Early late-glacial rock avalanche and its lasting effects on drainage and sediment dispersal (Strassberg valley catchment, Northern Calcareous Alps, Austria)

Open access


In intramontane landscapes shaped by glacial-interglacial cycles, the most rapid changes during the proglacial/paraglacial phases may be amplified by catastrophic mass-wasting. Herein, we describe the Last Glacial Maximum (LGM) to Holocene development of a catchment in the Northern Calcareous Alps wherein intense proglacial/paraglacial sedimentation and descend of a rock avalanche persistently modified drainage and sediment dispersal.

During buildup of the LGM, the pre-last glacial Strassberg valley – the trunk valley of this study – was filled with a proglacial fluvio-lacustrine succession. Thereafter, the area became largely buried under the Inn ice stream. During deglacial ice melt, copious sediment was shed from glacially-conditioned mountain flanks. Alluvial fans cut off from their former supply area, and perched in isolated position, result from presumed sediment dispersal across dead ice. Shortly after deglaciation, a ~11 Mm3 rock avalanche detached from a high cliff, overran an opposing mountain ridge, and spread over a lower-positioned plateau. The rock avalanche blocked the Strassberg valley and set the base-level to an intramontane basin that persists until present. A quartz OSL age from a loess drape above the rock-avalanche deposit dates mass wasting prior to 18.77 ± 1.55 ka; so far, this is the oldest age-bracketed post-LGM catastrophic mass-wasting of the Eastern Alps.

After mass wasting, the valley was barred by the rock-avalanche deposit. This, in turn, triggered a westward switch of drainage thalweg and stream incision. The present Strassberg valley is an epigenetic bedrock gorge 1.5 km in length and down to 100 m in depth. A 234U/230Th calcite disequilibrium age of 9 ± 1 ka from cemented talus indicates that most incision took place during the late-glacial to early Holocene. Aside of the large-scale morphology (valleys, ranges) the drainage, the smaller-scale morphology, and the sediment volumes of the study area are mainly coined by proglacial/paraglacial processes and by rock avalanching. Holocene landscape changes are modest and chiefly comprise aggradation of high-positioned scree slopes, colluvial/alluvial redeposition and stream incision, and slope stabilization by reforestation. Our results underscore that intramontane sceneries are mosaics with respect to the age of landforms and that large parts of the landscape still are off geomorphic equilibrium with interglacial conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ampferer O. 1904. Studien über die Inntalterrassen. Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt 54 91–160.

  • Ampferer O. and Ohnesorge T. 1912. Zirl und Nassereith. Geological map 1:75.000 ‘SW.-Gruppe Nr. 28’ on base of ‘Topographische Spezialkarte Zone 16 Kol IV.’ Kaiserlich-königliche Geologische Reichsanstalt Vienna.

  • André M.-F. 2003. Do periglacial landscapes evolve under periglacial conditions? Geomorphology 52 149-164. doi:.org/10.1016/S0169-555X(02)00255-6

  • Auer I. Foelsche U. Böhm R. Chimani B. Haimberger L. Kerschner H. Koinig K.A. Nicolussi K. and Spötl C. 2014. Vergangene Klimaänderungen in Österreich. In: Austrian Panel on Climate Change (APCC) (ed.) Österreichischer Sachstandsbericht Klimawandel 2014 (AAR14). Verlag der Österreichischen Akademie der Wissenschaften Wien pp. 227–300.

  • Ballantyne C.K. 2002. Paraglacial geomorphology. Quaternary Science Reviews 21 1935-2017. doi.org/10.1016/S0277-379(02)00005-7

  • Ballantyne C.K. and Benn D.I. 1994. Glaciological constraints on protalus rampart development. Permafrost and Periglacial Processes 5 145-153.

