
35

DOI: 10.2478/10004-1254-63-2012-2151
Review

REPRODUCTIVE TOXICITY OF METALS IN MEN

Alica PIZENT, Blanka TARIBA, and Tanja ŽIVKOVIĆ

Institute for Medical Research and Occupational Health, Zagreb, Croatia

Received in September 2011
CrossChecked in September 2011

Accepted in January 2012

A combination of genetic, environmental and lifestyle factors contributes to adverse effects on the 
reproductive health in men. Metals are pervasive in food, water, air, tobacco smoke, and alcoholic beverages. 
Experimental studies suggest that many metals have adverse effects on the male reproductive function. 
However, information about reproductive effects of human exposure to metals is scarce and/or inconsistent. 
This review summarises the information from epidemiological studies of the effects of metal exposure on 
reproductive function in men. Factors capable of affecting these relationships were identifi ed and discussed. 
A particular attention is given to the studies considering infl uence of concomitant exposure to various 
metals.
These studies have generally confi rmed that even moderate- to low-level exposure to lead affects certain 
reproductive parameters, and that exposure to cadmium affects the prostate function and serum testosterone 
levels. Adverse effects of mercury, manganese, chromium and arsenic on semen quality and altered serum 
hormone are less well documented. There is no clear evidence that boron exposure may impair reproductive 
health in men. Only a few studies have investigated reproductive effects of concomitant exposure to several 
metals and controlled for potential confounders. Future studies should consider the contribution of combined 
exposure to various metals and/or other factors that may infl uence individual susceptibility to reproductive 
health impairment in men.
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In 1992, a meta-analysis of data from international 
literature by Carlsen et al. (1) indicated a signifi cant 
deterioration in the reproductive health of otherwise 
normal men in many countries over the period 1938 
to 1990. It prompted other researchers to evaluate their 
own data. Several studies established an increasing 
incidence of various abnormalities of the human 
reproductive system, including a decreased sperm 
count and an increased incidence of testicular and 
prostate cancer (2-7), but also great differences among 
countries and different locations within a country. This 
has triggered an increasing interest in the possible 
causes of these abnormalities and factors that 
contribute to this deterioration and the geographical 
differences, including environmental and lifestyle 
factors (8-13).

Metals are everywhere, in food, dietary 
supplements, water, air, alcoholic drinks, and tobacco. 
Cigarette smoke contains about 30 metals, of which 
cadmium, arsenic, and lead are in the highest 
concentrations, and cadmium body burden in smokers 
is about double that of non-smokers (14). Alcoholic 
beverages including wine can be contaminated with 
metals in concentrations exceeding the allowable 
limits and causing toxic effects, particularly in heavy 
drinkers (15-17).

Most reports on the reproductive toxicity of metals 
are from experimental animal studies, which usually 
involve high-dose and/or short-term exposure not 
applicable to common human exposure situations. The 
human male has a relatively low fertility potential 
compared with other mammals and is much more 
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susceptible to metal toxicity. Therefore, epidemiological 
studies are needed to validate the effects identifi ed in 
experimental models. Data on reproductive toxicity 
in men are scanty for most metals (18-22), and usually 
limited by inadequate controls and adjustments for the 
infl uence of potentially confounding variables.

The aim of this review is to provide a summary of 
epidemiological research of the effects of metal 
exposure on reproductive health in men, and particular 
attention is given to the studies considering the 
combined infl uence of several metals and lifestyle 
factors (e.g., smoking habits and alcohol consumption). 
We will also discuss other factors that can modify 
metal status and its effects on the reproductive function 
in men.

SOURCES OF METAL EXPOSURE

Men are inevitably exposed to metals due to their 
ubiquity in nature, wide use in industry and long-term 
persistence in the environment. The information on 
the most important occupational and environmental 
sources of metal exposure has mainly been collected 
from the toxicological profi les issued by the Agency 
for Toxic Substances and Disease Registry (ATSDR) 
(23-29), unless stated otherwise.

