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Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. 
Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level 
are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance 
in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific 
project “Organic pollutants in environment – markers and biomarkers of toxicity (OPENTOX)” is dedicated to studying 
toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative 
stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation 
of our own findings from studies conducted on in vitro cell models.
KEY WORDS: antioxidants; apoptosis; glyphosate; in vitro; neonicotinoids; organophosphates; oxidative stress; 
pyrethroids; reactive oxygen species

Over the years, population growth and changes in food 
consumption patterns have challenged agricultural 
production to meet the demand for food and quality 
standards. This has led to an increased use of pesticides.

Pesticides are defined as “any substance or mixture of 
substances of chemicals or biological ingredients intended 
for repelling, destroying or controlling any pest, or 
regulating plant growth” (1). There is a wide range of 
pesticide types, including insecticides, herbicides, 
rodenticides, and fungicides. Because of their recognised 
potential to adversely affect untargeted biological systems, 
they have been studied extensively for their toxicity and 
associated risks (2, 3).

For the last two decades, toxicological research has been 
focused on oxidative stress as a possible mechanism of 
pesticide toxicity, but the precise mechanisms by which 
pesticides affect human metabolism at the cellular level are 
still unclear. Their toxic effects usually depend on the 
chemical structure of a pesticide, dose received, and time 
of exposure (4). Many of them are believed to be mediated 
by the regulation of apoptosis and redox signalling (5). 
Pesticides have been shown to induce apoptosis by 
activating signalling pathways mediated by mitochondria 
and DNA damage as well as through activation of death 
receptors (6).

As our scientific project “Organic pollutants in 
environment – markers and biomarkers of toxicity 
(OPENTOX)”, financed by the Croatian Science Foundation 

(HrZZ), is dedicated to studying the toxic effects of two 
major pesticide classes with three subgroups each: (A) 
insecticides (organophosphates, neonicotinoids, and 
pyrethroids) and (B) herbicides (triazines, organophosphates, 
allelopathic compounds) (7), this review is focused on 
reporting the knowledge regarding oxidative stress-related 
phenomena at the cellular level. Although the amount of 
information on this issue is remarkable, we selected only 
those groups (or single compounds) which are covered by 
our project, as we wanted to single out the most important 
facts relevant to the evaluation of our own findings from 
studies conducted on in vitro cell models.

REACTIvE OXYgEN SPECIES AND 
OXIDATIvE STRESS

Reactive oxygen species (ROS) are products of normal 
cell metabolism and metabolism of cells affected by 
xenobiotics. Their effects in the cell can be beneficial or 
harmful, depending on their concentration (8). Many of the 
ROS are free radicals, such as hydroxyl, peroxyl, 
superoxide, or nitric oxide, with one or more unpaired 
electrons, which makes them unstable and reactive. Seeking 
stability, radicals attack nearby molecules to obtain another 
electron, but in the process damage the structure and 
function of the attacked molecules (9). ROS interact with 
receptors, second messengers, and transcription factors that 
alter gene expression and influence cell growth and survival.

ROS attack three targets in the cell: proteins, DNA, and 
membrane lipids (10). The brain is particularly vulnerable 
to oxidative injury due to its high oxygen consumption, low 
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antioxidant defence, and high content of polyunsaturated 
fatty acids, which are easily oxidised. Lipid peroxidation 
can alter membrane fluidity, inactivate membrane-bound 
receptors or enzymes, and impair normal cell function and 
membrane permeability (9). Dopaminergic cells are 
particularly sensitive to ROS, because dopamine metabolism 
creates hydrogen peroxide and superoxide radicals (11). 
Dopaminergic neurons mainly develop after birth, which 
makes the developing nervous system highly sensitive to 
pesticides (12, 13).

Under normal conditions the levels of ROS and 
antioxidants is balanced. Their imbalance, manifested in 
an excess of ROS or lack of antioxidants or both, is what 
causes oxidative stress (8, 14).