  • Ballantyne C. and Stone J. 2013. Timing and periodicity of paraglacial rock-slope failures in the Scottish Highlands. Geomorphology 186 150-161. doi:10.1016/j. geomorph.2012.12.030

  • Ballantyne C.K. Sandeman G.F. Stone J.O. and Wilson P. 2014. Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain. Quaternary Science Reviews 86 144-157. doi.org/10.1016/j.quascirev.2013.12.021

  • Barrett S. Starnberger R. Tjallingii R. Brauer A. and Spötl C. 2017. The sedimentary history of the inner-alpine Inn Valley Austria: extending the Baumkirchen type section further back in time with new drilling. Journal of Quaternary Science 32 63–79. https://doi.org/10.17738/ajes.2017.0004

  • Benn D.I. and Owen L.A. 2002. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quaternary International 97-98 3-25.

  • Caporali A. Neubauer F. Ostini L. Stangl G. and Zuliani D. 2013. Modelling surface GPS velocities in the Southern and Eastern Alps by finite dislocations at crustal depths. Tectonophysics 590 136–150. https://dx.doi.org/10.1016/j.tecto.2013.01.016

  • Church M. and Ryder J.M. 1972. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin 83 3059-3071.

  • Collins G.S. and Melosh H.J. 2003. Acoustic fluidization and the extraordinary mobility of sturzstroms. Journal of Geophysical Research 108 B10 2473. https://doi.org/10.1029/2003JB002465.

  • Cossart E. Braucher R. Fort M. Bourlés D.L. and Carcaillet J. 2008. Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment southeastern France): Evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95 3-26. doi:10.1016/j.geomorph.2006.12.022

  • Crosta G. B. Chen H. and Lee C.F. 2004. Replay of the 1987 Val Pola Landslide Italian Alps. Geomorphology 60 127–146. https://doi.org/10.1016/j.geomorph.2003.07.015

  • Cruden D.M. and Hungr O. 1986. The debris of the Frank Slide and theories of rock-avalanche mobility. Canadian Journal of Earth Sciences 23 425–432.

  • Curry A.M. and Ballantyne C.K. 1999. Paraglacial modification of glacigenic sediment. Geografiska Annaler 81A 409-419.

  • Curry A.M. Cleasby V. and Zukowskyj P. 2006. Paraglacial response of steep sediment-mantled slopes to post-’Little Ice Age’ glacier recession in the central Swiss Alps. Journal of Quaternary Science 21 211–225. doi: 10.1002/jqs.954

  • Davies T.R. and McSaveney M.J. 2002. Dynamic simulation of the motion of fragmenting rock avalanches. Canadian Geotechnical Journal 39 789–798. https://doi.org/10.1139/T02-035

  • Davies T.R. and McSaveney M.J. 2009. The role of rock fragmentation in the motion of large landslides. Engineering Geology 109 67–79. https://doi.org/10.1016/j.enggeo.2008.11.004

  • De Blasio F.V. and Crosta G.B. 2014. Simple physical model for the fragmentation of rock avalanches. Acta Mechanica 225 243–252. https://doi.org/10.1007/s00707-013-0942-y

  • Dufresne A. and Davies T.R. 2009. Longitudinal ridges in mass movement deposits. Geomorphology 105 171–181. https://doi.org/10.1016/j.geomorph.2008.09.009

  • Dufresne A. Prager C. and Bösmeier A. 2015. Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol Austria). Earth Surface Processes and Landforms 41 587–602. doi: 10.1002/esp.3847

  • Erismann T. H. and Abele G. 2001. Dynamics of rock-slides and rockfalls. Springer (Berlin) 316 pp.

  • Evans S. G. Scarascia Mugnozza G. Strom A. l. Hermanns R. L. Ischuk A. Vinnichenko S. 2006. Landslides from massive rock slope failure and associated phenomena. In: S.G. Evans G. Scarascia Mugnozza A. Strom and R.L. Hermanns (eds.) Landslides from massive rock slope failure. NATO Science Series Springer Dordrecht pp. 3–52.

