The role of physics in radioecology and radiotoxicology

Open access

Abstract

This article gives an overview of physical concepts important for radioecology and radiotoxicology to help bridge a gap between non-physicists in these scientific disciplines and the intricate language of physics. Relying on description and only as much mathematics as necessary, we discuss concepts ranging from fundamental natural forces to applications of physical modelling in phenomenological studies. We first explain why some atomic nuclei are unstable and therefore transmute. Then we address interactions of ionising radiation with matter, which is the foundation of both radioecology and radiotoxicology. We continue with relevant naturally occurring and anthropogenic radionuclides and their properties, abundance in the environment, and toxicity for the humans and biota. Every radioecological or radiotoxicological assessment should take into account combined effects of the biological and physical half-lives of a radionuclide. We also outline the basic principles of physical modelling commonly used to study health effects of exposure to ionising radiation, as it is applicable to every source of radiation but what changes are statistical weighting factors, which depend on the type of radiation and exposed tissue. Typical exposure doses for stochastic and deterministic health effects are discussed, as well as controversies related to the linear no-threshold hypothesis at very low doses.

1. Becquerel H. [Sur les radiations émises par phosphorescence, in French]. Comptes Rendus Acad Sci 1896;122:501-3.

2. Feynman RP, Leighton RB, Sands M. Six Easy Pieces: Essentials of Physics Explained by Its Most Brilliant Teacher. New York: Basic Books; 2011.

3. Magill J, Dreher R, Sóti Zs. Karlsruher Nuklidkarte / Chart of the Nuclides. 10th ed. Karlsruhe: Nucleonica GmbH; 2018.

4. Cetnar J. General solution of Bateman equations for nuclear transmutations. Ann Nucl Energy 2006;33:640-5. doi: 10.1016/j.anucene.2006.02.004

5. Wong SSM. Introductory Nuclear Physics. 2nd ed. Weinheim: Wiley-VCH Verlag Gmbl I & Co. KGaA; 2004.

6. Rytz A. Recommended energy and intensity values of alpha particles from radioactive decay. At Data Nucl Data Tables 1991;47:205-39. doi: 10.1016/0092-640X(91)90002-L

7. Magill J, Galy J. Radioactivity Radionuclides Radiation. Berlin, Heidelberg: Springer-Verlag; 2005. doi: 10.1007/b138236

8. Sigmund P. Particle Penetration and Radiation Effects. General Aspects and Stopping of Swift Point Charges. Berlin, Heidelberg: Springer-Verlag; 2006. doi: 10.1007/3-540-31718-X

9. Cherry SR, Sorenson J, Phelps ME. Physics in Nuclear Medicine. 4th ed. Philadelphia: Saunders; 2012.

10. Van der Stricht, Etienne, Kirchmann R, editors. Radioecology: Radioactivity and Ecosystems. Liege, Fortemps: Union Internationale de Radioécologie; 2001.

11. Samat SB, Green S, Beddoe AH. The 40K activity of one gram of potassium. Phys Med Biol 1997;42:407-13. doi: 10.1088/0031-9155/43/5/027

12. Papastefanou C. Radioactive aerosols. In: Papastefanou C, editor. Radioactivity in the environment. Vol. 12. Amsterdam: Elsevier; 2008. p. 11-58.

13. Gosse JC, Phillips FM. Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 2001;20:1475-560. doi: 10.1016/S0277-3791(00)00171-2

14. Babić D, Senčar J, Petrinec B, Marović G, Bituh T, Skoko B. Fine structure of the absorbed dose rate monitored in Zagreb, Croatia, in the period 1985-2011. J Environ Radioact 2013;118:75-9. doi: 10.1016/j.jenvrad.2012.11.012

15. Babić D, Senčar J. Periodic behaviour in ground-level environmental radioactivity: fingerprints of solar activity? Proc R Soc A 2018;474:20180109. doi: 10.1098/rspa.2018.0109

16. Usoskin IG. A history of solar activity over millennia. Living Rev Sol Phys 2017;14:3. doi: 10.1007/s41116-017-0006-9

17. McCracken KG, Beer J, McDonald FB. A five-year variability in the modulation of the galactic cosmic radiation over epochs of low solar activity. Geophys Res Lett 2002;29:14-1-4. doi: 10.1029/2002GL015786

18. Bakr WF. Assessment of the radiological impact of oil refining industry. J Environ Radioact 2010;101: 237-43. doi: 10.1016/j.jenvrad.2009.11.005

19. Saueia CH, Mazzilli BP. Distribution of natural radionuclides in the production and use of phosphate fertilizers in Brazil. J Environ Radioact 2006;89:229-39. doi: 10.1016/j.jenvrad.2006.05.009

20. Podgorsak EB, editor. Radiation Oncology Physics: A Handbook for Teachers and Students. Vienna: International Atomic Energy Agency; 2005.

21. Mattos DMM, Gomes ML, Freitas RS, Moreno S, Lima-Filho GL, Paula EF, Jales RLC, Bernardo-Filho M. Which are the most used radionuclides in the pet and in the spect techniques in the world? J Labelled Comp Radiopharm 2001;44(Suppl 1):S841-3. doi: 10.1002/jlcr.25804401295

22. International Atomic Energy Agency (IAEA). A Basic Toxicity Classification of Radionuclides: Report of Joint Study of a Group of Consultants to the International Atomic Energy Agency. Vienna: IAEA; 1963.

23. Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci 2015;8:247-54. doi: 10.1016/j.jrras.2015.03.003

24. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol 2013;25:578-85. doi: 10.1016/j.clon.2013.06.007

25. Tuszynski JA, Dixon JM. Biomedical Applications for Introductory Physics. New York: Wiley; 2002.

26. Šoštarić M. Radiološka svojstva tla u Republci Hrvatskoj [Radiological properties of soil in the Republic of Croatia, in Croatian]. [PhD thesis]. Zagreb: Faculty of Science, University of Zagreb.

27. Darby S, Hill D, Auvinen A, Barros-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Mäkeläinen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Schaffrath Rosario A, Tirmarche M, Tomášek L, Whitley E, Wichmann H-E, Doll R. Radon in homes and risk of lung cancer: collaborative analysis of individual data from European case-control studies. BMJ 2005;330:223. doi: 10.1136/bmj.38308.477650.63

28. Larsson LS. Risk-reduction strategies to expand radon care planning with vulnerable groups. Public Health Nurs 2014;31:526-36. doi: 10.1111/phn.12111

29. International Commission on Radiological Protection (ICRP). The 2007 recommendations of the International Commission on Radiological Protection. Ann ICRP 2007;37:1-332. doi: 10.1016/j.icrp.2006.06.001

30. International Atomic Energy Agency (IAEA). Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, General Safety Requirements. Vienna: IAEA; 2014.

31. Mettler FA. Medical effects and risks of exposure to ionising radiation. J Radiol Prot 2012;32:N9-13. doi: 10.1088/0952-4746/32/1/N9

32. International Atomic Energy Agency (IAEA). Radiation Protection of the Public and the Environment, General Safety Guide. Vienna: IAEA; 2018.

33. Brenner DJ, Doll R, Goodhead DT, Hall EJ, Land CE, Little JB, Lubin JH, Preston DL, Preston RJ, Puskin JS, Ron E, Sachs RK, Samet JM, Setlow RB, Zaidern M. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc Natl Acad Sci USA 2003;100:13761-6. doi: 10.1073/pnas.2235592100

34. Tubiana M, Feinendegen LE, Yang C, Kaminski JM. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009;251:13-22. doi: 10.1148/radiol.2511080671

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1,606



CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 14
PDF Downloads 89 89 18