Modelling of copper(II) binding to pentapeptides related to atrial natriuretic factor using the 3χv connectivity index / Modeliranje vezivanja bakra(II) za pentapeptide povezane s atrijalnim natriuretičkim faktorom pomoću indeksa povezanosti 3χv

Open access

Abstract

Using molecular graph theory we studied the binding of NSFRY-NH2 and 12 related pentapeptide amides to Cu(II) as a model system for atrial natriuretic factor (ANF) peptide interactions with copper. Linear regression models based on the valence connectivity index of the 3rd order (3χv) reproduced experimental stability constants (log β) for 1N, 2N, 3N, and 4N coordinated complexes with the standard error of 0.30-0.39 log β units. We developed separate models for seven tyrosinic (N=28) and five non-tyrosinic peptides (N=20), and a common model for both kinds of peptides (N=48) with an indicator (dummy) variable. The results indicate additional aromatic stabilisation in 4N complexes due to metal cation-π interactions with tyrosine but not with the phenylalanine residue. We have also amended the log K and log K* values to correct miscalculations published by Janicka-Klos et al. in 2013

1. Flynn TG, Davies PL. The biochemistry and molecular biology of atrial natriuretic factor. Biochem J 1985;232:313-21. PMCID: PMC1152881

2. Rosenzweig A, Seidman CE. Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem 1991;60:229-55. doi: 10.1146/annurev.bi.60.070191.001305

3. Prohaska JR. Biochemical changes in copper deficiency. J Nutr Biochem 1990;1:452-61. doi: 10.1016/0955-2863(90)90080-5

4. Kang YJ, Zhou ZX, Wu H, Wang GW, Saari JT, Klein JB. Metallothionein inhibits myocardial apoptosis in copperdeficient mice: role of atrial natriuretic peptide. Lab Invest 2000;80:745-57. PMID: 10830785

5. Janicka-Klos A, Porciatti E, Valensin D, Conato C, Remelli M, Oldziej S, Valensin G, Kozlowski H. The unusual stabilization of the Ni2+ and Cu2+ complexes with NSFRY. Dalton Trans 2013;42:448-58. doi: 10.1039/c2dt31959d

6. Odani A, Yamauchi O. Preferential formation of ternary copper(II) complexes involving substituted ethylenediamines and amino acids with an aromatic side chain. Inorg Chim Acta 1984;93:13-8.

7. Yamauchi O, Odani A, Takani M. Metal-amino acid chemistry. Weak interactions and related functions of side chain groups. J Chem Soc, Dalton Trans 2002;3411-21. doi: 10.1039/B202385G

8. Sugimori T, Masuda H, Ohata N, Koiwai K, Odani A, Yamauchi O. Structural dependence of aromatic ring stacking and related weak interactions in ternary amino acidcopper( II) complexes and its biological implication. Inorg Chem 1997;36:576-83. doi: 10.1021/ic9608556

9. Siegel H, Tribolet R, Scheller KH. Solvent effects on intramolecular hydrophobic ligand - ligand interactions in binary and ternary complexes. Inorg Chim Acta 1985;100:151-64. doi: 10.1016/S0020-1693(00)88303-6

10. Aoki K, Yamazaki H. A model for coenzyme-metal ionapoenzyme interactions: crystal structure of the ternary complex [(thiamine pyrophosphate)(1,10-phenanthroline) aquacopper]-dinitrate-water. J Am Chem Soc 1980;102:6878-80. doi: 10.1021/ja00542a051

11. Yamauchi O, Odani A. Structure-stability relationship in ternary copper(II) complexes involving aromatic amines and tyrosine or related amino acids. Intramolecular aromatic ring stacking and its regulation through tyrosine phosphorylation. J Am Chem Soc 1985;107:5938-45. doi: 10.1021/ ja00307a019

12. Sigel H. Intramolecular equilibria in metal ion complexes of artificial nucleotide analogues with antiviral properties. A case study. Coord Chem Rev 1995;144:287-319. doi: 10.1016/0010-8545(95)01158-L

13. Yajima T, Takamido R, Shimazaki Y, Odani A, Nakabayashi Y, Yamauchi O. π-π Stacking assisted binding of aromatic amino acids by copper(II) - aromatic diimine complexes. Effects of ring substituents on ternary complex stability. Dalton Trans 2007;21:299-307. doi: 10.1039/B612394E

14. Rouvray DE. The modeling of chemical phenomena using topological indices. J Comput Chem 1987;8:470-80. doi: 10.1002/jcc.540080427