  • French H. and Harbor J. 2013. The development and history of glacial and periglacial geomorphology. In: Shroder J. (Editor in Chief) Giardino R. Harbor J. (Eds.) Treatise on Geomorphology. Academic Press San Diego CA volume 8 Glacial and Periglacial Geo-morphology pp. 1–18. http://dx.doi.org/10.1016/B978-0-12-374739-6.00190-1

  • Frisch W. Székely B. Kuhlemann J. and Dunkl I. 2000. Geomorphological evolution of the Eastern Alps in response to Miocene tectonics. Zeitschrift für Geomorphologie Neue Folge 44 103–138.

  • Fügenschuh B. Seward D. and Mancktelow N. 1997. Exhumation in a convergent orogen: the western Tauern window. Terra Nova 9 213–217.

  • Fügenschuh B. Mancktelow N.S. and Schmid S.S. 2012. Comment on Rosenberg and Garcia: Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps Int J Earth Sci (Geol Rundsch) (2011) 100: 1129–1145. International Journal of Earth Sciences 101 1451–1455. https://doi.org/10.1007/s00531-011-0725-4

  • Geyh M.A. 2005. Handbuch der physikalischen und chemischen Altersbestimmung. Wissenschaftliche Buchgesellschaft Darmstadt 211 pp.

  • Gild C. Geitner C. and Sanders D. 2018. Discovery of a landscape-wide drape of late-glacial aeolian silt in the western Northern Calcareous Alps (Austria): First results and implications. Geomorphology 301 39–52. https://doi.org/10.1016/j.geomorph.2017.10.025

  • Handy M.R. Ustaszewski K. and Kissling E. 2015. Reconstructing th Alps-Carpathians–Dinarides as a key to understanding switches in subduction polarity slab gaps and surface motion. International Journal of Earth Sciences 104 1–26. https://doi.org/10.1007/s00531-014-1060-3

  • Heck F.R. and Speed R.C. 1987. Triassic olistostrome and shelf-basin transition in the western Great Basin: Paleo-geographic implications. Geological Society of America Bulletin 99 539–551.

  • Herbst P. Hilberg S. Draxler I. Zauner H. and Riepler F. 2009. The facies and hydrogeology of an inneralpine Pleistocene terrace based on in integrated study – deep well Telfs. Austrian Journal of Earth Sciences 102/2 149–156.

  • Hewitt K. 1998. Catastrophic landslides and their effects on the Upper Indus streams Karakoram Himalaya northern Pakistan. Geomorphology 26 47–80.

  • Hungr O. Evans S.G. Bovis M.J. and Hutchinson J.N. 2001. A review of the classification of landslides of flow type. Environmental and Engineering Geoscience VII/3 221–238.

  • Hungr O. Leroueil S. and Picarelli L. 2012. Varnes classification of landslide types an update. In: E. Eberhardt C. Froese A.K. Turner and S. Leroueil (eds.) Landslides and Engineered Slopes: Protecting Society through Improved Understanding. CRC Press/Balkema Taylor and Francis Group London pp. 47–58.

  • Jibson R.W. 2013. Mass-movement causes: earthquakes. In: J. Shroder (Editor in Chief) R.A. Marston and M. Stoffel (eds.) Treatise on Geomorphology. Academic Press San Diego CA vol. 7 Mountain and Hillslope Geomorphology pp. 223–229.

  • Jiskoot H. 2011. Long-runout rockslide on glacier at Tsar Mountain Canadian Rocky Mountains: potential triggers seismic and glaciological implications. Earth Surface Processes and Landforms 36 203–216. https://doi.org/10.1002.esp.2039

  • Kampf S.K. and Mirus B.B. 2013. Subsurface and surface flow leading to channel initiation. In: Shroder J. (Editor in Chief) and Wohl E. (Ed.) Treatise on Geomorphology. Academic Press San Diego CA vol. 9 Fluvial Geomorphology pp. 22–42.

  • Keefer D.K. 2013. Landslides generated by earthquakes: immediate and long-term effects. In: Shroder J. (Editor in Chief) and Owen L.A. (Ed.) Treatise on Geomorphology. Academic Press San Diego CA vol. 5 Tectonic Geomorphology pp. 250–266.

