Stable isotope geochemistry and petrography of the Qorveh–Takab travertines in northwest Iran

Open access

Abstract

The Qorveh-Takab travertines, which are connected to thermal springs, are situated in the northwest of the Sanandaj- Sirjan metamorphic zone in Iran. In this study, the travertines were investigated applying petrography, mineralogy and isotope geochemistry. Oxygen and carbon isotope geochemistry, petrography, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were used to determine the source of the CO2 and the lithofacies and to classify the travertines. Isotope studies, morphological and mineralogical observations and distribution of travertines revealed that the travertines of the Qorveh-Takab could be of thermal water origin and, therefore, belong to the thermogene travertine category. These travertines are usually massive with mound-type morphology and are essentially found in regions with recent volcanic or high tectonic activity. The measured δ13C values of the travertines indicate that the δ13C of the CO2 released from the water during travertine deposition, while the source of the CO2 in the water springs seems to have been of crustal magmatic affinity. These travertines are divided into two lithofacies: (1) crystalline crust travertine and (2) pebbly (phytoclastic travertine with pebble- size extraclasts) travertine. δ18O and δ13C values of travertines are -0.6 to -11.9 (‰VPDB) and +6.08 to +9.84 (‰VPDB), respectively. A probable reason for the heavy carbon isotope content observed in these deposits is the presence of algae microorganisms, which was verified by SEM images. Fissure ridges, fluvial crusts with oncoids, and mound morphological features are observed in the study area. Based on the petrographic and SEM criteria, Qorveh-Takab travertines are classified into four groups: (1) compacted, (2) laminated, (3) iron-rich spring deposit and (4) aragonite-bearing travertines. Stable isotope compositions of Turkish travertines are largely similar to the travertines in the study area.

Anzalone, E., Ferreri, V., Sprovieri, M., D’Argenio, B.D., 2007. Travertines as hydrologic archives: the case of the Pontecagnano deposits (southern Italy). Advances in Water Resources, 30, 2159-2175. https://doi.org/10.1016/j.advwatres.2006.09.008

Atabey, E., 2002. The formation of fissure-ridge type laminated travertine-tufa deposits microscopical characteristics and diagenesis, Kirşehir central Anatolia. Bulletin of The Mineral Research and Exploration, 123-124, 59-65.

Boni, M., Gilg, H.A., Balassone, G., Schneider, J., Allen, R.C., Moore, F., 2007. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran. Mineralia Deposita, 42, 799-820. https://doi.org/10.1007/s00126-007-0144-4

Burman, J., Gustafsson, O., Segl, M., Schmitz B., 2005. A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates. Rapid Communications in Mass Spectrometry, 19, 3086-3088. https://doi.org/10.1002/rcm.2159

Casanova, J., 1986. Les stromatolites continentaux: paleoecologie, paleohydrologie, paleoclimatologie. Application au rift Gregory. Doctoral Thesis. Universite´ d’Aix Marseille. France, 70 pp.

Chafetz, H.S. and Folk, R.L., 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology, 54, 289-316.

Chafetz, H.S. and Lawrence, J.R., 1994. Stable isotopic variability within modern travertines. Geographie physique et Quaternaries, 48, 257-273.

D’Argenio, B. and Ferreri,V. 1992. Ambienti di deposizione e litofacies dei travertine quaternari dell’Italia centro-meridionale. Memorie della Società geologica Italiana, 41,861-868.

Gandin, A. and Capezzuoli, E., 2014. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems. Journal of Sedimentology, 61, 264-290. https://doi.org/10.1111/sed.12087

Ghasemi, A. and Talbot, C.J., 2006. A new scenario for the Sanandaj-Sirjan zone (Iran). Journal of Asian Earth Sciences, 26, 683-693. https://doi.org/10.1016/j.jseaes.2005.01.003

GSI (Geological Survey of Iran), 1999. Geology maps of Ghorveh and Kabudar Press, Ahang regions, western Iran: a digitized final map at 1:100,000 scale, Teheran.