15. Trinajstić N. Chemical Graph Theory. 2nd ed. Boca Raton (FL): CRC Press; 1992.

16. Todeschini R, Consonni V. Handbook of Molecular Descriptors. Weinheim: Wiley-VCH; 2000.

17. Gutman I. Degree-based topological indices. Croat Chem Acta 2013;86:351-61. doi: 10.5562/cca2294

18. Raos N, Miličević A. Estimation of stability constants of coordination compounds using models based on topological indices. Arh Hig Rada Toksikol 2009;60:123-8. doi: 10.2478/10004-1254-60-2009-1923

19. Miličević A, Raos N. Estimation of stability of coordination compounds by using topological indices. Polyhedron 2006;25:2800-8. doi: 10.1016/j.poly.2006.04.012

20. Miličević A, Raos N. Influence of chelate ring interactions on copper(II) chelate stability studied by connectivity index functions. J Phys Chem A 2008;112:7745-9. doi: 10.1021/ jp802018m

21. Miličević A, Raos N. A model to estimate stability constants of amino acid chelates with Cu(II) and Ni(II) at different ionic strengths. J Mol Liq 2012;165:139-42. doi: 0.1016/j. molliq.2011.11.001

22. Miličević A, Raos N. Estimation of stability constants of mixed copper(II) chelates using valence connectivity index of the 3rd order derived from two molecular graph representations. Acta Chim Slov 2009;56:373-8.

23. Miličević A, Raos N. Empirical model for the stability constants of acetate mono-complexes with La3+, Nd3+, Gd3+, and Yb3+ at different temperatures and ionic strengths. J Mol Liq 2013;177:60-2. doi: 10.1016/j.molliq.2012.09.003

24. Miličević A, Raos N. Stability prediction of Cu2+, Ni2+ and Zn2+ N-salicylidene-aminoacidato complexes by models based on connectivity index 3χv. Cent Eur J Chem 2014;12:74-9. doi: 10.2478/s11532-013-0345-x

25. Miličević A, Raos N. Comparison of two methods for the estimation of stability of copper(II) bis-complexes with aromatic ligands relevant to Alzheimer’s disease. Arh Hig Rada Toksikol 2013;64:539-45. doi: 10.2478/10004-1254-64-2013-2418

26. Miličević A, Raos N. Estimation of stability constants of copper(II) and nickel(II) chelates with dipeptides by using topological indices. Polyhedron 2008;27:887-92. doi: 10.1016/j.poly.2007.11.017

27. Miličević A, Raos N. Estimation of stability constants with connectivity index: development of bivariate and multivariate linear models for copper(II) chelates with oligopeptides. Croat Chem Acta 2009;82:633-9.

28. Miličević A, Raos N. Stability prediction of copper(II) complexes with peptides containing cysteinic disulfide bridge by models based on the connectivity index 3χv. J Coord Chem 2014;67:623-9. doi: 10.1080/00958972.2014.888716

29. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV. Virtual computational chemistry laboratory-design and description. J Comput Aid Mol Des 2005;19:453-63. doi: 10.1007/ s10822-005-8694-y

30. VCCLAB, Virtual Computational Chemistry Laboratory [displayed 23 April 2015]. Available at http://www.vcclab. org

31. National Cancer Institute. Online SMILES Translator and Structure File Generator [displayed 23 April 2015]. Available at http://cactus.nci.nih.gov/services/translate/

32. Kier LB, Hall LH. Molecular connectivity VII: Specific treatment to heteroatoms. J Pharm Sci 1976;65:1806-9. PMID: 1032667

33. Kier LB, Hall LH. Molecular Connectivity in Chemistry and Drug Research. New York: Academic Press; 1976.

34. Kier LB, Hall LH. Molecular Connectivity in Structure- Activity Analysis. New York: Willey; 1986.

35. Randić M. On history of the Randic index and emerging hostility toward chemical graph theory. MATCH Commun Math Comput Chem 2008;59:5-124.

36. Lučić B, Trinajstić N. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci 1999;39:121-32. doi: 10.1021/ci980090f

Archives of Industrial Hygiene and Toxicology

The Journal of Institute for Medical Research and Occupational Health

Journal Information


IMPACT FACTOR 2017: 1.117
5-year IMPACT FACTOR: 1.335



CiteScore 2017: 1.24

SCImago Journal Rank (SJR) 2017: 0.341
Source Normalized Impact per Paper (SNIP) 2017: 0.494

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 10
PDF Downloads 51 51 5