; (a) longitudinal roughness  
           and (b) circumferential roughness 
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a)

 

b)

 
Fig. 5. Dimensionless pressure distribution in the squeeze film thrust  

            bearing with rough surfaces for 𝐻̃𝑝 = 0.2, 𝐾𝑝 = 0.2, 𝜆 = 0  

            and 𝜆 = 0.01 and 𝜀 = 0.5; (a) longitudinal roughness  
            and (b) circumferential roughness 

a)

 

b)

 
Fig. 6. Load-carrying capacity for the squeeze film thrust bearing  

            with rough surfaces for 𝐻̃𝑝 = 0.2, 𝐾𝑝 = 0.2, 𝜆 = −0.01  

            and 𝜆 = 0 and 𝜀 = 0.5; (a) longitudinal roughness  
            and (b) circumferential roughness 

 

a)

 
b)  

Fig. 7. Load-carrying capacity for the squeeze film thrust bearing  

            with rough surfaces for 𝐻̃𝑝 = 0.2, 𝐾𝑝 = 0.2, 𝜆 = 0  

            and 𝜆 = 0.01 and 𝜀 = 0.5; (a) longitudinal roughness  
            and (b) circumferential roughness 

Introducing the following parameters: 

𝑥̃ =
𝑥

𝑅𝑜

, 𝑥 = 𝑅,   𝑅̃ =
𝑅

𝑅𝑜

, ℎ̃ =
ℎ

ℎ𝑜

= 𝑒(𝑡),    

𝑒(𝑡) = 1 − 𝜀(𝑡), 𝐾𝑝 =
𝑟𝑐

ℎ𝑜

, 𝐻̃𝑝 =
ϕ𝑝𝐻𝑝

ℎ𝑜

, 

𝑝̃ =
(𝐸𝑝 − 𝑝

𝑜
)

𝜇𝜀̇
(

ℎ𝑜

𝑥𝑜

)
2

, 𝜀̇ =
𝑑𝜀

𝑑𝑡
, 𝑁̃ =

𝑁ℎ𝑜
2

𝜇𝜀̇𝑥𝑜
4
,  

𝜆 = 𝑘 (
𝜇𝜀̇𝑥𝑜

ℎ𝑜

)
2

 

(33) 

we will obtain the formulae for the dimensionless pressure 
distribution and load-carrying capacity for the radial thrust bearing 
with a squeeze film of the Rotem-Shinnar type lubricant: 

𝑝̃ =
3

𝑀𝑗
(3) [1 − 𝑥̃

2
−

27

10
𝜆

𝑀𝑗
(5)

(𝑀𝑗
(3)

)
3 (1 − 𝑥̃

4)], (34) 

𝑁̃ =
3𝜋

2𝑀𝑗
(3) [1 −

18

5
𝜆

𝑀𝑗
(5)

(𝑀𝑗
(3)

)
3],  (35) 

where: 

𝑀𝑗

(3)
= 𝐻̃𝑗

(3)
+

3

2
𝐾𝑝

2𝐻𝑝,   𝑀𝑗

(5)
= 𝐻̃𝑗

(5)
+

5

3
𝐾𝑝

4𝐻𝑝,

𝑐∗ =
𝑐

ℎ0

,
  (36) 
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𝐻̃𝑗
(3)

= {
𝑒3 [1 +

1

3
(

𝑐∗

𝑒
)

2

]            for 𝑗 = 𝑙,      

 (
1

𝑒3
[1 +

2

3
(

𝑐∗

𝑒
)

2

])
−1

 for  𝑗 = 𝑐,

  

𝐻̃𝑗
(5)

= {
𝑒5 [1 +

10

9
(

𝑐∗

𝑒
)

2

]          for  𝑗 = 𝑙,      

(
1

𝑒5
[1 +

5

3
(

𝑐∗

𝑒
)

2

])
−1

  for 𝑗 = 𝑐.  

  

  

6. CONCLUSIONS 

The modified Reynolds equation for a Rotem-Shinnar type 
of pseudo-plastic lubricants flowing in a clearance of the thrust 
curvilinear bearing with rough surfaces is derived; to one bearing 
surface a porous layer adheres. As a result the general formulae 
for pressure distributions and load-carrying capacity are obtained. 

If follows from carried out calculations and their graphic 
presentations that the both magnitudes are dependent on the 
signs of rheological parameters 𝑘 or 𝜆. 

For squeeze film radial bearings the pressures and load-
carrying capacities increase with a decrease of the 𝜆 values with 
respect to the suitable values of Newtonian lubricants. 

Basing on the adequate formulae for thrust externally pressur-
ized bearing it may conclude that this phenomenon should run 
inversely. Note the changes of the bearing parameters presented 
in this paper for rough surfaces and the Rotem-Shinnar lubricant 
are similar to those for smooth surfaces (Walicki, 2005). The 
bearing surfaces porosity, expressed as a product of the parame-

ters 𝐻̃𝑝 and 𝐾𝑝, results in some small decrease of the pressure 

and load-carrying capacity. 

Nomenclature: 𝑨1 – the first Rivlin-Ericksen kinematic tensor,  
𝑐 – maximum asperity deviation, 𝑐∗ – nondimensional roughness 
parameter, 𝑒(𝑡) – bearing squeezing, 𝐸(•) – expectancy opera-
tor, 𝑓(ℎ𝑠) – probability density distribution function, ℎ(𝑥, 𝑡) – 

nominal film thickness, ℎ𝑠(𝑥, 𝜗, 𝜉) – random deviation of film 
thickness, 𝐻 – film thickness, 𝐻𝑝 – porous pad thickness,  

𝑘, 𝑘𝑖  – pseudo-plasticity coefficients, 𝑁 – load-carrying capacity, 
𝑝 – pressure, 𝑟 – radius, 𝑅, 𝑅(𝑥) – local radius of the lower 
bearing surface, 𝜐𝑥 , 𝜐𝑦  – velocity components, 𝑥, 𝑦 – orthogonal 

coordinate, 𝜀(𝑡) – squeezing ratio, 𝜗 – angular coordinate,  
𝜇 – coefficient of viscosity, 𝜉 – random variable, 𝜌 – fluid density. 
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