Polyphase deformation along the South Bohemian Batholith-Moldanubian nappes boundary – The Freyenstein Fault System (Bohemian Massif/Austria)

Gerit E. U. Griesmeier 1 , Christoph Iglseder 1 , Ralf Schuster 1 , and Konstantin Petrakakis 2
  • 1 Geological Survey of Austria, , Neulinggasse 38, 1030, Vienna, Austria
  • 2 Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria

Abstract

This work describes the Freyenstein Fault System, which extends over 45 km in the southeastern part of the Bohemian Massif (Lower Austria). It represents a ductile shear zone overprinted by a brittle fault located at the eastern edge of the South Bohemian Batholith towards the Moldanubian nappes. It affects Weinsberg- and a more “fine-grained” granite, interlayered aplitic granite and pegmatite dikes as well as paragneiss of the Ostrong Nappe System. The ductile shear zone is represented by approximately 500 m thick greenschist-facies mylonite dipping about 60° to the southeast. Shear-sense criteria like clast geometries, SCC`-type shear band fabrics as well as abundant microstructures show top to the south/ southsouthwest normal shearing with a dextral strike-slip component. Mineral assemblages in mylonitized granitoid consist of pre- to syntectonic muscovite- and biotite-porphyroclasts as well as dynamically recrystallized potassium feldspar, plagioclase and quartz. Dynamic recrystallization of potassium feldspar and the stability of biotite indicate upper green-schist-facies metamorphic conditions during the early phase of deformation. Fluid infiltration at lower greenschist-facies conditions led to local sericitization of feldspar and synmylonitic chloritisation of biotite during a later stage of ductile deformation. Finally, a brittle overprint by a north-south trending, subvertical, sinistral strike-slip fault that shows a normal component is observed. Ductile normal shearing along the Freyenstein Shear Zone is interpreted to have occurred between 320 Ma and c. 300 Ma. This time interval is indicated by literature data on the emplacement of the hostrock and cooling below c. 300°C inferred from two Rb-Sr biotite ages measured on undeformed granites close to the shear zone yielding 309.6 ± 3 Ma and 290.9 ± 2.9 Ma, respectively. Brittle sinistral strike-slip faulting at less than 300°C presumably took place not earlier than 300 Ma. Early ductile shearing along the Freyenstein Fault System may be genetically, but not kinematically linked to the Strudengau Shear Zone, as both acted in an extensional regime during late Variscan orogenic collapse. A relation to other major northeast-southwest trending faults of this part of the Bohemian Massif (e.g. the Vitis-Pribyslav Fault System) is indicated for the phase of brittle sinistral movement.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Brandmayr, M., Dallmeyer, R., Handler, R., Wallbrecher, E., 1995. Conjugate shear zones in the Southern Bohemian Massif (Austria): implications for Variscan and Alpine tectonothermal activity. Tectonophysics, 248, 97–116. https://doi.org/10.1016/0040-1951(95)00003-6

  • Brandmayr, M., Loizenbauer, J., Wallbrecher, E., 1999. Contrasting P-T conditions during conjugate shear zone development in the Southern Bohemian Massif, Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft, 90, 11–29.

  • Brown, M., 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth-Science Reviews, 36, 83–130. https://doi.org/10.1016/0012-8252(94)90009-4

  • Büttner, S.H., 2007. Late Variscan stress-field rotation initiating escape tectonics in the south-western Bohemian Massif: A far field response to late-orogenic extension. Journal of Geosciences, 52, 29–43. https://doi.org/10.3190/jgeosci.004

  • Cháb, J., Stráník, Z., Eliáš, M., 2007. Geologická mapa České republiky 1:500 000. Česká geologická služba, Praha.

  • Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klötzli, U., Brandstätter, F., Lengauer, C.L., Tillmanns, E., 2012. Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 24, 695–715. https://doi.org/10.1127/0935-1221/2012/0024-2203

  • Faryad, S.W., 2009. The Kutná Hora Complex (Moldanubian zone, Bohemian Massif): A composite of crustal and mantle rocks subducted to HP/UHP conditions. Lithos, 109, 193–208. https://doi.org/10.1016/j.lithos.2008.03.005

  • Finger, F. and von Quadt, A., 1992. Wie alt ist der Weinsberger Granit? U/Pb versus Rb/Sr Geochronologie. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 137, 83–87.

  • Finger, F., Gerdes, A., Janoušek, V., René, M., Riegler, G., 2007. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences, 52, 9–28. https://doi.org/10.3190/jgeosci.005

  • Finger, F., Gerdes, A., René, M., Riegler, G., 2009. The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geologica Carpathica, 60, 205–212. https://doi.org/10.2478/v10096-009-0014-3

  • Finger, F. and Schubert, G., 2015. Die Böhmische Masse in Österreich. Was gibt es Neues? Abhandlungen der Geologischen Bundesanstalt, 64, 167–179.