INSECTICIDES

Organophosphates

Organophosphorus pesticides (OP) are widely used in 
agriculture due to their high effectiveness and a relatively 
short half-life in the environment. However, they are 
generally more toxic to vertebrates than other classes of 
insecticides (15), as they inhibit the activity of 
acetylcholinesterase (AChE), which causes accumulation 
of acetylcholine (ACh) at the neuronal synapses and 
neuromuscular junctions and results in convulsions, 
paralysis, and death (16). OPs also affect DNA and RNA 
synthesis, signal transduction pathways, and expression of 
different transcription factors, and cause oxidative stress, 
as described above (17-20). One such OP that causes 
oxidative stress even at low concentrations is chlorpyrifos 
(21). It also disturbs neurotransmission (22), inhibits the 
replication of cells in the nervous system (23), and disrupts 
neuronal differentiation (24). A study on PC12 cells, which 
are used as a standard model for neural cell differentiation, 
showed immediate increase in ROS after chlorpyrifos 
exposure (25). Because a developing nervous system is less 
capable of scavenging free radicals than adult, oxidative 
stress is a likely mechanism by which chlorpyrifos damages 
immature brain. Lee et al. (26) reported that chlorpyrifos 
inhibited mitochondrial activity in PC12 cells, which led 
to excessive ROS formation, cytochrome c release from 
mitochondria, and activation of apoptotic cell death. In this 
process, mitogen-activated protein kinase (MAPK) 
signalling played a crucial role in dopaminergic cell death. 
Moreover, exposure to chlorpyrifos altered the expression 
of proteins involved in antioxidant defence.

In SH-SY5Y cells paraoxon, parathion, phenyl saligenin 
phosphate, tri-ortho-tolyl phosphate, and triphenyl 
phosphite induced similar forms of time-dependent cell 
death. Their cytotoxicity manifested itself in nuclear 
condensation, budding, fragmentation, and caspase-3 
activation (27).

A similar effect was seen after chlorpyrifos exposure 
(28). In a study of Raszewski et al. (5) chlorpyrifos induced 
death in SH-SY5Y cells by down-regulating anti-apoptotic 
Bcl-2 and Bcl-xL and increasing caspase-3 activity. These 
changes point to mitochondrial dysfunction and consequent 
apoptosis. Mitochondrial membrane potential is commonly 
used to evaluate mitochondrial function as an indicator of 
cell health. The stability of mitochondrial membrane 
preserves the dynamic equilibrium of intracellular free 
calcium concentrations, and their decline may also lead to 
apoptosis (29). A recent study (30) showed higher free Ca2+ 
concentrations, higher plasma membrane potential, and 
lower mitochondrial transmembrane potential in Hepg2 
cells after a 24-hour exposure to chlorpyrifos. In another 
in vitro study (31) chlorpyrifos-ethyl induced lipid 
peroxidation and disturbed the activity of antioxidant 
enzymes in erythrocytes, which suggests an involvement 
of ROS in the toxic effects of OP pesticides.

Oxidative stress was also observed in human erythrocytes 
after exposure to malathion in vitro (32). In this study the 
increased levels of malondialdehyde (MDA) pointed to 
lipid peroxidation. It was reduced by pretreatment with 
vitamins C and E but only where malathion levels were low 
(25 μmol L-1 and 75 μmol L-1).