  • Kellerer-Pirklbauer A. Proske H. and Strasser V. 2010. Paraglacial slope adujustment since the end of the Last Glacial Maximum and its long-lasting effect on secondary mass-wasting processes: Hauser Kaibling Austria. Geomorphology 120 65-76. doi.org/10.1016/j. geomorph.2009.09.016

  • Korup O. and Tweed F. 2007. Ice moraine and landslide dams in mountainous terrain. Quaternary Science Reviews 26 3406–3422. https://doi.org/10.1016/j.quascirev.2007.10.012

  • Lenhardt W.A. 2007. Earthquake-triggered landslides in Austria – Dobratsch revisited. Jahrbuch der Geologischen Bundesanstalt 147 193–199.

  • Lenhardt W.A. Freudenthaler C. Lippitsch R. and Fiegweil E. 2007. Focal-depth distributions in the Austrian Eastern Alps based on macroseismic data. Austrian Journal of Earth Sciences 100 66–79.

  • Linzer H.-G. Ratschbacher L. and Frisch W. 1995. Transpressional collision structures in the upper crust: the fold-thrust belt of the Northern Calcareous Alps. In: F. Neubauer and E. Wallbrecher (eds.) Tectonics of the Alpine-Carpathian-Pannonian Region. Tectonophysics 242 41–61.

  • Linzer H.-G. Moser F. Nemes F. Ratschbacher L. and Sperner B. 1997. Build-up and dismembering of the eastern Northern Calcareous Alps. Tectonophysics 272 97–124.

  • Linzer H.-G. Decker K. Peresson H. Dell’Mour R. and Frisch W. 2002. Balancing lateral orogenic float of the Eastern Alps. Tectonophysics 354 211–237.

  • Locat P. Couture R. Leroueil S. Locat J. and Jaboyedoff M. 2006. Fragmentation energy in rock avalanches. Canadian Geotechnical Journal 43 830–851. https://doi.org/10.1139/T06-045

  • Nasir A. Lenhardt W. Hintersberger E. and Dicker K. 2013. Assessing the completeness and instrumental earthquake data in Austria and the surrounding areas. Austrian Journal of Earth Sciences 106/1 90–102.

  • Niederstrasser L. 2017. Zusammensetzung und Kartierung einer Lage von siliziklastischem Silt in einer Schuttfächer-Abfolge (Mieminger Plateau Nördliche Kalkalpen). Bachelor thesis University of Innsbruck 43 pp.

  • Machatschek F. 1933. Tal- und Glazialstudien im oberen Inngebiet. Mitteilungen der Geographischen Gesellschaft in Wien 76 5–52.

  • Mandl G.W. 2000. The Alpine sector of the Tethyan shelf - Example of Triassic to Jurassic sedimentation and deformation from the Northern Calcareous Alps. Mitteilungen der Österreichischen Geologischen Gesellschaft 92 61–77.

  • McSaveney M.J. and Davies T.R.H. 2002. Rapid rock-mass flow with dynamic fragmentation: Inferences from the morphology and internal structure of rockslides and rock avalanches. In: S.G. Evans G. Scarascia Mugnozza A. Strom and R.L. Hermanns (eds.) Landslides from massive rock slope failure. NATO Science Series Springer Dordrecht pp. 285–304.

  • McSaveney M.J. and Davies T.R. 2009. Surface energy is not one of the energy losses in rock comminution. Engineering Geology 109 109–113. https://doi.org/10.1016/j.enggeo.2008.11.001

  • Meigs A. Krugh W.C. Davis K. Bank G. 2006. Ultra-rapid landscape response and sediment yield following glacier retreat Ice Bay southern Alaska. Geomorphology 78 207-221. doi:10.1016/j.geomorph.2006.01-029

  • Montgomery D.R. and Buffington J.M. 1997. Channel- reach morphology in mountain drainage basins. Geological Society of America Bulletin 109 596–611.