Lead is used for ammunition, batteries, solder, and 
X-ray shields. Sources of occupational exposure 
include lead mining, refi ning, smelting, construction 
work, paint removal, demolition, maintenance of 
bridges and water towers, car repair, and recycling. 
Environmental lead exposure has dropped in recent 
decades thanks to the dominant use of unleaded petrol 
and the ban of lead-based paint and lead solder in food 
cans. The general population can be exposed to lead 
in food and drinks, including lead-contaminated folk 
remedies (30-32), drinking water (33), and wine (15-
16). Strongly acidic beverages (such as wine, fruit 
juices, and soft drinks) and food can be contaminated 
with lead if stored or served in leaded crystal glassware 
or lead-glazed ceramics.

Cadmium is used in the production of nickel-
cadmium batteries, pigments (bright yellow, orange, 
red, and maroon dyes), ceramics, plastic stabilisers, 
and fertilisers. Increased production of CdSe/CdTe-
based photovoltaic solar cells for alternative energy 
production and the use of CdSe/CdTe in nanomaterials 
for biological applications in the past decades may 
have contributed to increased human exposure to 
cadmium (34). Cigarette smoke is one of the most 

important sources of cadmium exposure in the general 
non-occupationally exposed population. In non-
smokers, the main source of cadmium is food, 
particularly cereals such as rice and wheat, green leafy 
vegetables, potato, and offal products such as liver 
and kidney.

Mercury exists in several forms. Metallic mercury 
is used for the extraction of gold and silver from ores, 
in the production of chlorine gas and caustic soda, in 
thermometers, barometers, fl uorescent light bulbs, and 
some electrical and electronic switches, as a component 
in dental amalgam fi llings, and in some herbal or 
religious remedies. Organic and inorganic compounds 
of mercury are used as catalysts for polyurethane and 
other polymer production, in the production of 
fungicides, pigments, cosmetics (e.g. skin whitening 
cream and mascara), and pharmaceuticals (e.g. vaccine 
preservatives such as thiomersal and eye drops). The 
most common organic compound of mercury is 
methylmercury (MeHg). The general population is 
exposed to MeHg mainly through diet, especially 
through freshwater (e.g. pike and bass) and marine 
(e.g. shark, swordfi sh, barracuda, large tuna) fi sh.

Organic manganese compounds are used in the 
p r o d u c t i o n  o f  p e s t i c i d e s ,  w h e r e a s 
methylcyclopentadienyl manganese tricarbonyl 
(MMT) is used as a petrol additive. Manganese can 
also be found in grains and cereals, and in high 
amounts in tea.

Arsenic is a metalloid. Inorganic arsenic compounds 
are highly toxic, whereas organic compounds are 
harmless. Elemental arsenic is used as an alloying 
element in ammunition and solders. Inorganic arsenic 
is used to preserve wood. The use of inorganic arsenic 
for pesticides is no longer permitted. Organic compounds 
of arsenic are used as herbicides and as antimicrobial 
additives for animal and poultry feed. Fish and seafood 
may contain high levels of harmless organic forms of 
arsenic. Diet is generally the main source of arsenic. 
The general population may be exposed to high levels 
of inorganic arsenic in drinking water from the areas 
that contain high natural levels of arsenic in rock, e.g. 
several localities in East Croatia (35).

Chromium is present in several forms. Metal 
chromium (0) is used in steel production, whereas 
chromium (VI) and chromium (III) are used for 
chrome plating, dyes and pigments, leather tanning, 
and wood preserving. Chromium (VI) compounds are 
more toxic than chromium (III) compounds. Chromium 
(III) occurs naturally in the environment and is an 
essential nutrient, present in food.
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Boron in the form of borates or boric acid is widely 
used in the production of sodium perborate bleaches, 
soaps and detergents, insulation materials, fi berglass, 
borosilicate glass, fi re retardants, wood preservatives, 
adhesives, pesticides, soldering and welding fl uxes, 
and cosmetics. As an antiseptic and antibacterial 
compound, boric acid can be used to wash the eyes 
and treat yeast and fungal infections. Boron can mainly 
be found in nuts, fruits, and vegetables.

