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Abstract

The current study presents a fully qualitative palynological investigation carried out on the Raha Formation encountered
from three wells in the Bakr Qil Field of the Gulf of Suez, Egypt. Around 30 species of pteridophytic spores, 26 species of an-
giosperm pollen, 24 species of gymnosperm pollen and 27 species of dinoflagellate cysts have been recorded. However,
achritarchs, microforaminiferal test linings and freshwater algae are impoverished and sparsely documented through-
out the Raha Formation. Two palynozones have been identified based on some stratigraphically significant pollen and
spores, arranged from youngest to oldest: (1) Palynozone | (Classopollis brasiliensis-Tricolpites sagax Assemblage Zone) of
late Cenomanian age; (2) Palynozone Il (Afropollis jardinus—Crybelosporites pannuceus Assemblage Zone) of early-middle
Cenomanian age. The distribution and ecological affiliation of specific palynomorph species, as well as various palyno-
facies parameters, are interpreted. A shallow marine environment from supratidal to distal inner neritic under proximal
suboxic—anoxic to dysoxic—anoxic shelf conditions is reconstructed. Palaeobiogeographically, the absence of elaters from
the recovered taxa is interpreted in terms of minor floral variation. This may be attributed to climatic and/or an environ-
ment-controlled niche establishment, which possibly was shaped by the existence of a physical barrier hindering the

distribution of such type of elaterate parent plants.

1. Introduction

Cenomanian deposits of the Tethyan region are wide-
spread in Egypt and in neighbouring countries, for in-
stance, Libya (e.g. Batten and Uwins, 1985; Thusu et al.,
1988), Sudan (e.g. Schrank and Awad, 1990; Schrank,
1992, 1994), Nigeria (e.g. Lawal and Moullade, 1986),
and northern Europe. During this time interval, the Neo-
Tethyan transgression event inundated the cratonic
areas in northern and central parts of Egypt (El Beialy
et al.,, 2010, 2011; Tahoun and Deaf, 2016; Mansour et al.,
2018), North-Central Spain (Floquet, 1998; Peyrot et al.,
2011), the Czech Republic (Cech, 2005) and northern
Europe (Olde et al., 2015), mainly driven by tectonic forc-
es and eustasy (Haqg, 2014).

Various palynological studies on Cretaceous sediments
have been carried out all over the Tethyan territory,
especially concentrating on the Cenomanian-Turonian
boundary interval, which includes one of the most severe
oxygen-deficiency crises in the Mesozoic, i.e. Oceanic
Anoxic Event (OAE) 2 (Schlanger et al., 1987), also known
in Austria (e.g. Pavlishina and Wagreich, 2012).

The Cenomanian deposits in Egypt are recorded from
the Eastern and Western Deserts. The present study aims
to differentiate between the early-middle and late Ceno-
manian ages of the Raha Formation through palynolog-
ical and biostratigraphical analysis. In addition, we try to
interpret the palaeoenvironmental conditions based on

quantitative and qualitative palynological data. The stud-
ied samples of the Raha Formation have been taken from
the Bakr QOil Field (BOF) in the Gulf of Suez, which is one of
the most prolific oil provinces in Egypt (Egyptian General
Petroleum Corporation [EGPC], 1996). The Cenomanian
Raha Formation is one of the promising intervals in the
Gulf of Suez region due to its mostly clastic composition.

Previous palynological studies on the Cenomanian suc-
cessions in Egypt have been carried out mostly in the
northern region of the Western Desert (e.g. Aboul Ela and
Mahrous, 1992; El| Shamma and Arafa, 1992; Schrank and
Ibrahim, 1995; Mahmoud and Moawad, 2000; El Beialy
et al, 2010, 2011; Tahoun, 2012; Tahoun and Mohamed,
2013; Tahoun et al,, 2013, 2015; Tahoun and Deaf, 2016).
On the other hand, those that have focussed on the Cre-
taceous period of the Gulf of Suez include only the study
by Mahmoud et al. (2007).

2. Geologic setting

The Gulf of Suez covers an area of about 25,000 km?
and extends from latitudes 27°30" N to 30°00" N (Fig. 1).
It runs in a northwest-southeast direction and forms an
elongated graben with a length of about 320 km. The
Gulf of Suez formed as the northern extension of the
Red Sea rifting event. The Gulf rift was attributed to be
initiated possibly by two main dynamic forces: regional
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Figure 1: Geological map of the study area within the Gulf of Suez region (modified after Alsharhan, 2003); the inset figure shows the location of the

three wells under study.
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extension across shear zones and/or by the right-lateral
coupled force along it (Meshref, 1990). Rifting occurred
during the repeated lateral displacement between the
Arabian Plate and the Sinai Peninsula in the Late Eocene-
Oligocene epochs (EGPC, 1996). However, Boukhary et al.
(2012) stated that the rifting event occurred during the
latest Oligocene—Early Miocene period. Therefore, the
main structural elements of this rift are half grabens. On
the other hand, the Gulf Rift is subdivided into three main
provinces based on the structural dip of the sedimentary
cover (Moustafa, 1976): the northern Wadi Araba, cen-
tral Belayim and the southern Aml provinces, separated
by the Galala-Abu Zenima and Morgan Hinge zones,
respectively (Bosworth and McClay, 2001).

The BOF is located in the central Belayim province. It
consists primarily of two structurally horst blocks. The
southwest block displays a N-NW trend, whereas the
second one trends more to the NW (EGPC, 1996). Fur-
thermore, Bosworth and McClay (2001) presumed that
the central province of the Gulf commenced rifting from
approximately 25-23 Ma onwards.

In the present study, a normal fault cut across the three
wells, throwing down to the west of Bakr Main Basin
(Fig. 2). As a result, the absence of Palynozone | (late
Cenomanian) is attributed mainly to faulting and erosion
of the upper part of the Raha Formation in B-115 (Fig. 2).
Therefore, the structure indirectly influences the distribu-
tion and the lateral variation of palynozone thicknesses.
Additional structural data of the Bakr-81 well have been
used to improve the subsurface structure between B-109
and B-115.

3. Lithostratigraphy

The lithostratigraphic succession of the BOF ranges in
age from the Precambrian to the Holocene (EGPC, 1996)
and has been subdivided basically into three groups
relative to the Miocene rifting event as follows: the pre-
rift succession (Pre-Cambrian basement to the upper
Eocene); the syn-rift succession (Oligocene-Miocene)
and the post-rift succession (post-Miocene). The pres-
ent study concentrates on the Raha Formation, which
belongs to the pre-rift stage.

The Raha Formation was defined by Ghorab (1961) and
is composed, at its type locality (Gebel Raha, western
Sinai), of a 70- to 120-m-thick clastic and carbonate suc-
cession.The three studied intervals of the Raha Formation
primarily consist of alternating grey-to-black shale and
limestone, with minor intercalations of sandstone. It is
overlain by the Abu Qada Formation and unconformably
underlain by the Nubia A Formation. The Raha Forma-
tion was dated biostratigraphically to be Cenomanian in
age (Ghorab, 1961; Abdallah and El-Adindani, 1963; Kora
et al, 1994). The Raha Formation is equivalent to the
Galala Formation described by Awad and Abdallah (1966)
in the northern region of the Eastern Desert (Northern
and Southern Galala plateaus). The vertical drilling thick-
nesses of the Raha Formation measured 100,94 and 34 m
in wells B-109, B-114 and B-115, respectively.

4. Materials and methods

The selected material for the present study was ob-
tained from the General Petroleum Company (GPC) in
Egypt. A total of 60 cutting samples with their composite
logs from three boreholes in the
BOF in the western coast of the
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Gulf of Suez have been palynolog-
ically investigated. The first well
named B-114 was drilled by the
GPC during 2003, at 28°28'07.26"N
and 33°00'28.61"E, whereas
B-115, was drilled during 2004, at
28°27'43.86"N and 33°00'33.95"E.
The third well, B-109, was drilled
by the GPC during 2001, at
28°27'13.25"N and 33°00'53.58"E.
All samples were processed us-
ing standard palynological prepa-
ration techniques (e.g. Wood et
al, 1996). Each sample (15 g) was
treated with concentrated HF and
HCl acids and then sieved using
a nylon screen with a mesh size
of 15 um. No oxidative agents
(e.g. hydroxides, nitric acid and
ultrasonic treatment) were used.
640 Canada balsam was used as the
639 mounting medium for two micro-
scope slides after extensive mixing

Figure 2: Geologic cross-section with major structural features through the Bakr Oil Field with the

encountered wells.

to obtain homogeneity and cov-
ered by a slide cover (20 x 40 mm).
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All slides and residues are stored in the Micropalaeontol-
ogy and Stratigraphy Laboratory at the Faculty of Science,
Minia University, Egypt.

According to Tyson (1995), the ideal count is >500 par-
ticles per sample. In the present work, a total of 1,000
particles per sample were counted (Supplementary data:
Tables 1-3), as well as the counts of palynofacies catego-
ries (Supplementary data: Tables 4-6).