  • Moran A.P. Ivy-Ochs S. Vockenhuber C. and Kerschner H. 2016. First 36Cl exposure ages from a moraine in the Northern Calcareous Alps. E&G Quaternary Science Journal 65 145–155. https://doi.org/10.3285/eg.65.2.03

  • Mutschlechner G. 1948. Spuren des Inngletschers im Bereich des Karwendelgebirges. Jahrbuch der Geologischen Bundesanstalt 3–4 155–206.

  • Ortner H. Reiter F. and Brandner R. 2006. Kinematics of the Inntal shear zone–sub-Tauern ramp fault system and the interpretation of the TRANSALP seismic section Eastern Alps Austria. Tectonophysics 414 241–258. https://doi.org/10.1016/j.tecto.2005.10.017

  • Orwin J.F. and Smart C.C. 2004. The evidence for paraglacial sedimentation and its temporal scale in the deglacierizing basin of Small River Glacier Canada. Geomorphology 58 175-202. doi.org/10.1016/j. geomorph.2003.07.005

  • Ostermann M. Sanders D. and Kramers J. 2006. 230Th/234U ages of calcite cements of the proglacial valley fills of Gamperdona and Bürs (Riss ice age Vorarlberg Austria): geological implications. Austrian Journal of Earth Sciences 99 31–41.

  • Ostermann M. and Sanders D. 2012. Post-glacial rock-slides in a 200x130 km area of the Alps: Characteristics ages and uncertainties. In: E. Eberhardt C. Froese A.K. Turner and S. Leroueil (eds.) Landslides and Engineered Slopes: Protecting Society through Improved Understanding. CRC Press/Balkema Taylor and Francis Group London vol. 1 659–663.

  • Ostermann M. and Sanders D. 2016. The Brenner pass rock avalanche cluster suggests a close relation between long-term slope deformation (DSGSDs and translational rock slides) and catastrophic failure. Geo-morphology 289 44–59. https://doi.org/10.1016/j.geomorph.2016.12.018

  • Ostermann M. Ivy-Ochs S. Sanders D. and Prager C. 2016. Multi-method (14C 36Cl 234U/230Th) age bracketing of the Tschirgant rock avalanche (Eastern Alps): Implications for absolute dating of catastrophic mass–wasting. Earth Surface Processes and Landforms 42 1110–1118. https://doi.org/10.1002/esp.4077

  • Penck A. and Brückner E. 1909. Die Alpen im Eiszeitalter. Tauchnitz Leipzig 1199 pp.

  • Perinotto H. Schneider J.-L. Bachèlery P. Le Bourdonnec F.-X. Famin V. and Michon L. 2015. The extreme mobility of debris avalanches: A new model of transport mechanism. Journal of Geophysical Research: Solid Earth 120 8110–8119. https://doi.org/10-1102/2015JB011994

  • Pirulli M. 2009. The Thurwieser rock avalanche (Italian Alps): Description and dynamic analysis. Engineering Geology 109 80–92. https://doi.org/10.1016/j.enggeo.2008.10.007

  • Pollet N. and Schneider J.-L.M. 2004. Dynamic disintegration processes accompanying transport of the Holocene Flims sturzstrom (Swiss Alps). Earth and Planetary Science Letters 221 433–448. https://doi.org/10.1016/S0012-821X/(04)00071-8

  • Poscher G. 1993. Neuergebnisse der Quartärforschung in Tirol. In: Hauser C. and Nowotny A. (coord.) Geologie der Oberinntaler Raumes Schwerpunkt Blatt 144 Landeck. Arbeitstagung der Geologischen Bundesanstalt 7–27.

  • Poschinger A. von and Kippel T. 2009. Alluvial deposits liquefied by the Flims rockslide. Geomorphology 103 50–56. https://doi.org/10.1016/j.geomorph.2007.09.016

  • Prager C. Zangerl C. Patzelt G. and Brandner R. 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science 8 377–407. https://doi.org/10.5194/nhess-8-3772008 2008

  • Preh A. and Sausgruber J.T. 2015. The extraordinary rock-snow avalanche of Alpl Tyrol Austria. Is it possible to predict the runout by means of single-phase Voellmyor Coulomb-type models? In: G. Lollino D. Giordan G.B. Crosta J. Corominas R. Azzam J. Wasowski and N. Sciarra(eds.) Engineering Geology for Society and Territory– Volume 2: Landslide Processes. Springer International Publishing Cham Switzerland pp. 1907–1911.