FACTORS INFLUENCING HEALTH 
OUTCOMES OF HUMAN EXPOSURE 
TO METALS

Men are usually exposed to many metals and other 
agents that act together resulting in adverse health 
effects or increased sensitivity to these effects. It is 
often diffi cult to correlate specifi c metal exposure to 
specifi c effect because of the complexity of these 
relationships. Many factors can influence health 
outcomes of human exposure to metals.

Some of them are metal speciation (chemical 
form), dose, timing, routes and duration of exposure, 
dose-response relationship, bioavailability, and 
distribution and accumulation of metals in various 
organs. Response to metal exposure also depends on 
the age, sex, health status, dietary habits, use of 
medications and/or supplements, physical activity, and 
concomitant exposure to other metals and/or chemicals 
(36-37).

Metals can interact additively, synergistically, or 
antagonistically and affect each other’s absorption, 
distribution, and excretion. Toxic metals can interfere 
with the metabolism of essential metals and reduce their 
concentration in the organism or decrease their 
bioavailability (36, 38-40). For example, competition 
between lead and/or cadmium and zinc for the same 
binding sites in enzymes, proteins, and transporters, can 
change enzyme activity, affect the structure and/or 
function of cell membranes, induce oxidative stress and 
apoptosis, and inhibit DNA and RNA synthesis and 
repair. This may have serious consequences on cell 
growth, development, and differentiation. On the other 
hand, essential metals (e.g., zinc and selenium) may 
decrease the absorption and retention of toxic metals 
and prevent their toxic effects. Moreover, metals have 
a signifi cant role in the antioxidant system, adaptive 
response, and genetic repair system. Therefore, the 
interaction between various toxic and/or essential metals 

could be particularly important for the fi nal health 
outcomes of metal exposure. These interactions 
contribute to interindividual differences in susceptibility 
to adverse effects of metals in men (36).

One of the factors responsible for these differences 
in susceptibility to metal exposure between individuals 
living in the same or similar environments is genetic 
polymorphism. Several recent attempts to investigate 
the infl uence of genetic polymorphisms on metal 
metabolism have identifi ed varieties in genetic coding 
for proteins involved in metal absorption, retention, 
biotransformation, transport, and storage, for proteins 
comprising plasma membrane ion channels, and for 
enzymes protecting against oxidative stress. However, 
only a few studies have assessed the potential effects 
of these polymorphisms on the relationship between 
metal exposure and health outcomes in men (reviewed 
in 18 and 20).

TARGETS AND MECHANISMS OF 
METAL ACTION

Metals may affect the male reproductive system 
directly, when they target specifi c reproductive organs, 
or indirectly, when they act on the neuroendocrine 
system.

These effects can be long lasting and irreversible 
if Sertoli cells are disrupted during foetal development. 
The number of Sertoli cells determines the number of 
sperm produced in adulthood, because each Sertoli 
cell can support only a fi nite number of germ cells that 
develop into sperm. According to Sharpe et al. (41), 
Sertoli cells proliferate during the foetal, neonatal and 
pre-pubertal period, and each of these periods is 
particularly sensitive to the adverse effects of 
metals.

The disruption of spermatogenesis in men (Table 
1) at any stage of cell differentiation can decrease the 
total sperm count, increase the abnormal sperm count, 
impair the stability of sperm chromatin or damage 
sperm DNA (43). Accumulating in the epididimys, 
prostate, vesicular seminalis or seminal fl uid, metals 
may impair progressive sperm motility (44). In 
addition, metals can cause hormonal imbalance by 
affecting the neuroendocrine system, disrupting the 
secretion of androgens from Leydig cells or Inhibin 
B from Sertoli cells (45).