Guo, L.I. and Riding, R., 1998. Hot-Spring Travertine Facies and Sequences, late Pleistocene, Rapolano Terme, Italy. Journal of Sedimentology, 45, 163-180.

Hoefs, J., 2004. Stable Isotope Geochemistry. 5th Edition. Berlin, Germany: Springer-Verlag. 244 pp.

Inskeep, W.P. and McDermott, T.R., 2005. Geothermal Biology and Geochemistry in Yellowstone National Park. Eds., Bozeman MT, USA: Montana State University Publications.

Jones, B. and Renaut, R.W., 2010. Calcareous spring deposits in continental settings. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds), Carbonates in Continental Settings. Facies Environments and Processes, Elsevier, Amsterdam, pp. 177-224.

Kalender, L., Oztekin-Okan, O., İnceoz, M., Çetindağ, B., Yildirim, V., 2015. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the

Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, Turkey. Turkish Journal of Earth Sciences, 24, 607-626. https://doi.org/10.3906/yer-1504-27

Karimi Nezhad, M.T., Ghahroudi Tali, M., Hashemi Mahmoudi, M., Pazira, E., 2010. Spatial variability of Sc and Cd concentrations in relation to land use, parent material and soil properties in topsoils of Northern Ghorveh, Kurdistan Province, Iran. World Applied Sciences Journal, 11, 1105-1113.

Kele, S., Demény, A., Siklósy, Z., Németh, T., Tóth, M., Kovács, M.B., 2008. Chemical and stable isotope compositions of recent hot-water travertines and associated thermal waters, from Egerszalók, Hungary: depositional facies and non-equilibrium fractionations. Sedimentary Geology, 211, 53-72. https://doi.org/10.1016/j.sedgeo.2008.08.004

Kele, S., Ozkul, M., Forizs, I., Gokgoz, A., Baykara, M.O., Alcicek, M.C., Nemeth, T., 2011. Stable isotope geochemical study of Pamukkale travertines: new evidences of low temperature non-equilibrium calcite-water fractionation. Sedimentary Geology, 238, 191-212. https://doi.org/10.1016/j.sedgeo.2011.04.015

Kele, S., Vaselli, O., Szabo, C., Minissale, A. 2003. Stable isotope geochemistry of Pleistocene travertine from Budakalász (Buda Mts, Hungary). Acta Geologica Hungarica, 46, 161-175.

Keshavarzi, B., Moore, F., Mosaferi, M., Rahmani, F., 2011. The source of natural arsenic contamination in groundwater, west of Iran. Water Quality, Exposure and Health, 3, 135-147. https://doi.org/10.1007/s12403-011-0051-x

Minissale, A., Kerrich, D., Magro, G., 2002. Structural, hydrological, chemical and climatic parameters affecting the precipitation of travertines in the Quaternary along the Tiber valley, north of Rome. Earth and Planetary Science Letters, 203, 709-728.

Minissale, A., 2004. Origin, transport and discharge of CO2 in central Italy. Earth-Science Reviews, 66, 89-141.

Ozkul, M., Gokgoz, A., Kele, S., Baykara, M.O., Shen, C.C., Chang, Y.W., Kaya, A., Hancer, M., Aratman, C., Akin, T., Oru, Z., 2014. Sedimentological and geochemical characteristics of a fluvial travertine: a case from the eastern Mediterranean region. Sedimentology, 61, 291-318. https://doi.org/10.1111/sed.12095

Ozkul, M., Varol, B., Alçiçek, M., Alçiçek, C., 2002. Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration Journal, 125, 13-29.

Panichi, C. and Tongiorgi, E., 1976. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of Central and Southern Italy: a preliminary prospection method of geothermal area. Proceedings of the 2nd U.N. Symposium on Development and Use of Geothermal Resources, 1975: San Francisco, 815-825.