Neonicotinoids

Neonicotinoid insecticides are neurotoxicants that act 
as nicotinic acetylcholine receptor (nAChR) agonists in 
insects and mammals. Compared to OPs, they are 
considered less toxic to vertebrates due to preference for 
insect receptors (10). Today, they make one third of the 
global insecticide market. Among them imidacloprid was 
the world’s top selling insecticide in 2010 (33). In spite of 
the original belief that neonicotinoids are only mildly toxic 
to mammals, there is increasing evidence of a variety of 
toxic effects on animals and humans (34-37). In vitro studies 
reported that imidacloprid disrupted the glutathione redox 
cycle by affecting its components glutathione reductase 
(gR), glutathione peroxidase (gPX), and glutathione-S-
transferase (gST) in Chinese hamster ovary cells (CHOK1) 
(33) and to activate the ERK cascade via nAChRs and 
intracellular calcium mobilisation in mouse N1E-115 
neuroblastoma cells (38), which may affect the functioning 
of the neurons. The effects of imidacloprid were also studied 
in human lymphocytes and Hepg2 cells after four- and 
24-hour exposure to concentrations corresponding to the 
acceptable daily intake (ADI), residential exposure level 
(REL), and occupational exposure level (OEL) (39). The 
results showed that the applied imidacloprid concentrations 
did not trigger significant lipid peroxidation nor did they 
affect the total antioxidative capacity of lymphocytes or 
Hepg2 cells (39).

On the other hand, a number of in vivo animal models 
have reported oxidative stress as neonicotinoids’ mechanism 
of action (40-43). So far, it is still not clear whether 
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Table 1 An overview of in vitro studies of oxidative stress induced by pesticides

Pesticide type Cell type / cell line Antioxidant status and oxidative stress Ref.

Chlorpyrifos human neuroblastoma 
(SH-SY5Y)

Increased ROS level and concentration of MDA 
Increased level of cytosolic cytochrome c 

Increased level of cleaved caspase-9, caspase-3, and 
PARP 

MAPK activation

(21)

Chlorpyrifos
rat pheochromocytoma 

cell line 
(PC12)

Increased ROS production (25)

Chlorpyrifos
rat pheochromocytoma 

cell line 
(PC12)

Increased level of cytosolic cytochrome c and 
increased level of cleaved caspase-9, caspase-3, and 

PARP 
Increased ROS generation, 

Increased concentration of MDA 
Significant decrease of mitochondrial complex I 

activity 
Altered expression of antioxidant enzymes 

(CuZnSOD, MnSOD) 
MAPK activation, apoptosis

(26)

Chlorpyrifos 
Chlorpyrifos+ 
Cypermethrin

human neuroblastoma 
(SH-SY5Y)

Down-regulation of Bcl-2 and Bcl-xL 
Increased caspase 3 activation (5)

Chlorpyrifos hepatocellular carcinoma 
(Hepg2)

Increased concentration of free intracellular Ca2+ 
and plasma membrane potential 

Decrease in mitochondrial transmembrane potential 
Slight apoptosis

(30)

Chlorpyrifos-ethyl erythrocytes Increased concentrations of MDA and gPX activity 
Decreased activity of SOD and CAT (31)

Malathion erythrocytes

Increased level of MDA and decreased SOD, CAT 
and gPX activity 

vitamins C and E prevented induced changes at low 
concentrations of malathion

(32)

α-cypermethrin 
Chlorpyrifos  
Imidacloprid

hepatocellular carcinoma 
(Hepg2) 

human lymphocytes

Oxidative stress biomarkers were not significantly 
altered (39)

Abamectin 
Chlorfenapyr 
Imidacloprid

Chinese hamster ovary 
(CHOK1)

Significant inhibition of gST and gPX activity (33)

Desnitro-imidacloprid 
(imidacloprid metabolite)

mouse neuroblastoma 
(N1E-115)

Activated MAPK/ERK signalling cascade at low 
concentrations 

Calcium mobilization
(38)

Fenvalerate 
and its metabolite 

p-chlorophenyl isovaleric 
acid (p-CPIA)

erythrocytes
Increased TBARS levels 

Decreased activity of antioxidant enzymes CAT, 
SOD, gR and gST

(51)

Bifenthrin erythrocytes Enhanced lipid peroxidation 
Decreased enzyme activity of CAT and SOD (52)

Atrazine
rat pheochromocytoma 

cell line 
(PC12)

Decreased CAT activity and gSH levels 
Increased ROS level, lipid peroxidation, activity of 

gPX and gR 
Induced apoptosis 

Up-regulation of mRNA expression of Bax, p53, 
caspase-3, caspase-9 and down-regulation of Bcl-2

(66)
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oxidative stress is a secondary effect or has nothing to do 
with the nAChR agonists. As the application of 
neonicotinoids continues to grow, further research of their 
toxicity to vertebrates and invertebrates is absolutely 
necessary.