There is growing evidence that oxidative stress is 
implicated in the pathogenesis of male infertility (19, 
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46-50). It is known that human spermatozoa are 
particularly vulnerable to oxidative stress. An 
excessive generation of reactive oxygen species (ROS) 
in the spermatozoa results in the peroxidation of 
polyunsaturated fatty acids within their plasma 
membrane (51). Several metals, including iron, 
copper, nickel, lead, and cadmium, may increase ROS 
production, decrease glutathione and other antioxidant 
levels, enhance the lipid peroxidation of the cell 
membrane, cause apoptosis, and contribute to the 
oxidative damage of DNA (52-55). Damage to the 
sperm membrane reduces sperm’s motility and ability 
to fuse with the oocyte, whereas damage to sperm 
DNA compromises paternal genomic contribution to 
the embryo (49) and increases the risk of infertility, 
miscarriage, or serious disease in the offspring (56).

Some malformations of the male reproductive 
system, such as cryptorchidism, hypospadias, and 
prostate and testicular cancers may originate from 
exposure to endocrine disruptors (Table 1). Cadmium, 
mercury, lead, and arsenic are suspected to affect the 
endocrine system (58-59). Evidence is usually limited 
to animal data or to in vitro studies (59-61). The 
clinical and epidemiological fi ndings are scarce and 
controversial, and often diffi cult to interpret because 
of multiple exposures to different agents and latency 
of effects.

REPRODUCTIVE EFFECTS OF METAL 
EXPOSURE

The assessment of male reproductive capacity 
usually includes the following reproductive 
parameters:
-  parameters of semen quality (e.g. semen volume, 

sperm concentration and count, motility, viability, 
and morphology of sperm),

-  parameters of the secretory function of the prostate 
and seminal vesicles in seminal plasma (e.g. zinc, 
fructose), and

-  parameters of reproductive endocrine function in 
serum (i.e. sex hormones; e.g. follicle-stimulating 
hormone, luteinizing hormone, testosterone, and 
oestradiol).

Metals can affect the testis size, semen quality, the 
secretory function of the prostate and seminal vesicles, 
the reproductive endocrine function and can lead to 
the loss of fertility and libido or to impotence (18-22). 
Moreover, exposure to cadmium, lead, and inorganic 

arsenic may contribute to prostate cancer development 
(62-66). Environmental exposure to cadmium and/or 
lead is associated with increased serum prostate 
specifi c antigen (PSA, Table 1) (67-68). Most reports 
on detrimental infl uence of metals on reproductive 
health in men are from occupational studies with high-
levels exposure (18-20).

Effects of occupational exposure to metals on 
reproductive parameters

In men occupationally exposed to lead, blood lead 
levels equal to or higher than 400 µg L-1 have been 
associated with reduced sperm count, poor semen 
motility, and abnormal sperm morphology, particularly 
of the sperm head (69-78). Effects on the reproductive 
endocrine function have been less consistent (71, 74, 
79-83). Reduced sperm count and concentration, and 
lower motility were found in lead workers with blood 
lead levels lower than 400 µg L-1 (78, 84-85). These 
adverse effects of lead exposure were confi rmed in 
regression models adjusted for the infl uence of age, 
smoking, alcohol, blood cadmium, and serum copper 
and zinc (78). In addition, a better correlation of 
reproductive parameters with the activity of delta-
aminolevulinic acid dehydratase (ALAD) in blood, 
which better reflects long-term cumulative lead 
exposure than blood lead level, indicated that the 
reproductive effects were at least partly mediated 
through lead interference with zinc metabolism 
(78).