5. Results and discussion

The preservation of palynomorphs within the studied
samples from the BOF is fair to good. The majority of sam-
ples are dominated by amorphous organic matter (AOM)
and phytoclasts (black and translucent debris), with a low
content of palynomorphs, mainly sporomorphs. Dinofla-
gellate cysts and acritarchs have low to rare occurrence,
respectively. In general, the palynomorph percentages
do not exceed 19.6% of the total organic matter yield
throughout the studied intervals. Individual spore and
pollen specimens often exhibit signs of post-depositional
degradation and distortion. However, the diversity pat-
tern may ultimately be influenced by differential unfa-
vourable conditions of preservation of palynomorphs
(Schrank, 2003). In the same context, the dinoflagellate
cysts, being badly preserved, display a pronounced sur-
face degradation, which can be observed in carbonate
rocks, due to their alkaline properties (Schrank, 1988).
Dinoflagellate cyst diversity is very low throughout the
three boreholes, mostly represented by one or two spec-
imens per sample. All counted samples are plotted in the
AOM-Phytoclasts-Palynomorphs ternary diagram after
Tyson (1995) (Fig. 3).

5.1. Palynostratigraphy and age assessment

An assemblage of 124 palynomorph species belong-
ing to 77 genera was defined from the examined sam-
ples. Two palynozones have been established based
upon the first downhole occurrence of the recorded
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marker taxa and the relative abundance data. Most
of the palynomorph taxa, identified in the present
study, are presented in the semi-quantitative distribu-
tion range charts (Fig. 4). The well preserved taxa and
the taxa of stratigraphic significance are illustrated in
Figures 5 and 6. The present work deals predominant-
ly with the miospore record; however, the biostrati-
graphic significance of some dinocyst species is also
discussed. The established assemblages could be cor-
related with their equivalents in the Gulf of Suez and
the Western Desert, as well as outside Egypt. Two paly-
nological biozones from the youngest to the oldest are
discussed.

5.1.1. Palynozone | Classopollis brasiliensis-Tricolpites
sagax Assemblage Zone

Zone definition

This zone is defined by the first downhole occurrence
of C. brasiliensis and T. sagax, and it extends downwards
to the first downhole occurrence of Afropollis jardinus or
Crybelosporites pannuceus.

Occurrence

In B-114, this zone occurred from depth of 987 m to
945 m (42-m thickness) of the Raha Formation, while in
B-109, it was found from 915 m to 876 m depth (28 m
thick) (Fig. 4).

Diagnosis

Apart from the aforementioned marker species of this
zone, other important taxa, such as Nyssapollenites spp.,
Balmeiopsis limbatus, Triporites spp. and Foveotricolpites
spp., were recorded (Figs. 4 and 5).

Associated taxa

Exesipollenites spp., Monocolpopollenites spp., Classopol-
lis torosus, Araucariacites australis, A. hungaricus, Inaper-
turopollenites spp., Spheripollenites spp., Arecipites spp.,
Exochosphaeridium bifidum, Coronifera oceanica and
Trichodinium castanea were reported in Palynozone |
(Figs. 4 and 5).

Proposed age

The presumed age is late
ne Samples of B-109 well Cenomanian.
u 0 Samples of B-115 well Correlation
R ¥ Santples of B114 woll The present Palynozone | can

100% AOM & B

Figure 3: AOM-Palynomorphs-Phytoclasts ternary diagram (after Tyson, 1995) of samples in Bakr-114,

Bakr-109 and Bakr-115 wells, Bakr Oil Field, Gulf of Suez Basin.
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Figure 4: Range chart of selected palynomorphs taxa in B-114, B-115 and B-109 wells.

distribution of the marker species Triorites africaensis is
not included herein and it is absent in the Gulf of Suez
region. Consequently, Thusu et al. (1988) documented
the last appearance datum of C. brasiliensis as in the late
Cenomanian of the Northeast of Libya (Fig. 7).

In the Cenomanian microfloristic province of the north-
ern parts of the Western Desert of Egypt, C. brasiliensis
was documented from a subsurface palynologically
dated as belonging to the late Cenomanian sequence
(e.g. Aboul Ela and Mahrous, 1992; EI Shamma and
Arafa, 1992; Schrank and lbrahim, 1995; Mahmoud and
Moawad, 2000). Recently, El Beialy et al. (2011) assumed
an age as young as late Cenomanian for the basal part of
the Abu Roash Formation, based on the predominance
of the herein-recorded C. brasiliensis along with Afropollis
cf. kahramanensis and Dichastopollenites ghazalataensis
in the northern part of the Western Desert of Egypt. Nev-
ertheless, A. cf. kahramanensis and D. ghazalataensis are
not documented in the current study. In addition, Tahoun
(2012) and Tahoun and Deaf (2016) identified the same
gymnosperm marker taxon C. brasiliensis and presumed
a late Cenomanian age for the Abu Roash “G” Member
from the Abu Gharadig Basin and Matruh Basin in the
extreme northern region of the Western Desert, Egypt,
respectively.

The last appearance of T. sagax has been recorded from
the upper Cenomanian strata of Abu Gharadig Basin in
the northern part of the Western Desert of Egypt (El-
Beialy, 1994 a, b). Moreover, Schrank and Awad (1990)
identified the same species within the upper Ceno-
manian strata of Khartoum area, Sudan. Srivastava (1994)
reported T. sagax from an upper Cenomanian interval
in the Southern Coastal areas of Tanzania. Nevertheless,

such an angiosperm species has also been widely doc-
umented from the Huincul Formation in the Neuquén
Basin, Argentina (Vallati, 2001), France (Azéma et al,
1972; Ducreux and Gaillard, 1986) and Canada (Burden
and Langille, 1991). Tricolpites cf. sagax and Araucariac-
ites australis have been recorded from the upper Ceno-
manian strata in the Bohemian Cretaceous Basin, Czech
Republic (Cech et al., 2005).

The Triporites pollen species is recorded within Palyno-
zone | and is considered as significant marker species. Its
appearance is generally reported from the upper Ceno-
manian of the Northern Gondwana Realm (Jardiné and
Magloire, 1965; Herngreen, 1973, 1975; Boltenhagen,
1980; Lawal and Moullade, 1986; Muller et al., 1987; Regali
1989; Salard-Cheboldaeff 1990). In Sudan, Schrank (1992,
1994) documented Triporites pollen species from the
upper Cenomanian strata of northern Kordofan. In Egypt,
Schrank and lbrahim (1995) recorded its occurrence in
the upper Cenomanian deposits of Northwestern Egypt.
Moreover, Ibrahim (1996) identified Triporites sp. from an
upper Cenomanian succession from Ghazalat-1 Well in
Qattara Depression, Western Desert, Egypt.

Davey and Verdier (1973) recorded Florentinia deanei
and other Florentinia species in the Tethyan Realm.
Deflandre and Cookson (1955) documented Cycloneph-
elium compactum and C. distinctum from the Australian
Cenomanian deposits. The first downhole occurrence of
Coronifera oceanica has been reported in the upper Ceno-
manian deposits of Paris Basin in France (Fauconnier,
1979) and from the Portuguese Western Basin in Portu-
gal (Hasenboehler, 1981). In South Africa, Davey (1969)
recorded Exochosphaeridium bifidum from a Cenomanian
succession in northern Natal.



§ sciendo

Figure 5: Transmitted light photomicrographs of various palynomorphs of the Raha Formation (Cenomanian), well name, sample depth, and the slide
number; all scale bars are 20 um. (1) Crybelosporites pannuceus (Brenner, 1963) Srivastava, 1977; B-115, 1,011 m, slide B. (2) Cyathidites australis Couper,
1953; B-109, 891 m, Slide B. (3) Araucariacites australis Cookson, 1947 ex Couper, 1953; B-109, 879 m, Slide C. (4) Afropollis jardinus (Brenner) Doyle et al.
1982;B-114, 1,008 m, Slide C. (5) Callialasporites discoidalis (Doring) Bharad and Kumar 1972; B-109, 891 m, Slide B. (6) Ephedripites sp.; B-109, 903 m, Slide
A. (7) Rousea delicipollis Srivastava, 1977; B-109, 894 m, Slide C. (8) Nyssapollenites sp.; B-115, 1,023 m, Slide B. (9) Classopollis brasiliensis Herngreen, 1975;
B-114,987 m, Slide A. (10) Classopollis cf. brasiliensis Herngreen, 1975; B-114, 987 m, Slide A. (11) Classopollis cf. brasiliensis Herngreen, 1975; B-114,987 m,
Slide A. (12) Triporites sp.; B-109, 894 m, Slide A. (13) T. sagax Couper, 1960; B-109, 897 m, Slide B. (14) T. sagax Couper, 1960; (equatorial view) B-109,
891 m, Slide A. (15) Trichodinium castanea Deflandre, 1935 ex Clarke and Verdier, 1967; B-114, 966 m, Slide A. (16) Systematophora aff. cretacea Davey,
1979; B-115, 1,023 m, Slide C. (17) Coronifera oceanica Cookson and Eisenack, 1958; B-115, 990 m, Slide A. (18) Circulodinium distinctum (Deflandre and
Cookson, 1955) Jansonius, 1986; B-115, 1,023 m, Slide A. (19) Hystrichosphaeridium recurvatum (White, 1842) Lejeune-Carpentier, 1940; B-115, 996 m,
slide A. (20) Leiosphaeridium sp.; B-115,993 m, Slide B. (21) Ovoidites parvus (Cookson and Dettmann) Nakoman, 1966; B-109, 888 m, slide B. (22) Pedia-
strum boryanum (Turpin 1828) Meneghini 1,840; B-115, 1,023 m, slide B. (23) Microforaminiferal test lining; B-109, 891 m, slide A. (24) Microforaminiferal
test lining; B-109, 891 m, Slide A.
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Figure 6: Transmitted light photomicrograph of palynofacies components encountered within the rock samples of the Raha Formation. A, C represent
palynofacies associations of B-114; B shows a palynofacies assemblage of B-115; and D represents a palynofacies assemblage of B-109.