Pasvanoglu, S. and Chandrasekharam, D., 2011. Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevsehir (Kozakli) area, Central Turkey. Journal of Volcanology and Geothermal Research, 202, 241-250. https://doi.org/10.1016/j.jvolgeores.2011.03.003

Pentecost, A., 1995. Geochemistry of carbon dioxide in six travertine-depositing waters of Italy. Journal of Hydrology, 167, 263-278.

Pentecost, A., 2005. Travertine. Springer, London, 443 pp.

Pentecost, A. and Viles, H.A, 1994. A review and reassessment of travertine classification. Geographie physique et Quaternaire, 48, 305-314.

Prado-Perez, A.J., Hueras, A.D., Crespo, M.T., Martin Sanchez, A., Perez Del Villar, L., 2013. Late Pleistocene and Holocene mid-latitude palaeoclimatic and palaeoenvironmental reconstruction: an approach based on the isotopic record from a travertine formation in the Guadix- Baza basin, Spain. Geological Magazine, 150, 1- 24. https://doi.org/10.1017/S0016756812000726

Rahmani Javanmard, S., Tutti, F., Omidian, S., Ranjbaran, M., 2012. Mineralogy and stable isotope geochemistry of the Ab Ask travertines in Damavand geothermal field, Northeast Tehran, Iran. Central European Geology, 55, 187-212. https://doi.org/10.1556/CEuGeol.55.2012.2.5

Rainey, D.K. and Jones, B., 2009. Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada. Sedimentology, 56, 1832-1857. https://doi.org/10.1111/j.1365-3091.2009.01059.x

Selim, H.H. and Yanik, G., 2009. Development of the Cambazli (Turgutlu/MANISA) fissure-ridge-type travertine and relationship with active tectonics, Gediz Graben, Turkey. Quaternary International, 199, 57-163. https://doi.org/10.1016/j.quaint.2008.04.009

Sierralta, M., Kele, S., Melcher, F., Hambach, U., Reinders, J., Van Geldern, R., Frechen, M., 2010. Uranium series dating of travertine from Sutto: Implications for reconstruction of environmental change in Hungary. Quaternary International, 222, 178-193. https://doi.org/10.1016/j.quaint.2009.04.004

Uysal, I.T., Feng, Y., Zhao, J., Altunel, E., Weatherley, D., Karabacak, V., Cengiz, O., Golding, S.D., Lawrence, M.G., Collerson, K.D., 2007. U-Series dating and geochemical tracing of late Quaternary travertine in coseismic fissures. Earth and Planetary Science Letters, 257, 450-462. https://doi.org/10.1016/j.epsl.2007.03.004

Uysal, T., Feng, Y., Zhao, J., Isik, V., Nuriel, P., Golding, S.D., 2009. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chemical Geology, 265, 442-454. https://doi.org/10.1016/j.chemgeo.2009.05.011

Valero-Garces, B.L., Arenas, C., Delgado-Huertas, A. 2001. Depositional environments of Quaternary lacustrine travertines and stromatolites from high-altitude Andean lakes, northwestern Argentina. Canadian Journal of Earth Sciences, 38, 1263-1283.

Viles, H.A. and Pentecost, A., 2007. Tufa and travertine. In: Nash, D.J., McLaren, S.J. (Eds.). Geochemical Sediments and Landscapes. Wiley-Blackwell, Oxford, pp. 173-199.

Viles, H.A. and Goudie, A.S., 1990. Tufas, travertines and allied carbonate deposits. Progress in Physical Geography, 14, 19-41.

Wang, H., Yan, H., Liu, Z., 2014. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations. Geochimica et Cosmochimica Acta, 125, 34-48. https://doi.org/10.1016/j.gca.2013.10.001

Yoshimura, K., Liu, Z., Cao, J., Yuan, D., Inokura, Y., Noto, M., 2004. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology, 205, 141-153. https://doi.org/10.1016/j.chemgeo.2004.01.004.

Austrian Journal of Earth Sciences

An international journal of the Austrian Geological Society

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 14
PDF Downloads 135 135 20