  • Franke, W., 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. Geological Society of London, Special Publications, 179, 35–61.

  • Friedl, 1997. U/Pb-Datierungen an Zirkonen und Monaziten aus Gesteinen vom österreichischen Anteil der Böhmischen Masse. Dissertation, Universität Salzburg, Österreich. 242pp.

  • Fritz, H., Dallmeyer, R.D., Neubauer, F., 1996. Thick-skinned versus thin-skinned thrusting: Rheology controlled thrust propagation in the Variscan collisional belt (The southeastern Bohemian Massif, Czech Republic - Austria). Tectonics, 15, 1389–1413. https://doi.org/10.1029/96TC01098

  • Fuchs, G. and Matura, A., 1976. Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jahrbuch der Geologischen Bundesanstalt, 119, 1–43.

  • Fuchs, G., 1984. Bericht 1981 über geologische Aufnahmen im Kristallin auf Blatt 36 Ottenschlag. Verhandlungen der Geologischen Bundesanstalt, 1982, 31–33.

  • Fuchs, G., 1986. Geologische Karte der Republik Österreich Blatt 36 Ottenschlag 1:50.000. Geologische Bundesanstalt, Wien.

  • Fuchs, G. and Roetzel, R., 1990. Geologische Karte der Republik Österreich 1:50000 Erläuterungen zu Blatt 36 Ottenschlag. Geologische Bundesanstalt. 67 pp.

  • Fuchs, G., 2005. Der geologische Bau der Böhmischen Masse im Bereich des Strudengaus (Niederösterreich). Jahrbuch der Geologischen Bundesanstalt, 145, 283–291.

  • Gerdes, A., Friedl, G., Parrish, R.R., Finger, F., 2003. High-resolution geochronology of Variscan granite em-placement the South Bohemian Batholith. Journal of the Czech Geological Society, 48, 53–54.

  • Hintersberger, E., Iglseder, C., Schuster, R., Huet, B., 2017. The new database “Tectonic Boundaries” at the Geological Survey of Austria. Jahrbuch der Geologischen Bundesanstalt, 157, 195–207.

  • Jäger, E., Niggli, E., Wenk, E., 1967. Rb/Sr Altersbestimmungen an Glimmern der Zentralalpen. Beiträge zur geologischen Karte der Schweiz, NF 1344, Bern, 67 pp.

  • Jeřábek, P., Stünitz, H., Heilbronner, R., Lexa, O., Schul-mann, K., 2007. Microstructural-deformation record of an orogen-parallel extension in the Vepor Unit, West Carpathians. Journal of Structural Geology, 29/11, 1722–1743. https://doi.org/10.1016/j.jsg.2007.09.002

  • Klötzli, U.S. and Parrish, R.R., 1996. Zircon U/Pb and Pb/Pb geochronology of the Rastenberg granodiorite, South Bohemian Massif, Austria. Mineralogy and Petrology, 58, 197–214. https://doi.org/10.1007/BF01172096

  • Klötzli, U., Frank, W., Scharbert, S., Thöni, M., 1999. Evolution of the SE Bohemian Massif based on Geochronological data - A Review. Jahrbuch der Geologischen Bundesanstalt, 141, 377–394.

  • Koller, F., Scharbert, S., Höck, V., 1993. Neue Untersuchungen zur Genese einiger Granite des Südböhmischen Plutons. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 138, 179–196.

  • Kotková, J., 2007. High-pressure granulites of the Bohemian Massif: recent advances and open questions. Journal of Geosciences, 52, 45–71. https://doi.org/10.3190/jgeosci.006

  • Krenmayr, H.G., Schnabel, W., Bryda, G., Egger, H., Finger, F., Linner, M., Mandl, G.W., Nowotny, A., Pestal, G., Reitner, J.M., Roetzel, R., Rupp, C., Schuster, R., Van Husen, D., 2006. Geologische Karte von Oberösterreich 1:200.000. Geologische Bundesanstalt, Wien.

  • Kroner, U. and Romer, R.L., 2013. Two plates - Many subduction zones: The Variscan orogeny reconsidered. Gondwana Research, 24, 298–329. https://doi.org/10.1016/j.gr.2013.03.001

  • Linner, M., 2013. Metamorphoseentwicklung und Deck-enbau des Moldanubikums mit Fokus auf den Raum Melk – Dunkelsteinerwald. In: Gebhardt, H. (eds.) Tagungsband zur Arbeitstagung 2013 der Geologischen Bundesanstalt. Geologie der Kartenblätter 55 Ober-Grafendorf und 56 St. Pölten, Wien, pp. 43–56.

  • Ludwig, K.R., 2003. Isoplot/Ex version 3.0. A geochrono-logical toolkit for Microsoft Excel. Berkeley Geochrono-logical Centre: Special Publication, 70 pp.