5.1.2. Palynozone Il Afropollis jardinus-
Crybelosporites pannuceus Assemblage Zone

Zone definition

This zone is defined by the first downhole occurrence of
Afropollis jardinus and Crybelosporites pannuceus, extend-
ed downwards to the base of studied wells.

Occurrence

In B-114, this zone occurred at a depth ranging
from 1,038 m to 987 m (51 m thick) of the Raha For-
mation, while in B-109, it occurred from 975 m to
915 m depth (60 m thick); in B-115, it occurred from

1,023 m to 987 m depth (36 m thick) of the Raha Forma-
tion (Figs. 4 and 5).

Diagnosis

Beside the marker species of this zone, other important
taxa such as the angiosperm Retimonocolpites variplicatus
and the marine dinocysts Florentinia deanei, Florentinia
spp., Circulodinium distinctum and C. compactum are
recorded.

Associated taxa

Exesipollenites spp., Monocolpopollenites spp., Classopol-
lis torosus, Balmeiopsis limbatus, Araucariacites australis,
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A. hungaricus, Inaperturopollenites spp., Spheripollenites
spp., Foveotricolpites spp., Arecipites spp. and Exochos-
phaeridium bifidum are documented within this interval
(Figs. 4 and 5).

Proposed age

The presumed age is early-middle Cenomanian.

Correlation

Afropollis jardinus, a characteristic species has been
recorded for the first time in the lower-middle Ceno-
manian deposits of northern Gondwana (Doyle et al.,
1982). The stratigraphically important Afropollis jardinus
and Crybelosporites pannuceus characterise the Ceno-
manian sediments, and their first downhole appearances
were repeatedly reported from the following regions: the
lower-middle Cenomanian strata of Egypt in the Qattara
Depression, northern part of the Western Desert (lbra-
him, 1996); an outcrop succession of the Dakhla Oasis
in the central region of the Western Desert (Schrank
and Mahmoud, 1998); and the subsurface succession of
the Bahariya Formation, northern region of the Western
Desert (Tahoun and Mohamed, 2013). The top range of
the sporomorphs A. jardinus and C. pannuceus were doc-
umented from the lower-middle Cenomanian subsurface
intervals of the northern region of the Western Desert of
Egypt (e.g. Sultan and Aly, 1986; Aboul Ela and Mahrous,
1992; Schrank and Ibrahim, 1995; El Beialy et al. 2010,
2011). Furthermore, Ibrahim (2002) documented the last
appearance datum of these two taxa as the middle-late
Cenomanian boundary.

Globally, Hasenboehler (1981) documented such
marker taxa from the early-middle Cenomanian of the
Portuguese Western Basin of Portugal. Moreover, Schrank
(1990) identified the same species in the lower-middle
Cenomanian strata of the clastic sediments between
Dongola and Wadi Mugaddam in northern Sudan. (In
northeast Libya, Batten and Uwins (1985) recorded the
common occurrence of Afropollis cf. jardinus and Crybe-
losporites sp. from subsurface succession of the north-
ern part of the Cyrenaica Shelf. In Northeastern Nigeria,
Lawal and Moullade (1986) documented A. jardinus and
Hexaporotricolpites potoniei with an age no younger than
early-middle Cenomanian in the lower part of Zone |
(Subzone la) in the Upper Benue Basin. However, the
latter species are not recorded within the sedimentary
succession all over Egypt.

On the contrary, Mahmoud et al. (2007) recorded the
topmost appearances of Retimonocolpites variplicatus
within the early Cenomanian from the onshore sedi-
ments of the northern part of the Gulf of Suez, Egypt.
Recently, Tahoun and Mohamed (2013) recorded the
same bioevent for R. variplicatus in the early Cenomanian
of the northern region of Western Desert of Egypt.

Florentinia deanei and other Florentinia spp. were abun-
dantly reported from the lower-middle Cenomanian in
Egypt and the Tethyan Realm. In the Gulf of Suez area,
Mahmoud et al. (2007) recorded Florentinia laciniata and
F. resex in the lower Cenomanian succession. Cycloneph-
elium compactum and C. distinctum were recorded from

the Australian lower Cenomanian deposits (Deflandre
and Cookson, 1955). Similar specimens were previously
recorded from the Cenomanian in the Tethys region. F.
laciniata has been recorded in France by Courtinat et al.
(1991) and in Portugal by Hasenboehler (1981). Moreover,
Florentinia deaneihas been recorded by Davey (1969) and
Foucher (1979) in France.

However, poor recovery of the lower-middle Ceno-
manian strata of the Raha Formation, followed mainly
by the exhaustive disappearance of palynological
assemblages in several samples, may be related to
unfavourable lithologies (Peyrot et al., 2011). Pearce et
al. (2009) also pointed out to low palynomorph recovery,
especially dinocysts, in improper sediments, which are
responsible for such vulnerable-to-absent palynomorph
preservation.

5.2. Palynofacies distribution

Palynofacies is a term commonly used to describe the
total particulate organic matter (POM) assemblage con-
tained in a body of sediment thought to reflect a specif-
ic set of environmental conditions or to be associated
with a characteristic range of hydrocarbon-generating
potential (Tyson, 1995). The main targets of palynofacies
investigation are demonstration of the proximal-distal
trends of the shoreline along with major transgressive—
regressive episodes of the sea level, as well as to interpret
the environmental conditions of the Raha Formation,
thus, contributing to the knowledge on the geological
evolution during the Cenomanian of the Gulf of Suez in
general, and the Bakr Field in particular.

In B-114, the first assemblage of the investigated samples
extends from 1,035 m to 1,008 m, with samples at separate
depths of 993,990, 981, 966, 957, 954 and 948 m. This asso-
ciation is characterised by a relatively high abundance of
phytoclasts (59.4%-41.1%) and AOM (58.9%-38.5%), with
a low percentage of palynomorphs (5.2%-0%). However,
the second group of samples spans depths of 1,038, 969,
963,960 and 951 m, which are characterised by adominant
high abundance of phytoclasts (79.9% at a depth of 969
m, to 64.5% at a depth of 963 m), moderate-to-low abun-
dance of AOM (35.5%-18.5%) and very low abundance
of palynomorphs (0%-1.7%) (Table 4 in Supplementary
data). The third group, hosting the samples at depths of
945,972,975, 987,996 and 1,005 m, is characterised by an
overabundance of AOM (90.7%-64.4%), moderate-to-low
phytoclasts (36.8%-8.6%) and low abundance of paly-
nomorphs (7.9%-0%) (Table 4 in Supplementary data).
Consequently, the translucent phytoclasts are basically
greater than the opaque woody particles throughout the
borehole. However, in the third group, the opaque phy-
toclasts, which dominate over the translucent particles
(7.7%-1.8%), range from 21.4% to 6.6%. In addition, the
equidimensional opaque phytoclasts represent an over-
whelming majority rather than the lath-shaped opaque
debris throughout the succession (Fig. 7).

In B-115, samples at depths of 996, 999, 1,005, 1,008,
1,011 and 1,023 m have high abundance of AOM
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(57.8%-42.3%), with high-to-moderate abundance
of phytoclasts (56.5%-31.9%) and moderate-to-low
abundance of palynomorphs (19.6% at a depth of
1,011 m to 0.6% at a depth of 999 m). Generally, the
phytoclasts herein are overwhelmingly dominated by
the opaque particles and particularly reach their max-
ima at depths of 999 m and 1,008 m. The sporomorph
count reaches its maximum peak compared to the low
dinocyst count at a depth of 1,011 m. Furthermore,
the foraminiferal test linings record a remarkable per-
centage up to 2.9% at a depth of 1,023 m (Table 5 in
Supplementary data). The samples, which include
depths of 987-993, 1,002 and 1,014-1,020 m, are
dominated by a plethora of AOM (89.8%-66.4%), with
moderate-to-low abundance of phytoclasts (32.1%-
5.1%) and low-to-no occurrence of palynomorphs
(5.2%-0%) (Table 5 in Supplementary data). It is worth
mentioning that samples at depths of 1,017 m and
1,020 m seem to be distinctive within a local red-shale
horizon. However, in this interval, the richness of paly-
nomorphs decreases markedly, from five specimens of
both pollen grains and dinoflagellate cysts at 1,020 m
depth to absent at 1,017 m. Consequently, the pre-
served individuals reveal reddish brown colour as a
consequence of oxidation, whereas a typical distortion
of two undefined specimens of pollen grains and dino-
flagellates is attributed to abnormal concentration of
iron oxides (Fig. 8).

In B-109, samples at depths of 915, 906-903, 897, 891
and 876-885 m are characterised by AOM richness
(89%-60.5%), with relatively moderate abundance of
phytoclasts (25.1%-10.1%) and moderate-to-low con-
tent of palynomorphs (15.2%-2.5%) (Table 6 in Supple-
mentary data). However, the total sporomorph count
records three peaks at depths of 906, 903 and 897 m, with
approximate counts of 125-150 individuals, whereas
the total dinocyst count records two peaks at depths of
897 and 879 m, respectively. The second group of B-109,
located at depths of 975-918, 909, 900, 894, and 888 m,
is predominantly characterised by high abundance
of phytoclasts (69.9%-28%), high abundance of AOM
(58.4%-30.1%), with low-to-negligible abundance of pal-
ynomorphs (15.3%-0%) (Table 6 in Supplementary data).
Moreover, the translucent phytoclasts have convergent
abundance with the opaque debris throughout the bore-
hole. The sporomorph count records two main peaks at
depths of 900 m and 888 m, together with a noticeable
peak of the marine/terrestrial ratio recorded at a depth
of 894 m (Fig. 9).