  • Ratschbacher L. Frisch W. Linzer H.-G. and Merle O. 1991. Lateral extrusion in the eastern Alps Part 2: Structural analysis. Tectonics 10 257–271.

  • Ravazzi C. Badino F. Marsetti D. Patera G. and Reimer P.J. 2012. Glacial to paraglacial history and forest recovery in the Oglio glacier system (Italian Alps) between 26 and 15 ka cal BP. Quaternary Science Reviews 58 146-161. doi.org/10.1016/j.quatscirev.2012.10.017

  • Reinecker J. and Lenhardt W.A. 1999. Present-day stress field and deformation in eastern Austria. International Journal of Earth Sciences 88 532–550.

  • Reiter F. 2017. Active seismotectonic deformation north of the Dolomites Indenter Eastern Alps. PhD thesis University of Innsbruck 254 pp.

  • Reiter F. Lenhardt W.A. and Brandner R. 2005. Indications for activity of the Brenner normal fault zone (Tyrol Austria) from seismological and GPS data. Austrian Journal of Earth Sciences 97 16–23.

  • Reitner J.M. 2007. Glacial dynamics at the beginning of Termination I in the Eastern Alps and their stratigraphic implications. Quaternary International164–165 64–84. https://doi.org/10.1016/j.quaint.2006-12.016

  • Reitner J. M. Ivy-Ochs S. Drescher-Schneider R. Hajdas I. and Linner M. 2016. Reconsidering the current stratigraphy of the Alpine Lateglacial: Implications of the sedimentary and morphological record of the Lienz area (Tyrol/Austria). E&G Quaternary Science Journal 65 113-144. doi:10.3285/eg.65.2.02

  • Sanders D. 2012. Effects of deglacial sedimentation pulse followed by incision: A case study from a catchment in the Northern Calcareous Alps (Austria). E&G Quaternary Science Journal 61 16–31. https://doi.org/10.3285/eg.61.1.02

  • Sanders D. Ostermann M. and Kramers J. 2009. Quaternary carbonate-rocky talus slope successions (Eastern Alps Austria): sedimentary facies and facies architecture. Facies 55 345–373. https://doi.org/10.1007/s10347-008-0175-z

  • Sanders D. Ostermann M. and Kramers J. 2010. Meteoric diagenesis of Quaternary carbonate-rocky talus slope successions (Northern Calcareous Alps Austria). Facies 56 27–46. https://doi.org/10.1007/s10347-009-0194-4

  • Sanders D. Ostermann M. Brandner R. and Prager C. 2010. Meteoric lithification of catastrophic rock-slide deposits: diagenesis and significance. Sedimentary Geology 223 150–161. https://doi.org/10.1016/j.sedgeo.2009.11.007

  • Sanders D. and Ostermann M. 2011. Post-last glacial alluvial fan and talus slope associations (Northern Calcareous Alps Austria): A proxy for Late Pleistocene to Holocene climate change. Geomorphology 131 85–97. https://doi.org/10.1016/j.geomorph.2011.04.029

  • Sanders D. Widera L. and Ostermann M. 2014. Two-layer scree/snow-avalanche triggered by rockfall (Eastern Alps): significance for sedimentology of scree slopes. Sedimentology 61 996–1030. https://doi.org/10.1111/sed.12083

  • Sanders D. Preh A. Sausgruber T. Pomella H. Oster-mann M. and Sedlmaier A. 2016. Rockfall-triggered long-runout two-layer scree/snow avalanche old rock avalanche deposit and epigenetic canyon incision (Northern Calcareous Alps): consequences for hazard assessment and landscape history. Geo.Alp 13 183–202.