Information regarding reproductive effects in male 
workers occupationally exposed to cadmium is limited 
and insufficient to estimate a quantitative dose-
response relationship or no-adverse-effect exposure 
thresholds. For example, in smelter workers exposed 
to cadmium and control subjects, signifi cantly higher 
serum testosterone was found in men with urinary 
cadmium levels of (10 to 20) µg g-1 creatinine than in 
men with (0 to 2) µg g-1 or (2 to 5) µg g-1 creatinine 
(85). In men with urinary cadmium levels >20 µg g-1 
creatinine, serum levels of the luteinising hormone 
were signifi cantly higher, but testosterone levels did 
not differ significantly. Other studies showed no 
significant reproductive effect of occupational 
exposure to cadmium (86-87).

A few studies reported the effects of occupational 
exposure to mercury, manganese, chromium and boron 
on reproductive health in men and the available data 
are inconsistent.

In chloralkali workers with mean urinary mercury 
of 27 µg g-1 creatinine and mean blood mercury of 9.5 
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µg L-1, exposed for an average of 10 years to mercury 
vapour, cumulative mercury exposure positively 
correlated with serum total testosterone, but not with 
free testosterone (88). In another group of workers 
with urinary mercury of 71.2 µg g-1 creatinine, no 
signifi cant association was found between urinary 
mercury levels and the parameters of reproductive 
endocrine function (87).

Two reproductive epidemiological studies of male 
workers occupationally exposed to manganese also 
yielded contradictory results. Although impotence and 
lack of sexual desire was higher in the exposed than 
control group, no signifi cant difference was found in 
other reproductive outcomes between the groups (89). 
In another group of workers, which consisted of 
miners, electric welders in mechanical fi elds and 
welders in shipbuilding, a signifi cantly lower sperm 
count and percentage of total viable sperm was 
found comparing to control group. However, after 
adjusting for the influence of copper, nickel, 
chromium, and iron concentration in semen on the 
measured reproductive parameters, manganese was 
no longer a significant predictor of adverse 
reproductive effects (90).

It was reported that workers exposed to 
chromium (VI) had significantly higher serum 
follicle stimulating hormone concentration and 
lower sperm concentration and motility, seminal 
plasma zinc levels, lactate dehydrogenase (LDH), 
and LDH-C4 (91), and significantly higher 

percentage of abnormal sperm then control workers, 
but other semen quality parameters did not differ 
between them (92). Blood chromium positively 
correlated with the percentage of abnormal sperm 
in the exposed workers (92). While one study of 
welders exposed to chromium (VI) reported a 67 
% decrease in sperm concentration compared to 
controls and an inverse correlation between sperm 
concentration and blood chromium levels in the 
exposed workers (93), another study showed no 
signifi cant difference in semen quality between 
welders and other workers (94).

As for boron, there is no clear evidence that 
occupational exposure impairs sperm concentration, 
motility, morphology, or DNA integrity (95-97).

No study was found on reproductive effects of 
occupational exposure to inorganic or organic 
arsenic in men.

Most of the above-mentioned occupational studies 
were cross-sectional in design, comparing measured 
parameters between the exposed and unexposed 
workers. The most studied metal is lead, whereas only 
a few occupational reproductive studies were found 
for mercury, manganese, chromium and boron, and 
none for arsenic. Some discrepant fi ndings from these 
studies may be attributed to: different levels and 
duration of metal exposure, fluctuation in metal 
exposure levels, no control group or an inadequate 
control group, a small number of subjects examined, 
division of subject into categories, lack of relevant 

Table 1 Reproductive health terminology

TERM DEFINITION / EXPLANATION

Spermatogenesis
A cellular process that occurs in seminiferous tubules in the testis and that produces 
mature male sex cells in ca. 74 days in humans (42); it starts at puberty and usually 
continues until death.

Endocrine disruptor

An exogenous agent that interferes with the synthesis, secretion, transport, binding, 
action, or elimination of natural hormones in the body that is responsible for the 
maintenance of homeostasis, reproduction, development and/or behaviour and is 
able to alter the structure or function of the endocrine system and to cause adverse 
effects on organisms or their progeny or (sub)populations (57).