In summary, there is a successive fluctuation of the POM
constituent throughout the three wells. However, the lat-
eral observation of organic particles between the three
sections indicates predominantly similar kerogen abun-
dances and composition. The recorded palynomorphs
are mostly terrestrial representatives such as spores and
pollen grains, whereas marine representative palyno-
morphs of dinocysts and microforaminiferal test linings
are also recorded, yet in very low abundances.
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5.3. Palynofacies and palaeoenvironmental
implication

For a detailed palaeoenvironmental study based on pal-
ynofacies, a quantification of the kerogen content and
composition was carried out. Both the composition of
POM and its distribution are controlled by the influence
of ecological and sedimentological processes within the
physical environment. The compositional change of POM
indicates significant information for palaeoenvironmen-
tal interpretation in terms of transgressive-regressive
trends and relative sea-level changes (Harker et al., 1990;
Tyson, 1995; Batten, 1996; Pittet and Gorin, 1997; Tahoun
and Deaf, 2016; Mansour et al., 2018). The POM group is
the product of compiling various factors (i.e. marine paly-
nomorph versus terrestrial influx, source and rate of sedi-
ment influx, water salinity, depth, oxygen concentrations,
and so on) within a given depositional environment (Ty-
son, 1993; Pittet and Gorin, 1997; Tahoun, 2012; Tahoun
etal,, 2013, 2017).

Herein, electrical well log data (e.g. logs of gamma ray,
density and neutron porosity) could principally assist
in interpreting the depositional palaeoenvironments.
Changes in the gamma ray data reflect the lithological
facies and their vertical variations based upon their grain
sizes throughout the successions. Thereby, fine-grained
sand facies usually are shale rich and, consequently, have
higher gamma-ray values and vice versa, whereas car-
bonate facies commonly have lower gamma-ray readings
(Rider, 2004).

In this study, all samples of the Raha Formation are
plotted in the AOM-Phytoclast-Palynomorph ternary
diagram after Tyson (1993, 1995) (Fig. 3). This plot is used
to indicate various types of kerogen assemblages, the
redox status of the depositional environments, proximi-
ty to terrestrial organic matter sources, as well as relative
proximity to kerogen transport paths. However, the prox-
imal-distal trend considers one of the main factors con-
trolling the kerogen distribution. On the other hand, the
documented palynomorphs, either terrestrially derived
or marine-inhabited palynomorphs, are utilised to illus-
trate dissimilarities during deposition of the Raha For-
mation (Figs. 8-10). Both spores and pollen grains in the
studied samples are considered as major constituents of
the total palynomorphs content compared to dinocysts
and acritarchs. These terrestrial palynomorphs are mainly
used as substantial indicators of the conspicuous alloch-
thonous fluviatile input as well as proximity to shore-
line trends within the depositional palaeoenvironment
(Tyson, 1995; Pittet and Gorin, 1997; Tahoun et al., 2017;
Mansour et al., 2018).

The Cenomanian Raha Formation and its equivalents
all over Egypt have been deposited in a shallow marine
environment during the major Cenomanian transgres-
sion (Kerdany and Cherif, 1990; Schiitz, 1994; Anan et al.,
2013; El Fawal et al., 2014). The qualitative and quantita-
tive analyses of POM constituents encountered within
the Raha Formation indicate three depositional palaeo-
environmental settings.
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Figure 8: Sedimentary organic material distribution and palaeoenvironmental indication of B-114 well.

5.3.1. Supratidal environment

The supratidal environment developed in areas above
normal high tide, where storms are the only flooding
dynamic process (Schlager, 2005). It is characterised by
the deposition of coastal dunes developed by aeolian
transport and reworked sand from adjacent beaches
(Perry and Taylor, 2007). In addition, the window of
marine carbonate production decreases to zero in such
conditions (Schlager, 2005). The supratidal environ-
ment has been repeatedly reported at different inter-
vals of the Raha Formation. In B-114, it alternates with
inner neritic environment from 1,031 m to 1,020 m,

whereas in B-109, it covers an interval from 972 m to
966 m (Figs. 8 and 10).

The deposits of the supratidal environment are char-
acterised by convergent percentages of the AOM and
phytoclasts. The onshore to shallow supratidal setting is
supported by the dominance of translucent and equidi-
mensional opaque phytoclasts. However, the dominance
of the translucent phytoclasts over opaque particles
indicates a strong terrestrial influx and, therefore, sug-
gests deposition in a nearshore proximal setting (Tyson,
1989). In contrast, equidimensional opaque particles are
the foremost constituent compared with the lath-shaped
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Figure 9: Sedimentary organic material distribution and palaeoenvironmental indication of B-115 well.
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Figure 10: Sedimentary organic material distribution and palaeoenvironmental indication of B-109 well.

opaque particles, which in turn is controlled by the hydro-
dynamic equivalence and, thus, indicates a pronounced
shore proximity during deposition (Tyson, 1995; Pittet
and Gorin, 1997; Tahoun et al., 2013; Tahoun et al., 2017).
The marine/terrestrial ratio records a very low to negligi-
ble percentage, indicating deposition above normal high
tide. Moreover, the relative absence of marine palyno-
morphs (e.g. dinoflagellate cysts) and the very poor spo-
romorph count reflect deposition in a proximal onshore
environment (Tyson, 1993, 1995; Pittet and Gorin, 1997;
Mansour et al., 2018). Generally, the supratidal deposits

have a very poor to absent palynomorph record. The
previous palynological criteria strongly underpinned the
deposition of these intervals in a shallowing supratidal
environment (Figs. 8-10).

5.3.2. Proximal inner neritic environment

The shallow neritic or subtidal environment was
defined by Ahr (2008) as the submerged zone that ex-
tends from the lowest low tide line to a relative depth
of 200 m, without depth designation that distinguishes
among inner, middle and outer neritic environments.
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Based upon the integration of the palynologic and the
lithologic data, proximal inner neritic conditions are con-
sidered the main environment during deposition of the
Raha Formation. However, the palynofacies association
in most samples of the proximal inner neritic deposits is
dominated by AOM and phytoclasts. This is particularly
related to various controlling factors (e.g. the minor fluc-
tuation of the relative sea level along with the proximity
to the coastline, as well as terrestrial/fresh water influx).
The equidimensional opaque particles exhibit higher
percentages than the lath-shaped opaque debris. These
parameters markedly reflect the same above-mentioned
scenario based on hydrodynamic equivalence of the
micro-fragment woody particles and strongly suggest
deposition in shallower proximal inner neritic envi-
ronment (Tyson, 1995; Pittet and Gorin, 1997; Tahoun
et al., 2013; Tahoun and Deaf, 2016; Tahoun et al., 2017;
Mansour et al., 2018).

The quantitative distribution is commonly dominated
by pollen grains in all samples that are deposited with-
in proximal inner neritic shelf environment. The here-
in-reported Araucariacites, which mainly inhabits areas
of dry hinterland (Schrank and Mahmoud, 1998), is, by
far, the main constituent of gymnosperms. Araucariac-
ites, Classopollis and Spheripollenites altogether made up
>70% of the total counted pollen grains (Supplementary
data: Tables 1 and 3). The relative abundance of Afropol-
lis and Ephedripites pollen indicates an arid to semi-arid
warm climatic conditions (e.g. Mahmoud and Moawad,
2002). These pollen-producing plants commonly inhabit
in palaeotropical humid coastal plains (Schrank, 2001; El
Beialy et al., 2011). However, their prevalence with ma-
rine phytoplankton in the Raha Formation appears to be
partially driven by hydrodynamic properties during pro-
nounced terrigenous sediment influx and deposition in
shallow water environment.

The spores are usually documented in considerable
counts at depths of 879, 888, 903 and 906 m in B-109, at
a depth of 1,011 m in B-115 (up to 58 individuals) and
at 1,002 m in B-114 m (Supplementary data: Tables 4-6)
(Figs. 9 and 10). The pteridophytic spore associations in
such samplesare dominated by Cyathidites, Deltoidospora,
Crybelosporites and Biretisporites. The presence of the fern
groups Cyathidites and Deltoidospora, growing on wet
biotopes under warm subtropical conditions (Kedves,
1986; Schrank and Mahmoud, 1998), indicates that such
intervals have been deposited close to active terrigenous
sediment influx. The water fern spore Crybelosporites
inhabits mainly freshwater bodies (e.g. ponds and/or
lakes, Mahmoud and Moawad, 2002), thus also reinforc-
ing the conspicuous terrestrial influx and deposition in
proximal shallow-marine environments.

