Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant

Open access


The aim of this cross-sectional study was to see whether genetic polymorphisms of the enzymes CYP1A1, GSTM1, and GSTT1 are associated with higher risk of coronary artery disease (CAD) and whether they affect lipid profile in 252 subjects living near a natural gas plant, who are likely to be exposed to polycyclic aromatic hydrocarbons (PAHs). Fasting serum concentrations of biochemical parameters were determined with standard methods. Genetic polymorphisms of CYP 1A1 rs4646903, rs1048943, rs4986883, and rs1799814 were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFPL), while GSTM1 and GSTT1 deletions were detected with multiplex PCR. Cardiovascular risk was assessed with Framingham risk score, and the subjects divided in two groups: >10% risk and ≤10% risk. The two groups did not differ in the genotype frequencies. MANCOVA analysis, which included lipid parameters, glucose, and BMI with sex, age, hypertension and smoking status as covariates, showed a significant difference between the GSTT1*0 and GSTT1*1 allele carriers (p=0.001). UNIANCOVA with same covariates showed that total cholesterol and triglyceride levels were significantly higher in GSTT1*1 allele carriers than in GSTT1*0 carriers (p<0.001 and p=0.006, respectively). Our findings suggest that CYP1A1, GSTM1, and GSTT1 polymorphisms are not associated with the higher risk of CAD, but that GSTT1 affects lipid profile.

1. Dandona S, Roberts R. The role of genetic risk factors in coronary artery disease. Curr Cardiol Rep 2014;16:479. doi:

2. Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet 2014;7:15-32. doi:

3. Marinković N, Pašalić D, Potočki S. Polymorphisms of genes i n v o l v e d i n p o l y c y c l i c a r o m a t i c hydrocarbons’biotransformation and atherosclerosis. Biochem Med 2013;23:255-65. doi:

4. Choi H, Harrison R, Komulainen H, Juana M, Delgado Saborit JM. Polycyclic aromatic hydrocarbons. In: WHO Guidelines for Indoor Air Quality: Selected Pollutants (ED WHO). Geneva: World Health Organization; 2010. p. 289-345.

5. St. Helen G, Goniewicz ML, Dempsey D, Wilson M, Jacob P, Benowitz NL. Exposure and kinetics of polycyclic aromatic hydrocarbons (PAHs) in cigarette smokers. Chem Res Toxicol 2012;25:952-64. doi:

6. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001;947:271-92; discussion 292-3. doi:

7. Curfs DM, Knaapen AM, Pachen DM, Gijbels MJ, Lutgens E, Smook ML, Kockx MM, Daemen MJ, van Schooten FJ. Polycyclic aromatic hydrocarbons induce an inflammatory atherosclerotic plaque phenotype irrespective of their DNA binding properties. FASEB J 2005;19:1290-2. doi:

8. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002;3:481-90. doi:

9. Pushparajah DS, Umachandran M, Plant KE, Plant N, Ioannides C. Up-regulation of the glutathione S- ransferase system in human liver by polycyclic aromatic hydrocarbons; comparison with rat liver and lung. Mutagenesis 2008;23:299-308. doi:

10. Larsen MC, N’Jai AU, Alexander DL, Rondelli CM, Forsberg EC, Czuprynski CJ, Jefcoate CR. Cyp1b1-mediated suppression of lymphoid progenitors in bone marrow by polycyclic aromatic hydrocarbons coordinately impacts spleen and thymus: a selective role for the Ah Receptor. Pharmacol Res Perspect 2016;4:e00245. doi:

11. Spurr NK, Gough AC, Stevenson K, Wolf CR. Msp-1 polymorphism detected with a cDNA probe for the P-450 I family on chromosome 15. Nucleic Acids Res 1987;15:5901. PMCID: PMC306045

12. Hayashi SI, Watanabe J, Nakachi K, Kawajiri K. PCR detection of an A/G polymorphism within exon 7 of the CYP1A1 gene. Nucleic Acids Res 1991;19:4797. PMCID: PMC328759

13. Crofts F, Cosma GN, Currie D, Taioli E, Toniolo P, Garte SJ. A novel CYP1A1 gene polymorphism in African-Americans. Carcinogenesis 1993;14:1729-31. doi:

14. Cascorbi I, Brockmöller J, Roots I. A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Res 1996;56:4965-9. PMID: 8895751

15. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005;45:51-88. doi:

16. Masetti S, Botto N, Manfredi S, Colombo MG, Rizza A, Vassalle C, Clerico A, Biagini A, Andreassi MG. Interactive effect of the glutathione S-transferase genes and cigarette smoking on occurrence and severity of coronary artery risk. J Mol Med (Berl) 2003;81:488-94. doi:

17. World Healh Organization 1999. Definition, diagnosis and clasiffication of diabetes mellitus and its complications [displayed 6 March 2017]. Available at

18. Framingham Heart Study. A Project of the National Heart, Lung and Blood Institute and Boston University [displayed 6 March 2017]. Available at

19. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 2002;106;3143-421. PMID: 12485966

20. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988;16:1215. PMCID: PMC334765

21. Li Y, Millikan RC, Bell DA, Cui L, Tse CK, Newman B, Conway K. Cigarette smoking, cytochrome P4501A1 polymorphisms, and breast cancer among African-American and white women. Breast Cancer Res 2004;6:R460-73. doi:

22. Gaikovitch EA. Genotyping of the polymorphic drug metabolizing enzymes cytochrome P450 2D6 and 1A1, and N-acetyltransferase 2 in a Russian sample [PhD thesis] [displayed 6 March 2017]. Available at

23. Žuntar I, Petlevski R, Dodig S, Popović-Grle S. GSTP1, GSTM1 and GSTT1 genetic polymorphisms and total serum GST concentration in stable male COPD. Acta Pharm 2014:64;117-29. doi:

24. Mandić S, Horvat V, Marczi S, Lukić I, Galić J. Association study of cytochrome P450 1A1*2A polymorphism with prostate cancer risk and aggressiveness in Croatians. Coll Antropol 2014;38:141-6. PMID: 24851608

25. Santl Letonja M, Letonja M, Ikolajević-Starčević JN, Petrović D. Association of manganese superoxide dismutase and glutathione S-transferases genotypes with carotid atherosclerosis in patients with diabetes mellitus type 2. Int Angiol 2012;31:33-41. PMID: 22330623

26. Manfredi S, Federici C, Picano E, Botto N, Rizza A, Andreassi MG. GSTM1, GSTT1 and CYP1A1 detoxification gene polymorphisms and susceptibility to smoking-related coronary artery disease: a case-only study. Mutat Res 2007;621:106-12. doi:

27. Taspinar M, Aydos S, Sakiragaoglu O, Duzen IV, Yalcinkaya A, Oztuna D, Bardakci H, Tutar E, Sunguroglu A. Impact of genetic variations of the CYP1A1, GSTT1, and GSTM1 genes on the risk of coronary artery disease. DNA Cell Biol 2012;31:211-8. doi:

28. Bailón-Soto CE, Galaviz-Hernández C, Lazalde-Ramos BP, Hernández-Velázquez D, Salas-Pacheco J, Lares-Assef I, Sosa-Macías M. Influence of CYP1A1*2C on high triglyceride levels in female Mexican indigenous Tarahumaras. Arch Med Res 2014;45:409-16. doi:

29. Almeida S, Zandoná MR, Franken N, Callegari-Jacques SM, Osório-Wender MC, Hutz MH. Estrogen-metabolizing gene polymorphisms and lipid levels in women with different hormonal status. Pharmacogenomics J 2005;5:346-51. doi:

30. Quan J, Yahata T, Tamura N, Nagata H, Tanaka K. Relationship between single nucleotide polymorphisms in CYP1A1 and CYP1B1 genes and the bone mineral density and serum lipid profiles in postmenopausal Japanese women taking hormone therapy. Menopause 2009;16:171-6. doi:

31. Maciel SS, Pereira Ada C, Silva GJ, Rodrigues MV, Mill JG, Krieger JE. Association between glutathione S-transferase polymorphisms and triglycerides and HDL-cholesterol. Atherosclerosis 2009;206:204-8. doi:

32. Pinheiro DS, Rocha Filho CR, Mundim CA, Júnior Pde M, Ulhoa CJ, Reis AA, Ghedini PC. Evaluation of glutathione S-transferase GSTM1 and GSTT1 deletion polymorphisms on type-2 diabetes mellitus risk. PLoS One 2013;8(10):e76262. doi:

33. Amer MA, Ghattas MH, Abo-Elmatty DM, Abou-El-Ela SH. Influence of glutathione S-transferase polymorphisms on type-2 diabetes mellitus risk. Genet Mol Res 2011;10:3722-30. doi:

34. Paumi CM, Smitherman PK, Townsend AJ, Morrow CS. Glutathione S-transferases (GSTs) inhibit transcriptional activation by the peroxisomal proliferator-activated receptor gamma (PPAR gamma) ligand, 15-deoxy-delta 12,14prostaglandin J2 (15-d-PGJ2). Biochemistry 2004;43:2345-52. doi:

35. Fajasand L, Auwerx J. Peroxisome Proliferator-Activated Receptor γ and transcriptional control of adipgenesis and metabolism. In: Bray BA, Bouchard C, editors. Handbook of obesity etiology and pathophysiology. 2nd ed. New York: CRC Press; 2003. p. 559-87.

36. Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med 2013;23:154-71. doi:

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information

IMPACT FACTOR 2017: 1.117
5-year IMPACT FACTOR: 1.335

CiteScore 2017: 1.24

SCImago Journal Rank (SJR) 2017: 0.341
Source Normalized Impact per Paper (SNIP) 2017: 0.494


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 314 270 20
PDF Downloads 159 144 14