The influence of shear stress on the adhesion capacity of Legionella pneumophila

Open access

Abstract

Bacterial adhesion is a complex process influenced by many factors, including hydrodynamic conditions. They affect the transfer of oxygen, nutrients, and bacterial cells in a water supply and cooling systems. The aim of this study was to identify hydrodynamic effects on bacterial adhesion to and detachment from stainless steel surfaces. For this purpose we observed the behaviour of bacterium L. pneumophila in no-flow and laminar and turbulent flow conditions simulated in a fluid flow chamber. The bacterial growth in no-flow and laminar flow conditions was almost identical in the first 24 h, while at 48 and 72 h of incubation, the laminar flow stimulated bacterial growth. In the second part of this study we found that laminar flow accelerated bacterial adhesion in the first 48 h, but after 72 h the amount of bacterial cells exposed to the flow dropped, probably due to detachment. In the third part we found that the turbulent flow detached more bacterial cells than the laminar, which indicates that the strength of shear forces determines the rate of bacterial removal.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Heng BH Goh KT Ng DL Ling AE. Surveillance of legionellosis and Legionella bacteria in the built environment in Singapore. Ann Acad Med Singapore 1997;6:557-65. PMID: 9494658

  • 2. Den Boer JW Yzerman EPF Schellekens J Lettinga KD Boshuizen HC Van Steenbergen JE Bosman A Van den Hof S Van Vliet HA Peeters MF Van Ketel RJ Speelman P Kool JL Van Spaendonck MAEC. A large outbreak of Legionnaires’ disease at a flower show the Netherlands 1999. Emerg Infect Dis 2002; 8:37-43. PMCID: PMC2730281

  • 3. Greig JE Carnie JA Tallis GF Ryan NJ Tan AG Gordon IR Zwolak B Leydon JA Guest CS Hart WG. An outbreak of Legionnaires’ disease at the Melbourne Aquarium April 2000: investigation and case-control studies. Med J Australia 2004; 180: 566-72. PMID: 15174987

  • 4. Fliermans CB Cherry WB Orrison LH Smith SJ Tison DL Pope SH. Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 1981;41:9-16. PMCID: PMC243633

  • 5. Surman-Lee S Fields B Hornei B Ewig S Exner M Tartakovsky I Lajoie L Dangendorf F Bentham R Cabanes PA Fourrier P Trouvet T Wallet F. Ecology and environmental sources of Legionella. In: Bartram J Chartier Y Lee JV Pond K Surman-Lee S editors. Legionella and the prevention of legionellosis. 1st ed. Geneva: WHO Press; 2007. p. 29-38.

  • 6. Rendueles O Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012;36:972-89. doi:

    • Crossref
    • Export Citation
  • 7. Costerton JW Stewart PS Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318-22. doi:

    • Crossref
    • Export Citation
  • 8. Stewart PS Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8. doi:

    • Crossref
    • Export Citation
  • 9. Coquet L Cosette P Junter GA Beucher E Saiter JM Jouenne T. Adhesion of Yersinia ruckeri to fish farm materials: influence of cell and material surface properties. Colloids Surf B 2002;26:373-8. doi:

    • Crossref
    • Export Citation
  • 10. Teixeira P Silva S Araújo F Azeredo J Oliveira R. Bacterial adhesion to food contacting surfaces. In: Mendez-Vilas A editor. Communicating current research and educational topics and trends in applied microbiology. Vol. 1. Formatex 2007. p. 13-20.

  • 11. Rogers J Dowsett AB Dennis PJ Lee JV Keevil CW. Influence of plumbing materials on biofilm formation and growth of Legionella pneumophila in potable water systems. Appl Environ Microbiol 1994;60:1842-51. PMCID: PMC201571

  • 12. Türetgen I Cotuk A. Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. Environ Monit Assess 2007;125:271-9. doi:

    • Crossref
    • Export Citation
  • 13. Moritz MM Flemming H Wingender J. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. Int J Hyg Environ Heal 2010;213:190-7. doi:

    • Crossref
    • Export Citation
  • 14. Vickery K Pajkos A Cossart Y. Removal of biofilm from endoscopes: Evaluation of detergent efficiency. Am J Infect Control 2004;32:170-6. doi:

    • Crossref
    • Export Citation
  • 15. Katsikogianni M Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cells Mater 2004;8:37-57. PMID: 15593018

  • 16. Di Bonaventura G Piccolomini R Paludi D D’Orio V. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl M i c r o b i o l 2 0 0 8 ; 1 0 4 : 1 5 5 2 - 6 1 . d o i : 10.1111/j.1365-2672.2007.03688.x

  • 17. Simões LC Simões M Oliveira R Vieira MJ. Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol 2007;47:174-83. doi:

    • Crossref
    • Export Citation
  • 18. Liu Y Tay JH. Metabolic response of biofilm to shear stress in fixed-film culture. J Appl Microbiol 2001;90:337-42. doi:

    • Crossref
    • Export Citation
  • 19. Stoodley P Lewandowski Z Boyle JD Lappin-Scott HM. Structural deformation of bacterial biofilms caused by short term fluctuations in flow velocity: an in-situ demonstration of biofilm viscoelasticity. Biotechnol Bioeng 1999;65:83-92. doi:

    • Crossref
    • Export Citation
  • 20. Joseph C Lee J van Wijngaarden J Drasar V Castellani-Pastoris M. European Guidelines for the control and prevention of travel associated legionnaires’ disease (Draft). EWGLI - EC DG Health and Consumer Protection. Junij 2001:1-66.

  • 21. Winn WC Jr. Legionnaires disease: historical perspective. Clin Microbiol Rev 1988;1:60-81. PMCID: PMC358030

  • 22. Brenner DJ Feeley JC Weaver RE. Family VIII Legionellaceae. In: Krieg NR Holt JG editors. Bergey’s manual of systematic bacteriology. 2nd ed. Baltimore (MD); Williams and Wilkins; 1984. p. 210-36.

  • 23. ISO 11731:1998. Water quality - Detection and enumeration of Legionella.

  • 24. Lage OM Bondoso J Catita JAM. Determinationof zeta potential in Planctomycetes and its application in heavy metal toxicity assessment. Arch Microbiol 2012;194:847-55. doi:

    • Crossref
    • Export Citation
  • 25. Heimenz PC Rajagopalan R. Principles of Colloid and Surface Chemistry. 3rd edition. New York (NY): CRC Press; 1997.

  • 26. Bohinc K Dražič G Fink R Oder M Jevšnik M Nipič D Godič Torkar K Raspor P. Available surface dictates microbial adhesion capacity. Int J Adhes Adhes 2014;50:65-272. doi:

    • Crossref
    • Export Citation
  • 27. Van Loosdrecht M Norde W Zehnder A. Physical chemical description of bacterial adhesion. J Biomater Appl 1990;5: 91-106 10.1177/088532829000500202

  • 28. Kochkodan V Tsarenko S Potapchenko N Kosinova V Goncharuk V. Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 2008;220:380-385. doi:

    • Crossref
    • Export Citation
  • 29. Giaouris E Chapot-Chartier M Briandet R. Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 2009;131:2-9. doi:

    • Crossref
    • Export Citation
  • 30. Kurinčič M Jeršek B Klančnik A Smole Možina S Fink R Dražić G Raspor P Bohinc K. Effects of natural antimicrobials on bacterial cell hydrophobicity adhesion and zeta potential. Arh Hig Rada Toksikol 2016;67:37-43. doi:

    • Crossref
    • Export Citation
  • 31. Fink R Oder M Rangus D Raspor P Bohinc K. Microbial adhesion capacity. Influence of shear and temperature stress. Int J Environ Health Res 2014;25:656-69. doi:

    • Crossref
    • Export Citation
  • 32. Rosenberg M Kjelleberg S. Hydrophobic interactions in bacterial adhesion. In: Marshal KC editor. Advances in microbial ecology. 1st ed. New York (NY): Springer Science Busines Media; 1986. p. 353-93.

  • 33. Corpe W. Microbial surface components involved in adsorption of microorganisms onto surfaces. In: Bitton G Marshall KC editors. Adsorption of microorganisms to surfaces. New York (NY): John Wiley & Sons Inc.; 1980. p. 105-44.

  • 34. Teodósio JS Simões M Melo LF Mergulhão FJ. Flow cell hydrodynamics and their effects on E.coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling 2011;27:1-11. doi:

    • Crossref
    • Export Citation
  • 35. Liu Y Li J. Role of Pseudomonas aeruginosa biofilm in the initial adhesion growth and detachment of Escherichia coli in porous media. Environ Sci Technol 2008;42:443-9. doi:

    • Crossref
    • Export Citation
  • 36. Bakker DP van der Mats A Verkerke GJ Busscher HJ van der Mei HC. Comparison of velocity profiles for different flow chamber designs used in studies of microbial adhesion to surfaces. Appl Environ Microbiol 2003;69:6280-7. doi:

    • Crossref
    • Export Citation
  • 37. Choi YC Morgenroth E. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci Technol 2003;47:69-76. PMID: 12701909

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.436
5-year IMPACT FACTOR: 1.606

CiteScore 2018: 1.53

SCImago Journal Rank (SJR) 2018: 0.358
Source Normalized Impact per Paper (SNIP) 2018: 0.608

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 308 206 7
PDF Downloads 137 89 2