In contrast, samples at depths of 1,008, 1,002 and 990
m in B-114 have AOM proliferation and marine palyno-
morph (e.g. dinoflagellate cysts) content (Fig. 8), which
may represent a transgressive phase. Further, in B-115,
two noticeable peaks of the total dinocyst count are
reported at depths of 1,005 m and 1,023 m, whereas in
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B-109, three remarkable peaks are recorded at depths of
879, 885 and 906 m. The relative abundance of the doc-
umented dinocysts in the aforementioned samples is
dominated by the gonyaulacoid cysts Cyclonephelium,
Heterosphaeridium, Florentinia, Systematophora and Exo-
chosphaeridium, with rare occurrence of Spiniferites. The
gonyaulacoid dinocyst genus Cyclonephelium is mainly
attributed to warm, marginal marine, proximal inner ner-
itic conditions (Brinkhuis and Zachariasse, 1988; Eshet
et al.,, 1992; Brinkhuis, 1994). However, the presence of
Spiniferites, Exochosphaeridium and Florentinia is com-
monly related to open marine, outer shelf settings, which
are impoverished and sparsely recorded in these inter-
vals (Marshall and Batten, 1988; Brinkhuis, 1994).

On the other hand, it is worth mentioning that samples
at depths of 1,020 mand 1,017 m in B-115 are dominated
by iron-rich shale. Nonetheless, the petrographic analy-
sis of these samples under a microscope clearly shows
a flaky, silty fissile structure. Therefore, this Fe-rich shale
facies indicates that the primary sedimentary structure
of shale is well preserved. So, we suggest that it was
formed syndepositionally in an oxygen-rich environment
(Tucker, 2001). In contrast, Mansour et al. (2018) located
a sequence boundary within this interval and illustrated
that it was deposited primarily during a stage of relative
fall of sea level in a shallow proximal inner neritic zone,
where the conditions were highly oxic. The palynofacies
assemblages indicate proximal oxic-suboxic to —anox-
ic shelf conditions as deduced from the ternary plot of
Tyson (1995) (Fig. 3).

5.3.3. Distal inner neritic environment

The distal inner neritic environment has been recorded
at different intervals of the Raha Formation. In B-114, it
occurs at depths of 999-996 m and 990-983 m (Fig. 8),
whereas in B-109, it occurs at depths of 900-879 m
(Fig. 10), which was accompanied by a consecutive minor
fluctuation within a proximal inner neritic environment,
which resulted from successive changes of the relative
sea level.

The distal inner neritic deposits are mainly dominated
by shales and limestones. The gamma ray values of the
distal inner neritic facies are generally high in case of
shale and very low to negligible in case of limestone and
carbonate. Therefore, a drastic rise of the relative sea level
is suggested owing to a drastic decrease of grain sizes,
where the sedimentary facies tend to be shale rich, and
a deepening trend during deposition can be deduced
(Mansouretal., 2018). Allsamples of the distal inner neritic
deposits are overwhelmingly dominated by AOMin B-114
(forinstance, up to 87.3% at a depth of 999 m) as opposed
to their equivalents in B-109. Consequently, the AOM
characterises stagnant, low-energy, oxygen-depleted
environments (Tyson, 1987). It gives an indication of
shallower conditions and proximity of shoreline to-
wards the south, where B-109 is located (Figs. 8 and 10).
Moderate-to-high marine/terrestrial ratio occurs through-
out the distal inner neritic intervals, with significant
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peaks recorded at depths of 894, 882 and 879 m in B-109.
However, wind-transported pollen grains are the major
constituent of the total sporomorph count as opposed to
negligible pteridophyte spores, which reinforced by low
spores/pollen ratio, indicates a relatively distal marine
setting (Lister and Batten, 1988; Tyson, 1993; Tahoun et al.,
2017; Mansour et al., 2018). It is basically dominated by
the gymnosperm Classopollis, reflecting derivation from
coniferous plants, xerophyte precursors likely related
to lagoonal and/or back-barrier islands (Peyrot et al.,
2011) and probably deposited during major transgres-
sion of the sea level in areas at far distance from the site
of its origin (Yi et al., 2003). In addition, the distribution of
the Araucariacites group is usually common but less con-
trasted than the intervals of the above-mentioned envi-
ronment (Supplementary data: Tables 1 and 3), reflecting
relatively deeper conditions during deposition.

By contrast, remarkable peaks of the dinocyst count are
documented at a depth of 987 m in B-114 and at depths
of 900, 897 and 879 m in B-109 (Figs. 8 and 10). In B-114,
the dinocystassemblage is dominated by Heterosphaerid-
ium, Trichodinium, Florentinia, Spiniferites and Oligos-
phaeridium, whereas in B-109, the skolochorate dinocyst
Florentinia, Spiniferites and Oligosphaeridium groups are
absent. In this context, the dinocyst-dominated assem-
blages corresponded to deeper conditions of sea level
towards the north where B-114 is located, and a distal
inner neritic environment is suggested. Furthermore,
Trichodinium castanea, like the Spiniferites group, exhib-
its a deeper setting (Peyrot et al.,, 2011). Freshwater algae
and achritarchs are sparsely recorded through the Raha
Formation and point to a relative marine transgression.

Lower counts of spores to zero are significantly paral-
leled by the combined predominance of the spheroidal
pollen grains and dinocysts strongly linked to a pro-
nounced marine incursion of relative sea level (Lister
and Batten, 1988; Tyson, 1993; Tahoun et al.,, 2017). The
palynofacies assemblages of the herein-documented
intervals indicate distal suboxic-anoxic shelf conditions
as inferred from the ternary diagram of Tyson (1995),
which plot in the palynofacies field IX (Fig. 3). The pre-
vious palynofacies and palynological clues that confirm
distal positions from a terrestrial input and increasing au-
tochthonous marine constituents, therefore, strengthen
our result as a distal inner neritic environment.

5.4. Palaeobiogeographic implication

The sporomorphs could be effectively used in
delineating the floral provinces and as supporting good
evidences for palaeobiogeography. Since the Creta-
ceous time, immense phytogeographic differences in
the vegetation all over the world have been documented
(Brenner, 1976). During the mid-Cretaceous time, four
latitudinally controlled floristic provinces that are charac-
terised by distinct palynofloristic features can be distin-
guished (Batten, 1984).

In the present study, the recovered sporomorphs
show remarkable diversity and abundance of various

gymnosperms, such as Araucariacites, Classopollis, Cyca-
dopites and Ephedripites, and a relatively homogeneous
diversity pattern of angiosperm pollen such as Afropol-
lis, Tricolpites and Retimonocolpites. Moreover, the low
diversity of pteridophyte spores, represented mainly
by Deltoidospora, is coupled with the rare occurrence
of bisaccate pollen versus the common occurrence of
the marker Crybelosporites. Such sporomorphs show
collectively striking similarity to the low-latitude, equa-
torial, Northern Gondwana province (Hochuli, 1981),
African-South American (ASA) province (Herngreen and
Chlonova, 1981) or its recent alternative elaterate Albian—
Cenomanian microfloral province (Herngreen et al., 1996)
(Fig. 11).

The only notable difference from the typical assem-
blage of the ASA province is the absence of elater-bear-
ing forms in the present material. Such elater-bearing
pollen typifies the late Albian—-Cenomanian times and
is enhanced in number and specific diversity during the
Cenomanian. Doyle et al. (1982) accounted for these
endemic taxa to be concentrated and appear amply in
the mid-Cretaceous of equatorial regions (Brazil, Gabon,
Ghana and Senegal). It is worth remarking that the diver-
sity of these flora declines to the northward and north-
westward direction from the equator. Their quantity de-
creases towards the north of Egypt, Sinai, Libya, Tunisia,
and Morocco and also to the south of Patagonia and Mad-
agascar, where bisaccate and trisaccate pollen are dom-
inating. According to Herngreen and Chlonova (1981),
the species diversity of the elater-bearing sporomorphs
is thriving in the axial zone of the mid-Cretaceous ASA
microfloral province, which is close to the palaeoequator
as reconstructed by Phillips and Forsyth (1972). Moreover,
Herngreen and Chlonova (1981) assumed that the south-
ern boundary of the ASA province may preliminarily be
drawn through the northernmost part of South Ameri-
ca, Surinam offshore from Peru, Northeastern Brazil via
West Africa, while the northern boundary may be drawn
through the northern part of South America, extending
to Senegal and via Algeria, Tunisia and Egypt to Israel.

The absence of elaters from the present material ex-
hibits minor differences in the type of flora than those
recorded from the equatorial regions. This may be
attributed to some climatic difference from the hot tropi-
cal climate at the equator to a humid subtropical climate
towards the north. Moreover, it may strongly imply prox-
imity to the separating northern discontinuity boundary
of the Northern Gondwana Province, with a transitional
affiliation for Egypt between the Northern Gondwana
Province and the Southern Laurasia Province (Brenner,
1976). However, the temporal and geographical distri-
bution of such assemblages may substantially be facies
dependent, or elevation to full zonal status is reserved
until further ongoing research in the Gulf region is com-
plete (Paterson and Mangerud, 2015). But the common
occurrence of elaters documented in the middle Albian-
Cenomanian of the northern part of the Western Desert
(Schrank, 2000; El Beialy et al., 2010; Tahoun et al., 2012;
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Figure 11: The proposed presence of environment-controlled small niche or micro-environments in the studied area within the boundaries of Albian—
Cenomanian elaterate province based on the complete absence of elater-bearing pollen in the present material (modified after Herngreen et al. 1996;

Ibrahim et al. 2000).