Pyrethroids

Pyrethroids are synthetic analogues and derivatives of 
natural insecticides pyrethrins obtained from the flowers of 
pyrethrum (Chrysanthemum cinerariaefolium) (44). 
Pyrethroids are extensively used in agriculture and indoors. 
They were meant to replace restricted or banned 
organophosphates but were also found to cause adverse 
effects (45). Because of their lipophilicity, they tend to act 
on biological membranes. They react with voltage-gated 
sodium nerve channels and prolong the time during which 
the channels are open (46). Because the structure and 
function of voltage-gated sodium channels are very similar 
between insects and mammals, mammals may also be 
affected by this mechanism of action.

It is likely, however, that voltage-gated sodium channels 
are not the only pyrethroid target (47). Pyrethroids were 
found to indirectly generate superoxide radicals, reactive 
nitrogen species such as peroxynitrite, nitric oxide, and 
hydroxyl radicals, causing damage consistent with oxidative 
stress (48, 49), whose likely target are erythrocytes because 
of high content of polyunsaturated fatty acids in cell 
membranes and elevated concentrations of oxygen and 
haemoglobin (50). In a study of Prasanthi et al. (51) another 
common insecticide, fenvalerate, induced oxidative stress 
in erythrocytes in vitro through lipid peroxidation and 
inhibition of antioxidant enzymes. Similar results in 
erythrocytes were observed after bifenthrin (52) and 
lambda-cyhalothrin exposure (53).

Cypermethrin is a class II synthetic pyrethroid pesticide 
that crosses the blood-brain barrier, affects the central 
nervous system, and impairs motor function (54). Although 
considered the safest pesticide, studies have shown its 
connection to developmental neurotoxicity, oxidative stress, 
and apoptosis (55-57). Cypermethrin seems to generate 
reactive oxygen and nitrogen species and reduce the 
antioxidant levels through its metabolites mediated by the 
cytochrome P450 2E1 (54).

HERBICIDES

Triazine herbicides

Triazine herbicides inhibit electron transport in 
photosynthesis and have been used as selective herbicides 
in agriculture for more than 50 years. They include 
asymmetrical triazines or triazinones (metribuzin) and 
symmetrical triazines. The major commercial symmetrical 
triazines are further divided into chloro-s-triazines (atrazine, 
propazine, terbutylazine), thiomethyl-s-triazines (ametryn, 
terbutryn), and methoxy-s-triazine (prometon) (58). Recent 
years saw a growing concern about the toxicity and 
environmental persistence and mobility of triazines and 
their metabolites (59). Atrazine has been used extensively, 
mainly due to its low cost and ease of application and is the 
most common contaminant of groundwater and surface 
water. Because of its persistence in the environment and 
toxicity for wildlife and possible effects on human health, 
it was banned in the EU in 2004 (60). Even so, it remains 
a significant environmental and biological hazard (61). The 
connection between atrazine and oxidative stress was 
observed in different in vivo and in vitro studies. Song et 

Pesticide type Cell type / cell line Antioxidant status and oxidative stress Ref.

Terbuthylazine
peripheral blood 

isolated lymphocytes and 
Hepg2 cells

ROS level increased (plasma, lymphocytes) 
ROS level no effect (Hepg2) 

SOD and gPX decreased (whole blood, 
erythrocytes) 

SOD and gPX increased (Hepg2, lymphocytes) 
Increased lipid peroxidation (plasma)

(67)

glyphosate
human keratinocyte cell 

line 
(HaCaT)

Increased ROS production, cytoskeleton 
disorganization and chromatin condensation 

Induction of apoptosis
(76)

glyphosate mouse fibroblast cells 
(3T3-L1)

Increased activity of caspase-3 
Induction of apoptosis (78)

glyphosate hepatocellular carcinoma 
(Hepg2)