  • Sanders D. Preh A. and Sausgruber T. 2016. Long-runout rock/snow flows: an underrated type of mountain hazard. In: Ortner H. (ed.) GeoTirol2016 Annual Meeting of DGGV and PANGEO Austria Abstract Volume p. 295.

  • Sanders D. Ortner H. and Pomella H. 2018. Stratigraphy and deformation of Pleistocene talus in relation to a normal fault zone (central Apennines Italy). Sedimentary Geology 373 77-97. https://doi.org/10.1016/j.sedgeo.2018.05.013

  • Schmid S. M. Fügenschuh B. Kissling E. and Schuster R. 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97 93–117. https://doi.org/10.1007/s00015-004-1113-x

  • Schneider J.F. Gruber F.E. and Mergili M. 2011. Recent cases and geomorphic evidence of landslide-dammed lakes and related hazard in the mountains of Central Asia. In: Proceedings of the Second World Landslide Forum 3-11 October 2011 Rome 6 pp.

  • Schrott L. Hufschmidt G. Hankammer M. Hoffmann T. and Dikau R. 2004. Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin Reintal Bavarian Alps Germany. Geomorphology 55 45-63. doi.org/10.1016/S0169-555X(03)00131-4

  • Senarclens-Grancy W. 1938. Stadiale Moränen in der Mieminger Kette und im Wetterstein. Jahrbuch der Geologischen Bundesanstalt 88 1–12.

  • Severinghaus J.P. Sowers T. Brook E.J. Alley R.B. and Bender M.L. 1998. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391 141–148.

  • Shugar D.H. and Clague J.J. 2011. The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58 1762-1783. https://doi.org/10.1111/j.1365-3091.2011.01238.x

  • Sundell K.A. and Fisher R.V. 1985. Very coarse grained fragmental rocks: A proposed size classification. Geology 13 692–695.

  • Tollmann A. 1976. Analyse des klassischen nordalpinen Mesozoikums. Franz Deuticke Vienna 580 pp.

  • Tunnicliffe J.F. and Church M. 2011. Scale variation of post-glacial sediment yield in Chilliwack valley British Columbia. Earth Surface Processes and Landforms 36 229-243. doi:10.1002/esp.2093

  • Van Husen D. 1983. A model of valley bottom sedimentation during climatic changes in a humid alpine environment. In: E.B. Evenson C. Schlüchter and J. Rabassa (eds.) Tills and Related Deposits. A.A. Balkema Rotterdam pp. 341–344.

  • Van Husen D. 1987. Die Ostalpen in den Eiszeiten. Populärwissenschaftliche Veröffentlichungen der Geologischen Bundesanstalt Geologische Bundesanstalt Wien. Ferdinand Berger and Söhne GmbH Horn 24 pp. 1 map.

  • Van Husen D. and Reitner J. 2011. An outline of the Quaternary stratigraphy of Austria. E&G Quaternary Science Journal 60 366–387. https://doi.org/10.3285/eg.60.2-3.09

  • Wang X. and Neubauer F. 1998. Orogen-parallel strike-slip faults bordering metamorphic core complexes: the Salzach-Enns fault zone in the Eastern Alps Austria. Journal of Structural Geology 20 799–818.

  • Westreicher F. Kerschner H. Nicolussi K. Ivy-Ochs S. and Prager C. 2014. Ein Bergsturz am Mieminger Plateau oder wie aus einer “postglazialen Moräne” ein holozäner Bergsturz wurde. In: K.A. Koinig R. Starnberger and C. Spötl (eds.) Deuqua 2014 37: Hauptversammlung der deutschen Quartärvereinigung Innsbruck 2014. Inns-bruck University Press Conference Series Universität Innsbruck pp. 149–150.

  • Wölfler A. Kurz W. Fritz H. and Stüwe K. 2011. Lateral extrusion in the Eastern Alps revisited: Refining the model by thermochronological sedimentary and seismic data. Tectonics 30 TC4006 doi:10.1029/2010TC002782 2011.

Journal information
Impact Factor

Impact Factor 2018: 0.432
5 years Impact Factor: 0.843

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 179 15
PDF Downloads 146 146 6