Tahoun and Mohamed, 2013; Tahoun et al., 2015), Libya
(Thusu et al., 1988) and towards the north of the Gulf
of Suez region (Deaf, 2009) negates this assumption. In
addition, the proximity to the separating eastern bound-
ary of the Northern Gondwana Province is not excluded,
but the record in Qatar in the Arabian Gulf area (Ibrahim
et al., 2000) contradicts this assumption, too (Fig. 11).
Batten and Li (1987) and lbrahim et al. (2000) outlined
that the geographic extent of the Albian-Cenomanian
elaterate floral province is much greater than originally
thought and that it has a far wider distribution, with new
emphasis recorded from China and Papua New Guinea
(Fig. 11). It is feasible at different scales to illustrate the
remarkable compositional variations that include the
absence of some taxa that relate directly to particular fa-
cies change within the defined environmental confines
(Helby et al., 1987). The absence of elater-bearing forms
may be explained as they have been come into eyesight
extensively in the equatorial region, but to a lesser ampli-
tude, they have been accounted for in Egypt. However,
the complete absence of elaters may be attributed to the
existence of a physical or biological barrier that hinders
the distribution of such type of elaterate parent plants
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and results in considerable variances in sedimentological
processes and remarkable limiting and controlling envi-
ronmental conditions. Such a probable barrier may cre-
ate various micro-environments or definite bio-niches in
the site of deposition of the present study area.

6. Conclusions

The palynological analysis of the Cenomanian suc-
cessions in the B-114, B-115 and B-109 wells of the BOF
differentiates two palynozones: (1) the early-middle Ceno-
manian Afropollis jardinus and Crybelosporites pannuceus
Assemblage zone (Palynozone lI) assigned for the lower
part of the Raha Formation; and (2) the late Cenomanian
C. brasiliensis and T. sagax Assemblage zone (Palynozone
I) allocated for the upper part of the Raha Formation.
There are significant co-occurring palynomorph species,
which provide a powerful tool for the biostratigraphic zo-
nation, such as the dinocysts Florentinia deanei, Florentin-
ia spp. within the lower-middle Cenomanian zone and
the Nyssapollenites spp. and Triporites sp. in the upper
Cenomanian succession.

In addition, a structural cross-section is constructed
between the studied wells revealing the tectonic
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overprinting of the Raha Formation, where a normal fault
markedly eroded the upper part of the Raha Formation
in B-115. The amalgamation between the palynologi-
cal data, of specific spores, pollen grains and dinocysts
commonly used as environmental indicators, and the
palynofacies analysis has revealed that the depositional
palaeoenvironment of the Raha Formation was deposited
in a continental shelf setting fluctuating from supratidal
to distal inner neritic conditions. Such conditions took
place during the Neo-Tethyan transgression event, which
inundated the African cratonic regions generally and
the Gulf of Suez especially. Accordingly, this event was
derived from the north where B-114 is located towards
B-109 in the south.

The absence of elaters from the studied samples may
be explained in terms of minor variation in the type of
microflora, which may be attributed to some climatic
dissimilarity and environment-controlled niche. In addi-
tion, it may be shaped by the existence of a physical bar-
rier hindering the distribution of such type of elaterate
parent plants.
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§ sciendo

Phytoclasts AOM Palynomorphs Microplankton Spore Pollen

1038A 67.0 33.0 0.8 0 1 7
1035A 48.1 51.9 0.2 0 0 1

1032B 50.0 50.0 0.0 0 0 0
1029B 43.1 56.9 0.0 0 0 0
1026A 54.1 45.7 0.2 0 0 2
1023B 45.7 54.1 0.2 0 0 2
1020A 45.5 53.9 0.8 1 1 6
1017B 47.4 51.8 0.1 0 0 0
1014B 433 56.0 0.1 0 0 0
1011A 50.0 46.8 2.6 15 0 12
1008A 49.5 46.6 3.5 23 1 12
1005A 8.6 90.6 0.7 7 0 0
1002A 28.5 63.3 79 58 6 18
999B 124 87.0 0.3 3 0 0
996A 23.2 76.8 0.0 0 0 0
993B 54.3 454 0.0 0 0 0
990B 44.2 50.4 5.2 39 1 15
987A 36.7 50.6 12.5 83 0 58
981A 413 57.7 0.3 3 0 0
975A 34.2 63.9 1.1 11 0 0
972A 17.5 80.5 1.6 15 0 1

969A 79.6 184 1.6 13 0 1

966A 59.1 38.4 2.1 18 0 4
963A 64.2 354 0.0 0 0 0
960B 72.1 27.8 0.1 1 0 0
957A 54.4 45.6 0.0 0 0 0
954B 55.4 44.2 0.4 0 0 4
951B 69.7 28.6 1.7 14 0 3

948A 41.1 58.9 0.0 0 0 0
945A 26.2 73.5 0.3 1 0 2

Appendix Table 4: Continued.
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§ sciendo

Age Lower-Middle Cenomanian
Formation Raha Formation
< 0 < < < o (%] 0
SOM/ Sample Nomber N 3 = 3 & S 8 2 = 3 = 2 x
-] -3 - -3 - o o o o o o o o
o - o o o - - - - - - - -
Equidimensional (O-Eq)
Black particle from wood
material. Long axis less than 9.73 6.33 3.12 323 449 243 30.1 51.1 27.6 29.2 9.01 20 18.9
twice the short axis. Without
o internal biostructures.
S Lath (O-La) Black particle
from wood material. Long
axis more than twice the 6.92 0.69 0.29 1.59 1.01 2.58 1.73 24 33 1.25 0.1 0.6 0.54
short axis. Without internal
biostructures.
Opaque 16.6 7.02 341 339 459 26.9 31.8 535 30.9 30.4 9.11 20.6 19.4
Wood tracheid with pits
(Wp) Brown particle from
wood tracheid with visible 0 0 0 0 0 0 02 0 0 0 0 01 0
pits.
Wood tracheid without
pits (Ww) Brown particle 11 | 138 | 039 | 656 0 01 | 48 | 24 | 523 | 125 0 24 | 99
from wood tracheid without
visible pits.
Cuticle (Cu) Thin cellular
Translucent | Sheets epidermal tissue, 0 0 0.2 0 0 0 03 0.1 0 0 0 08 | 152
in some case with visible
stomates
Membranes (Mb) Thin,
non-cellular, transparent
sheets of probable plant 0 0 0 0 0 0 0 02 0 0 0 0 0.36
origin
Fungal hyphae (Fh)
Individual filaments of 09 | 01 | 107 | 03 | 055 | 03 | 061 | 03 | 008 | 039 | 11 11 | o7
mycelium of vegetative
phase of eumycote fungi.
Translucent 2.0 1.48 1.66 6.86 0.55 0.4 6 3 531 1.64 1.1 4.4 12.5
Phytoclasts 18.7 8.5 5.1 40.8 46.5 273 378 56.5 36.2 321 10.2 25.0 319
AOM Structureless material.
Color: yellow-orange-red;
orange-brown; grey.
Heterogeneity: homoge-
neous; with “speckles”; 80 | 895 | 892 | 575 | 529 | 718 | 564 | 416 | 432 | 659 | 898 | 742 | 575
clotted; with inclusions
(palynomorphs, phytoclasts,
AOM pyrite. Form: flat; irregular;
angular; pelletal (rounded
eleongate/oval shape).
Resin Structureless particle,
hyaline, homogeneous, 0.1 03 | 059 | 03 0 02 | 081 | 07 | 09 | 048 0 03 0
non-fluorescent, rounded,
sharp to diffuse outline.
AOM 80.1 89.8 89.8 57.8 529 720 57.2 423 44.2 66.4 89.8 74.5 57.5
Spores 0 0 0.1 0 0 0.1 0.1 0 4.66 0.19 0 0 0.36
Pollen 0.6 0.89 1.95 0.89 0.28 0.4 1.93 1 13.7 1.06 0 0.2 3.57
Dinocysts 0.4 0.49 0.2 0.09 0 2.03 0.1 0.56 0 0 0.2 232
Acritarch 0.1 0.39 0.1 0 0 0.41 0.1 0.56 0 0 0 0.27
Foraminifera 05 02 | 215 0 009 | 02 | 051 0 0 0 0 01 | 294
test Linning
Fresh Water 0.1 0.1 0.1 03 | 018 0 0 0 008 | 029 0 0 1.07
Algae
Palynomorphs 1.2 1.7 5.2 1.5 0.6 0.7 5.0 1.2 19.6 1.5 0.0 0.5 10.5
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Appendix Table 5: Quantitative distribution of the palynofacies categories in B-115 well.
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Age Upper Cretaceous-Cenomanian
Formation Raha Formation
SOM/ Sample n I ) © n o © o o N < - © n I o ©
N N © - - =) o =) S o o o ] © © N N
Number ) - -3 o o -3 -3 o -3 © o © © © 0 © ©

Equidimensional (0-Eq) Black
particle from wood material.
Long axis less than twice the 207 | 223 | 303 | 317 18 360 | 133 58 84 93 302 | 111 154 76 113 | 127 93
short axis. Without internal
Opaque biostructures.

Lath (O-La) Black particle from
wood material. Long axis more
than twice the short axis. With-
out internal biostructures.

Wood tracheid with pits (Wp)
Brown particle from wood 0 1 0 0 0 5 0 7 0 0 0 1 3 0 0 2 0
tracheid with visible pits.

Wood tracheid without pits
(Ww) Brown particle from
wood tracheid without visible
pits.

Cuticle (Cu) Thin cellular
Translucent | sheets, epidermal tissue, in 28 9 34 34 28 35 33 39 25 14 8 33 11 8 4 9 4
some case with visible stomates

Membranes (Mb) Thin, non-
cellular, transparent sheets of 3 1 3 0 2 3 0 0 4 2 2 2 2 3 3 2 0
probable plant origin

148 | 178 | 323 | 117 | 45 156 | 124 | 135 | 197 | 143 | 187 | 169 | 178 | 111 42 66 54

Fungal hyphae (Fh) Individual
filaments of mycelium of
vegetative phase of eumycote
fungi.