Decreased lipid peroxidation, TAC and gPX 
No significant difference in the level of ROS and 

gSH
(75)

Bax – Bcl-2-associated X gene; Bcl2 – B-cell lymphoma 2; Bcl-xL – B-cell lymphoma-extra large; CAT – catalase; ERK – extracellular-
signal-regulated kinase; GPX – glutathione peroxidase; GR – glutathione reductase; GSH – glutathione; GST – glutathione-S-transferase; 
MAPK – mitogen-activated protein kinase; MDA – malondialdehyde; mRNA – messenger RNA; PARP – poly (ADP-ribose) polymerase; 
ROS – reactive oxygen species; SOD – superoxide dismutase; TAC – total antioxidant capacity; TBARS – thiobarbituric acid reactive 
substances
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al. (62) detected genotoxic effects of atrazine trough the 
formation of ROS, while Zhang et al. (63) reported 
enhanced lipid peroxidation and activity of antioxidant 
enzymes in male Wistar rats exposed to atrazine. Oxidative 
stress induced by atrazine was also detected in two bacterial 
strains (64) and adult female zebrafish (65). In addition, 
atrazine was found to induce apoptosis in PC12 cells by 
altering the expression of p53, caspase-3, and caspase-9 
(66) and to cause apoptosis-related neurodegenerative 
damage in the nerve cells (61).

Unlike for atrazine, in vitro research has produced very 
limited knowledge about the oxidative stress caused by 
other triazine herbicides. We investigated the in vitro effects 
of a four-hour exposure to terbuthylazine concentrations of 
8.00, 0.80, and 0.58 ng mL-1 in whole peripheral blood, 
isolated lymphocytes, and Hepg2 cells (67), which is 
comparable with current reference values set by the 
European Commission in 2011 (68). ROS levels in plasma 
were significantly increased by all terbuthylazine 
concentrations, and in lymphocytes by the concentrations 
of 0.80 and 0.58 ng mL-1, while no effect was observed in 
Hepg2 cells. The activities of gPX in whole blood and of 
superoxide dismutase (SOD) in erythrocytes dropped, while 
in Hepg2 cells and lymphocytes they rose possibly in 
response to oxidative/antioxidative disequilibrium. 
Significantly increased lipid peroxidation was only 
observed in plasma at the highest tested concentration (67).

In vivo studies showed that exposure to metribuzin was 
associated with lipid peroxidation and impaired antioxidant 
activity in crayfish (69) and oxidative stress in goldfish (70). 
Common carps in their embryo-larval stages were also 
affected by terbuthylazine and metribuzin through oxidative 
stress (71).

Glyphosate

glyphosate is a non-selective, broad-spectrum, systemic 
organophosphorus herbicide for all plant types. It interferes 
with the production of the aromatic amino acids 
phenylalanine, tyrosine, and tryptophan, which are essential 
for plant growth (72). Since the pathway operates only in 
plants and microorganisms, glyphosate had long been 
considered safe for humans (73). Recently, however, the 
WHO and IARC changed its classification to probably 
carcinogenic (group 2A) to acknowledge doubts about its 
safety at low doses (74). 

The effects of low doses of glyphosate on Hepg2 cells 
were also tested in our research study (75). The results 
showed no increase in the ROS levels after four- and 24-
hour exposure, indicating that ROS was efficiently removed 
by antioxidant defences. This was also confirmed by lower 
total antioxidant capacity (TAC). gPX activity dropped 
significantly after the four-hour treatment with the ADI 
concentrations while the OEL concentrations lowered it 
only after the 24-hour treatment.

glyphosate was also found to adversely affect HaCaT 
cell adhesion potential, trigger hydrogen peroxide 
production and chromatin condensation, disrupt the 
cytoskeleton, and eventually induce apoptosis (76). The 
induction of apoptosis was confirmed in a variety of cell 
cultures (77-79).