  • Morad, S., Sirat, M., El-Ghali, M.A.K., Mansurbeg, H., 2011. Chloritization in Proterozoic granite from the Äspö Laboratory, southeastern Sweden: record of hydrothermal alterations and implications for nuclear waste storage. Clay minerals, 46/3, 495-513. https://doi.org/10.1180/claymin.2011.046.3.495

  • Neubauer, F., Dallmeyer R.D., Fritz, H., 2003. Chronological constraints of late- and post-orogenic emplacement of lamprophyre dykes in the southeastern Bohemian Massif, Austria. Schweizerische Mineralogische und Petrographische Mitteilungen, 83, 317–330.

  • Passchier, C.W. and Trouw, R.A.J., 2005. Microtectonics. Springer Berlin Heidelberg New York, xi+366 pp.

  • Perraki, M. and Faryad, S.W., 2014. First finding of micro-diamond, coesite and other UHP phases in felsic granulites in the Moldanubian Zone: Implications for deep subduction and a revised geodynamic model for Vari-scan Orogeny in the Bohemian Massif. Lithos, 202–203, 157–166. https://doi.org/10.1016/j.lithos.2014.05.025

  • Petford, N., Cruden, A.R., McCaffrey, K.J., Vigneresse, J.L., 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408, 669–673. https://doi.org/10.1038/35047000

  • Petrakakis, K., 1997. Evolution of Moldanubian rocks in Austria: review and synthesis. Journal of Metamorphic Geology, 15, 203–222. https://doi.org/10.1111/j.1525-1314.1997.00015.x

  • Racek, M., Lexa, O., Schulmann, K., Corsini, M., Štípská, P., Maierová, P., 2017. Re-evaluation of polyphase kinematic and 40Ar/39Ar cooling history of Moldanubian hot nappe at the eastern margin of the Bohemian Massif. International Journal of Earth Sciences (Geologische Rundschau) 106, 397–420. https://doi.org/10.1007/s00531-016-1410-4

  • Rupp, C., Linner, M., Mandl, G.W., 2011. Erläuterungen zur Geologischen Karte von Oberösterreich 1:200.000. Geologische Bundesanstalt, Wien, 255 pp.

  • Scharbert, S., 1987. Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Österreich. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 132, 21–37.

  • Scharbert, S., Breiter, K., Frank, W., 1997. The Cooling History of the Southern Bohemian Massif. Journal of the Czech Geological Society, 42, 24.

  • Scheck-Wenderoth, M., Krzywiec, P., Zühlke, R., Maystrenko, Y., Froitzheim, N., 2008. Permian to Cretaceous tectonics. In: McCann, T. (eds.) The Geology of Central Europe, Geological Society of London, London, 2: Mesozoic and Cenozoic, pp. 999–1030.

  • Schantl, P., Hauzenberger, C., Finger, F., Müller, T., Linner, M., 2019. New evidence for the prograde and retrograde PT-path of high-pressure granulites, Moldanubian Zone, Lower Austria, by Zr-in-rutile thermometry and garnet diffusion modelling. Lithos, 342–343, 420–439. https://doi.org/10.1016/j.lithos.2019.05.041

  • Schnabel, W., Bryda, G., Egger, H., Fuchs, G., Krenmayr, H.G., Mandl, G.W., Matura, A., Nowotny, A., Roetzel, R., Scharbert, S., Wessely, G., 2002. Geologische Karte von Niederösterreich 1:200.000. Geologische Bundesanstalt, Wien.

  • Siebel, W., Blaha, U., Chen, F., Rohrmüller, J., 2005. Geo-chronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif. International Journal of Earth Sciences (Geologische Rundschau), 94, 8–23. https://doi.org/10.1007/s00531-004-0445-0

  • Sölva, H., Grasemann, B., Thöni, M., Thiede, R., Habler, G., 2005. The Schneeberg Normal Fault Zone: normal faulting associated with Creaceous SE- directed extrusion in the Eastern Alps (Italy/Austria). Tectonophysics, 401, 143–166. https://doi.org/10.1016/j.tecto.2005.02.005

  • Sorger, D., Hauzenberger, C.A., Linner, M., Iglseder, C., Finger, F., 2018. Carboniferous polymetamorphism recorded in paragneiss-migmatites from the Bavarian Unit (Moldanubian Superunit, Upper Austria): implications for the tectonothermal evolution at the end of the Variscan orogeny. Journal of Petrology, 59, 1359–1382. https://doi.org/10.1093/petrology/egy063

  • Sorger, D., Hauzenberger C.A., Finger, F., Linner, M., 2020. Two generations of Variscan garnet: Implications from a petrochronological study of a high-grade Avalonia-derived paragneiss from the Drosendorf unit, Bohemian Massif. Gondwana Research, 85, 124–148. https://doi.org/10.1016/j.gr.2020.04.004

  • Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S.M., 2002. Dynamic recrystallization of quartz: correlation between natural and experimental conditions. Geological Society of London, Special Publications, 200/1, 171–190.