AOM Structureless material.
Color: yellow-orange-red;
orange-brown; grey.
Heterogeneity: homogeneous;
with “speckles”; clotted; with
inclusions (palynomorphs,
phytoclasts, pyrite. Form: flat;

578 | 556 | 301 | 511 | 880 | 430 | 705 | 755 | 667 | 724 | 461 | 668 | 627 | 796 | 819 | 779 | 828

AOM irregular; angular; pelletal
(rounded eleongate/oval
shape).
Resin Structureless particle,
hyaline, homogeneous, non- 7ol v || s | 3|5 |a|3 246|734 2]s3:
fluorescent, rounded, sharp to
diffuse outline.
Spores 1 0 0 2 0 0 22 37 17 19 9 16 21 2 3 14 2
Pollen 6 6 0 4 6 0 115 | 130 | 151 106 26 35 76 17 15 71 37
Dinocysts 1 0 0 0 3 0 9 8 11 14 7 9 9 16 2
Achritach 0 0 0 0 0 0 17 4 1 3 2 0 6 2 1 15 3
Foraminifera olo|o|oflof|o|3|2]o0o|3|o]z2|0|o]o]|o]n
test Linning
Fresh Water 1 lololololol 2| v v 1221 |2]|1]3]n:
Algae
Total 1002 | 1004 | 1002 | 1008 | 998 | 1010 | 1173 [ 1201 | 1182 | 1145 [ 1055 | 1061 [ 1111 [ 1030 | 1034 | 1119 | 1052

Appendix Table 6: Quantitative distribution of the palynofacies categories in B-109 well.
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900A
903A
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§ sciendo

Age Cenomanian
Formation Raha Formation
SOM/ Sample sl slgl|s|s|s|s|s|s|s|s|c|8/8|s5|s5]|:s
Nomber ~ N © - < S S S 5 a & & ? @ @ R ~
o o -3 o ) ) & & ) © © © © ® © © ©
Equidimensional (O-Eq)
Black particle from wood
material. Long axis less than 20.7 222 30.2 314 1.8 356 1.3 4.83 7.1 8.12 28.6 10.5 13.9 7.38 10.9 1.3 8.84
twice the short axis. Without
° internal biostructures.
o Lath (O-La) Black particle
from wood material. Long
axis more than twice the 1.4 0.4 17 0.1 0.1 0.99 0.34 0.75 0.25 131 3.13 0.09 0.81 0.1 0.68 0.98 1.9
short axis. Without internal
biostructures.
Opaque 221 226 31.9 315 1.9 36.6 1.7 5.6 74 9.4 318 10.6 14.7 75 11.6 123 10.7
Wood tracheid with pits
(Wp) Brown particle from 0 0.1 0 0 0 05 o |oss | o 0 0 009|027 ] o o |08 ]| o
wood tracheid with visible
pits.
Wood tracheid without
pits (Ww) Brown particle 148 | 177 | 322 | 116 | 451 | 154 | 106 | 112 | 167 | 125 | 177 | 159 | 16 | 108 | 406 | 59 | 513
from wood tracheid without
visible pits.
Cuticle (Cu) Thin cellular
Translucent | Sheets epidermaltissue, 279 | 09 | 339 | 337 | 281 | 347 | 281 | 325 | 212 | 122 | 076 | 311 | 099 | 078 | 039 | 08 | 038
in some case with visible
stomates
Membranes (Mb) Thin,
non-cellular, transparent 03 | 01 | 03 0 02 | 03 0 0 | 034|017 | 019 | 019 | 018 | 029 | 029 | 018 | o
sheets of probable plant
origin
Fungal hyphae (Fh) Individ-
ual filaments of mycelium of | ¢ |, 2 | 109 | 07 | 079 | 009 | 017 | 152 | 052 | 114 | 057 | 072 | o | 155 | 018 | 038
vegetative phase of eumycote
fungi.
Translucent 18.7 19.5 379 16.1 8.22 205 135 15.2 206 144 19.8 19.9 18.2 11.8 6.29 7.24 5.89
Phytoclasts 40.7 421 69.9 47.6 10.1 571 25.1 20.8 280 238 51.6 304 329 193 17.9 19.6 16.6
AOM Structureless material.
Color: yellow-orange-red;
orange-brown; grey.
Heterogeneity: homoge-
neous; with “speckles’; 577 | 554 | 30 | 507 | 882 | 426 | 601 | 629 | 564 | 632 | 437 | 63 | 564 | 773 | 792 | 696 | 787
clotted; with inclusions (paly-
nomorphs, phytoclasts, pyrite.
AOM Form: flat; irregular; angular;
pelletal (rounded eleongate/
oval shape).
Resin Structureless particle,
hyaline, homogeneous, 07 | 189 | 01 [ 109 | 08 | 03 | 043 | 117 | 025 | 017 | 038 | 057 | 063 | 029 | 039 | 018 | 0.29
non-fluorescent, rounded,
sharp to diffuse outline.

AOM 58.4 57.3 30.1 518 89.0 429 60.5 64.0 56.7 634 44.1 63.5 57.1 776 79.6 69.8 79.0
Spores 0.1 0 0 0.2 0 0 1.88 3.08 1.44 1.66 0.85 1.51 1.89 0.19 0.29 1.25 0.19
Pollen 0.6 0.6 0 0.4 0.6 0 9.8 10.8 12.8 9.26 246 33 6.84 1.65 1.45 6.34 3.52

Dinocysts 0.1 0 0 0 0.3 0 0.77 0.67 0.93 1.22 0.66 0.85 0.72 0.87 0.58 1.43 0.19
Acritarch 0 0 0 0 0 0 1.45 0.33 0.08 0.26 0.19 0 0.54 0.19 0.1 1.34 0.29
Foraminifera 0 0 0 0 0 0 |02 |07 | o [026]| o |09 o 0 0 0 0.1
test Linning
Fresh Water 01 0 0 0 0 0 | 017 | 008 | 008 | 009 | 019 | 019 | 009 | 019 | 01 | 027 | 01
Algae
Palynomorphs 0.9 0.6 0.0 0.6 0.9 0.0 143 15.2 153 12.8 4.4 6.0 10.1 3.1 25 10.6 4.4
Total 100.0 | 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 | 100.0 [ 100.0 | 100.0 | 100.0 | 100.0
Appendix Table 6: Continued.
80.0 40
M Seriesl M Series1

876A

< < 0 o < LI
O o N 0 I N
N 0 0 0 O O D
©© 00 0 o 00 0 o

900A
903A
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966A
972A
975A
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§ sciendo

100%
90%
80%
M Series6 70%
M Series5 60%
m Series3
W Series4 50%
M Series2
M Series3 40%
M Seriesl
M Series2 30%
M Series1 20%
10%
0%
C < < 00 C I I L L <CO<C LI I < < < 00 < < I L L L DI <LK
O O &N N 0 & < N O M O O 1N 0 O N O O &N N 0 « < I~ O n VW A 1N 0 W N
N IS 00 0 0 O O @O © ©O O O « < W N N N IS 00 0 00 Oy &0 @ © O O O « < W I~ NN
00 00 00 0 0 W W W O O O O O O O O O 00 00 00 W 0 0 W W O O O O o o O O O
3.5 40.0
3 35.0
30.0
2.5
- 25.0
2
20.0
M Series1 15 M Series1
) 15.0
1 10.0
05 5.0
0.0
0 < < <« @I L LI C L DL L LI
O O N 1NN 0 4 < N O M O O 1N 0 O N
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 B S I I BB EIIEFTaLSH
100.0
90.0
80.0
70.0
- 60.0
50.0
M Series1 20.0
30.0
20.0
10.0
0.0
< < < 0O CIC L L L @O LI
O O N N 0 o4 g ™~ O MM O D 1N 0 © N N
N IS 00 00 00 Oy @ O O © © O « «H W N N
00 00 00 W W 0 00 W0 O O O O O O O O O
40.7 421 69.9 | 479 10.1 57.1 251 20.8 28.0 23.8 51.6 304 329 19.3 17.9 19.6 | 16.6 | Phytoclasts
58.4 573 30.1 52.1 89.0 42.9 60.5 64.0 56.7 634 | 441 63.5 57.1 776 79.6 69.8 | 79.0 | AOM
0.9 0.6 0.0 0.0 0.9 0.0 143 15.2 15.3 12.8 4.4 6.0 10.1 3.1 25 10.6 | 4.4 |Palynomorphs
< < < < << 2] < < < < < < -] 4] < < <
wn o O © wn [ O ™M o N < - ] wn o [ N
N N O - - (= [= (=] [= [-\) =2} )] ] -] -] N N
-} )} [} -} )} [} -} )} -} © 0 © © © © 0 ©
1 0 0 0 0 0 29 17 4 9 3 13 13 2 0 5 2 | Spres
6 7 0 4 6 3 176 150 111 61 25 26 63 17 18 85 39 | Pollen
1 0 0 0 3 0 36 22 19 17 5 8 17 9 4 22 7 | Microplankton