Research has shown that ingredients added to 
commercial glyphosate formulations may influence the 
cytotoxicity of glyphosate and other herbicides (80-82). 
Coalova et al. (83), for example, showed that the addition 
of an adjuvant (alkyl-aryl-polyglycol ether) to glyphosate 
formulation increased its toxicity to Hepg2 cells. The 
adjuvant increased ROS production, catalase activity, and 
glutathione concentrations. Moreover, this glyphosate 
formulation activated caspase 3/7 and the apoptosis 
pathway. An earlier study (84) has shown that glyphosate-
based formulations can be responsible for oxidative damage 
to human epidermal cells (HaCaT). 

4-hydroxyphenylpyruvate dioxygenase inhibitors

Recent bans of various agrochemicals in many 
European countries have created a demand for new effective 
compounds. Their development is mostly focused on 
t a r g e t i n g  e n z y m e s .  O n e  s u c h  e n z y m e  i s 
4-hydroxyphenylpyruvate dioxygenase (HPPD), as it 
catalyses the initial steps in the tyrosine degradation 
pathway (85). In plants, this enzyme regulates growth, and 
its inhibition impairs photosynthesis, followed by leaf 
bleaching (86). In animals, it regulates blood tyrosine levels, 
and its inhibition results in blood tyrosine accumulation 
(87).

There are three main classes of commercial HPPD-
inhibiting herbicides that specifically target a variety of 
broadleaf weeds without affecting the crops, whose 
application rate and toxicity is low, and which can be used 
for pre- and post-emergence treatment (88). These are 
izoxazoles, pyrazoles, and triketones (89). So far, the 
triketone herbicide family has not been proven unsafe for 
the environment and human health and is considered “eco-
friendly” due to its “natural” origin and rapid degradation. 
Yet even “natural” products can have toxic effects on the 
environment. Beside leaf bleaching, these herbicides can 
trigger oxidative stress that disrupts cell metabolism. A 
toxicity study of sulcotrione (90) showed up-regulation of 
the genes inducing ROS and antioxidant enzymes in the 
fava bean cells (Vicia faba), followed by increased lipid 
peroxidation. Some pathogens, in turn, such as E. coli 
DH5-α (91) and Pantoea ananatis (92), showed resistance 
to oxidative stress caused by mesotrione, while human liver 
cancer Hepg2 cells were only mildly affected by 
tembotrione (93).

Because these chemicals are relatively new, knowledge 
about their in vitro or in vivo effects is still very modest, 
and their extensive use and the formation of many 
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degradation products call for intensive research and real 
risk assessment.
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Oksidacijsko-redukcijska neravnoteža uzrokovana pesticidima: pregled istraživanja vezanih uz OPENTOX

Pesticidi su raznovrsna skupina spojeva i glavni izvor stresa u okolišu. Mehanizmi kojima se nastoji objasniti toksičnost 
pesticida kontinuirano se istražuju, a njihove interakcije na staničnoj razini često se promatraju u sklopu kontroliranih in 
vitro istraživanja. Za nekoliko skupina pesticida utvrđeno je da narušavaju oksidacijsko-redukcijsku ravnotežu u stanici, 
a mehanizmi koji vode do nastanka oksidacijskoga stresa za pojedine su pesticide još uvijek nedovoljno poznati. Budući 
da je naš znanstveni projekt „Organska zagađivala u okolišu-markeri i biomarkeri toksičnosti (OPENTOX)“ posvećen 
istraživanju toksičnih učinaka odabranih insekticida i herbicida, ovaj pregledni rad usmjeren je na prikaz spoznaja koje 
se odnose na promjene uzrokovane stresom na staničnoj razini. Željeli smo izdvojiti najvažnije činjenice koje su bitne 
za procjenu vlastitih rezultata istraživanja provedenih na in vitro staničnim modelima.

KLJUČNE RIJEČI: antioksidansi; apoptoza; glifosat; in vitro; neonikotinoidi; organofosfati; oksidacijski stres; piretroidi; 
reaktivni kisikovi spojevi