  • Štípská, P., Schulmann, K., Höck, V., 1999. Complex metamorphic zonation of the Thaya dome: result of buckling and gravitational collapse of an imbricated nappe sequence. Geological Society of London, Special Publications, 169, 197–211. https://doi.org/10.1144/GSL.SP.2000.169.01.15

  • Suess, F.E., 1908. Die Beziehungen zwischen dem moldanubischen und dem moravischen Grundgebirge in dem Gebiete von Frain und Geras. Verhandlungen der Geologischen Reichsanstalt, 1908, 393–412.

  • Suess, F.E., 1911. Die Moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch–naturwissenschaftliche Klasse, 88, 541–631.

  • Thiele, O., 1969. Bericht 1968 über Aufnahmen auf den Blättern Königswiesen (35) und Zwettl (19). Verhandlungen der Geologischen Bundesanstalt, 1969, 75–76.

  • Thiele, O., 1976. Ein westvergenter kaledonischer Deck-enbau im niederösterreichischen Waldviertel? Jahrbuch der Geologischen Bundesanstalt, 119, 75–81.

  • Thiele, O., 1984. Geologische Karte der Republik Österreich Blatt 35 Königswiesen 1:50.000. Geologische Bundesanstalt, Wien.

  • Thöni, M., 1996. Isotopengeologie und Geochronologie – Einsatzmöglichkeiten in der Geologie. Mitteilungen der Geologie- und Bergbaustudenten Österreich, 39/40, 187–209.

  • Tollmann, A., 1982. Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotektonische Forschungen, 64, 1–91.

  • Vellmer, C. and Wedepohl, K., 1994. Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contributions to Mineralogy and Petrology, 118, 13–32. https://doi.org/10.1007/BF00310608

  • Verner, K., Žák, J., Hrouda, F., Holub, F.V., 2006. Magma emplacement during exhumation of the lower-to mid-crustal orogenic root: the Jihlava syenitoid pluton, Moldanubian Unit, Bohemian Massif. Journal of Structural Geology, 28/8, 1553–1567. https://doi.org/10.1016/j.jsg.2006.03.037

  • Waldmann, L., 1930. Aufnahmsbericht des Privat dozenten Dr. Leo Waldmann über Blatt Gmünd – Litschau (4454). Verhandlungen der Geologischen Bundesanstalt, 1930, 38–41.

  • Wallbrecher, V.E., Dallmeyer, R.D., Brandmayr, M., Handler, R., Maderbacher, F., Platzer, R., 1991. Kinematik und Alter der Blattverschiebungszonen in der südlichen Böhmischen Masse. In: Roetzel, R. (eds.) Tagungsband zur Arbeitstagung 1991 der Geologischen Bundesanstalt. Geologie am Ostrand der Böhmischen Masse in Niederösterreich, Schwerpunkt Blatt 21 Horn, Wien, pp. 35–48.

  • Wallbrecher, V.E., Brandmayer, M., Loizenbauer, J., Handler R., Dallmeyer., 1996. Konjugierte Scherzonen in der südlichen Böhmischen Masse: variszische und alpidische kinematische Entwicklungen. Exkursionsunterlagen für die Wandertagung 1996: Ein Querschnitt durch die Geologie Oberösterreichs, 12–28.

  • Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187. https://doi.org/10.2138/am.2010.3371

  • Žák, J., Verner, K., Finger, F., Faryad, S.W., Chlupáčová, M., Veselovský, F., 2011. The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos, 121(1-4), 25-40. https://doi.org/10.1016/j.lithos.2010.10.002

  • Žák, J., Verner, K., Janoušek, V., František, V., Holub, F.V., Kachlík, V., Finger, F., Hajná, J., Tomek, F., Vondrovic, L., Trubač, J., 2014. A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. Geological Society of London, Special Publications, 405, 169–196. http://dx.doi.org/10.1144/SP405.9

  • Zeitlhofer, H., Schneider, D., Grasemann, B., Petrakakis, K., Thöni, M., 2013. Polyphase tectonics and late Variscan extension in Austria (Moldanubian Zone, Strudengau area). International Journal of Earth Sciences, 103, 83–102. https://doi.org/10.1007/s00531-013-0952-y

  • Zeitlhofer, H., Grasemann, B., Petrakakis, K., 2016. Variscan potassic dyke magmatism of durbachitic affinity at the southern end of the Bohemian Massif (Lower Austria). International Journal of Earth Sciences, 105, 1175–1197. https://doi.org/10.1007/s00531-015-1238-3

OPEN ACCESS

Journal + Issues

Search