Appendix Table 6: Continued.
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Phytoclasts AOM Palynomorphs Microplankton Spores Pollen
975A 40.7 58.4 0.9 1 1 6
972A 42.1 573 0.6 0 0 6
966A 69.9 30.1 0.0 0 0 0
918A 47.9 52.1 0.0 0 0 0
915A 10.1 89.0 0.9 3 0 6
909B 57.1 429 0.0 0 0 0
906A 25.1 60.5 14.3 29 22 115
903A 20.8 64.0 15.2 14 37 130
900A 28.0 56.7 15.3 12 17 151
897A 23.8 63.4 12.8 20 19 106
894A 51.6 441 44 9 9 26
891A 30.4 63.5 6.0 1 16 35
888B 329 57.1 10.1 14 21 76
885B 19.3 77.6 3.1 1 2 17
882A 17.9 79.6 25 7 3 15
879A 19.6 69.8 10.6 31 14 71
876A 16.6 79.0 44 6 2 37

Appendix Table 6: Continued.
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§ sciendo

Age
Formation Raha Formation
SOM/ Sample << < << < < -] < << < < < < -] 2] << < <
n o O 0 wn - o m o ~N < - [ n o - O
Number ~N ~ O - - o o (=] o =)} [} =) -] -] 0 N N
o o o o o & & & & ®© © ® © ® ® ® ©
Equidimensional (O-Eq)
Black particle from wood
material. Long axis less 207 | 223 | 303 | 317 | 18 | 360 | 133 | 58 | 84 | 93 | 302 | 111 | 154 | 76 | 113 | 127 | 93
than twice the short
axis. Without internal
Opaque biostructures.
Lath (O-La) Black particle
from wood material. Long
axis more than twice the 14 4 17 1 1 10 4 9 3 15 33 1 9 1 7 11 20
short axis. Without internal
biostructures.
Wood tracheid with pits
(Wp) Brown particle from
wood tracheid with visible ! 5 7 ! 3 2
pits.
Wood tracheid without
pits (Ww) Brown particle | g | 178 | 353 | 117 | 45 | 156 | 124 | 135 | 197 | 143 | 187 | 169 | 178 | 111 | 42 | 66 | 54
from wood tracheid with-
out visible pits.
Cuticle (Cu) Thin cellular
Translucent | Sheets epidermal tissue, 28| 9 | 34|34 |28 |35 |33 |39 |2 |14|s8 |33|1n]|s|4a|o]a
in some case with visible
stomates
Membranes (Mb) Thin,
non-cellular, transparent
sheets of probable plant 3 ! 3 2 3 4 2 2 2 2 3 3 2
origin
Fungal hyphae (Fh)
Individual filaments of my- | g |7 | 50 | 43 | 7 | g | 1| 2 |18] 6 |12]| 6| 8 6| 2 | 4
celium of vegetative phase
of eumycote fungi.
AOM Structureless material.
Color: yellow-orange-red;
orange-brown; grey. Het-
erogeneity: homogeneous;
with“speckles”; clotted; 578 | 556 | 301 | 511 | 880 | 430 | 705 | 755 | 667 | 724 | 461 | 668 | 627 | 796 | 819 | 779 | 828
with inclusions (paly-
nomorphs, phytoclasts,
AOM pyrite. Form: flat; irregular;
angular; pelletal (rounded
eleongate/oval shape).
Resin Structureless particle,
hyaline, homogeneous, 7ol 11| e8| 3|5 |43 | 24|66 |7 |3]|4a]|2]:3
non-fluorescent, rounded,
sharp to diffuse outline.
Spores 1 29 17 4 9 3 13 13 2 5 2
Pollen 6 7 4 6 3 176 | 150 | 111 61 25 26 63 17 18 85 39
Dinocysts 1 4 1 3 1 2 3 4 14 3
Zooclast
Achritach 31 19 16 14 3 3 13 8 1 8 3
Foram.lnlfera test 1 ) ) 5 1 1
Linning
Fresh Water Algae 1 3 2 1 2 2 1 1 1
Total 1002 | 1005 | 1002 | 1006 | 998 | 1013 | 1249 | 1208 | 1135 | 1088 | 1042 | 1045 | 1094 | 1028 | 1031 | 1113 | 1055
Appendix Table 6: Continued.
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§ sciendo

Age
Formation Raha Formation
som/
< < < < < ) < < < < < < @ @ < < <
Sample n o ©° © n o ©° o o N < - @ n o o ©
~ ~ -3 - - o (=3 (=3 =3 [ [ [+ ] *® «® ~ ~
Nomber o o o ) ) ) o o ) «© © © © «© 0 0 ©
Equidimensional (O-Eq)
Black particle from wood
material. Long axis less 2066 | 2221 | 3024 | 3145 | 1.804 | 3564 | 1134 | 4829 | 7.107 | 8122 | 2863 | 1046 |13.861| 7.379 | 10928 | 1135 | 884
than twice the short
axis. Without internal
Opaq! biostructures.
Lath (O-La) Black particle
from wood material. Long
axis more than twice the 1.397 | 0398 | 1.697 | 0.099 0.1 0.99 0341 | 0.749 | 0.254 1.31 3.128 | 0.094 | 0.8101 | 0.097 | 0.677 | 0.983 1.9
short axis. Without internal
biostructures.
Opaque 221 226 319 315 1.9 36.6 1.7 5.6 74 9.4 31.8 10.6 14.7 75 11.6 123 10.7
Wood tracheid with pits
(Wp) Brown particle from 0 0.1 0 0 0 |o0495| o |o0s83| o 0 0 | 0094 | 027 0 o |o0179] o
wood tracheid with visible
pits.
Wood tracheid without
pits (Ww) Brown particle | 1,57 | 1773 | 3254 | 1161 | 4500 | 1545 | 1057 | 1124 | 1667 | 1249 | 1773 | 1593 | 16022 | 1078 | 40619 | 5.898 | 513
from wood tracheid
without visible pits.
Cuticle (Cu) Thin cellular
Translucent | Sheets epidermal tissue, 2794 | 0896 | 3393 | 3373 | 2806 | 3.465 | 2813 | 3.247 | 2115 | 1223 | 0758 | 3.11 | 09901 | 0777 | 0.3868 | 0.804 | 038
in some case with visible
stomates
Membranes (Mb) Thin,
non-cellular, transparent 0299 | 01 | 0299 | o0 02 | 0207 | o0 0o | 0338|0175 | 019 | 0189 | 018 | 0291 |02901 | 0179 | o
sheets of probable plant
origin
Fungal hyphae (Fh)
Individual filaments of 0798 | 0697 | 1.996 | 1.091 | 0701 | 0792 | 0.085 | 0.167 | 1.523 | 0.524 | 1137 | 0.566 [ 07201 | 0 |15474| 0179 | 038
mycelium of vegetative
phase of eumycote fungi.
Translucent 1866 | 19.52 | 37.92 | 16.07 | 8216 205 1347 | 1524 | 2064 | 1441 19.81 19.89 | 18.182 | 11.84 | 6.2863 | 7.239 5.89
Phytoclasts 40.7 421 69.9 47.6 10.1 57.1 25.1 20.8 28.0 238 516 304 329 193 17.9 19.6 16.6
AOM Structureless
material. Color: yellow-
orange-red; orange-brown;
grey. Heterogeneity:
homogeneous; with
“speckles”; clotted; with 57.68 | 55.38 | 30.04 | 50.69 | 88.18 | 42.57 60.1 62.86 | 56.43 | 63.23 43.7 6296 | 56.436 | 77.28 | 79.207 | 69.62 78.7
inclusions (palynomorphs,
phytoclasts, pyrite. Form:
AOM flat; irregular; angular;
pelletal (rounded
eleongate/oval shape).
Resin Structureless
particle, hyaline,
homogeneous, non- 0.699 | 1.892 0.1 1.091 0.802 | 0.297 | 0.426 | 1.166 | 0.254 | 0.175 | 0.379 | 0.566 | 0.6301 | 0.291 | 0.3868 | 0.179 0.29
fluorescent, rounded,
sharp to diffuse outline.
AOM 584 573 30.1 518 89.0 429 60.5 64.0 56.7 634 44.1 63.5 57.1 776 79.6 69.8 79.0
Spores 0.1 0 0 0 0 0 1.876 | 3.081 1438 | 1659 | 0.853 | 1.508 | 1.8902 | 0.194 0 1.251 0.19
Pollen 0.599 | 0.598 0 0.397 | 0.601 0 9.804 | 10.82 | 12.77 | 9.258 | 2.464 | 3.299 | 6.8407 | 1.65 | 1.4507 | 6.345 3.52
Dinocysts 0.1 0 0 0 0.301 0 0.767 | 0.666 | 0.931 1.223 | 0.664 | 0.848 | 0.7201 0 0.5803 | 1.43 0.19
Acritarch 0 0 0 0 0 0 1449 | 0333 | 0.085 | 0.262 0.19 0 0.5401 | 0.194 | 0.0967 | 134 0.29
Foraminifera test Linning 0 0 0 0 0 0 0.256 | 0.167 0 0.262 0 0.189 0 0 0 0 0.1
Fresh Water Algae 0.1 0 0 0 0 0 0.171 0 0 0.087 0 0.189 0.09 0.194 | 0.0967 | 0.268 0.1
Palynomorphs 0.9 0.6 0.0 0.4 0.9 0.0 143 15.1 15.2 12.8 4.2 6.0 10.1 22 22 10.6 4.4
Total | 100.0 | 100.0 | 100.0 99.8 100.0 | 100.0 | 100.0 99.9 99.9 100.0 99.8 100.0 | 100.0 99.1 99.7 100.0 | 100.0

Appendix Table 6: Continued.
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