Cryptorchidism Undescended testicle.

Hypospadias
A birth defect of the urethra in the male that involves an abnormally placed urinary 
meatus (opening), i.e. displacement of the urethral meatus from the tip to the ventral 
side of the phallus.

Prostate specifi c antigen 
(PSA)

A marker that in combination with digital rectal examination is used as an aid in the 
detection of prostate cancer in men. 

Time to pregnancy (TTP)
Time taken to conceive after the couple had stopped using contraceptives and 
treatment for infertility; The TTP distribution in a population describes its fertility.
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information on selection criteria and/or lack of control 
for other common factors capable of affecting metal 
concentration and reproductive parameters. Only a 
few studies were adjusted for age, smoking habits and 
alcohol consumption (78, 85), and concentration of 
other metals (78, 90).

Effects of occupational exposure to metals 
on fertility

Time to pregnancy (TTP, Table 1) is a frequently 
used biomarker of effect in occupational epidemiology. 
Since the unit of study is the couple, information about 
the potential confounding factors affecting both 
partners are required.

Several studies (19, 98) have indicated that paternal 
blood lead levels of approximately 300 µg L-1 to 
400 µg L-1 are the “most likely threshold for increased 
rate of spontaneous abortions, reduced rate of live 
births, and prolonged TTP, although inconsistent 
fi ndings or a minor incompatibility were also reported” 
(19). A longer TTP was associated with higher blood 
lead levels within the group of lead workers although 
shorter TTP was found in lead workers than in controls 
(98). Seminal plasma lead levels inversely correlated 
with the fertilising capacity expressed by mannose 
receptor expression, and fertilisation rate in patients 
seeking in vitro fertilisation (IVF) (99).

Lauwerys et al. (100) found no effect of occupational 
exposure to mercury on fertility assessed by the rate 
of live births, whereas two other studies reported a 
signifi cant association between paternal occupational 
exposure to mercury vapour and higher spontaneous 
abortion rate (101-102).

The results of the only two studies evaluating 
the infl uence of paternal exposure to manganese 
dust on the rate of live births are controversial (100, 
103).

Judging by the study of occupational exposure 
to boron as sodium borate at a large mining and 
production facility in California (104), paternal 
exposure does not seem to bear a greater risk for 
live births.

Effects of environmental exposure to metals on 
reproductive parameters

Several studies indicate that adverse reproductive 
effects of some metals can occur even at an exposure 
range that is common for general populations 
worldwide.

Low to moderate lead exposure has been associated 
with reduced sperm concentration, poor semen 
motility and viability, and abnormal sperm morphology 
(66, 105-108). Moreover, blood lead level <150 µg
L-1 has been associated with higher serum levels of 
testosterone and oestradiol, and lower serum levels of 
prolactin (66). In men with median blood lead of 
15 µg L-1, an inverse association with serum prolactin 
and thyroid stimulating hormone (107) was found, but 
there was no association between blood lead levels 
and sperm concentration, motility or morphology 
(109). A Mexican study in men showed a signifi cant 
association between lower semen quality and lead in 
spermatozoa or seminal fl uid, but not with blood lead 
(106). All of these studies have been adjusted for the 
infl uence of age and current smoking (66, 105-109), 
and for other metals (66, 105, 107-109). Other studies 
(110-114) have not found any association between 
low-level lead exposure and semen quality or 
endocrine function in men.

Tobacco smoking signifi cantly increases cadmium 
levels in blood and seminal plasma in occupationally 
unexposed men (78, 115-117) and may adversely 
affect the male reproductive function. Several studies 
have found evidence that low-level cadmium affects 
semen quality and/or reproductive hormone levels. 
The following effects have been reported in men with 
blood cadmium level <1.5 µg L-1: decreased sperm 
density and number of sperm per ejaculate (114), 
decreased semen volume (114, 118), and increased 
sperm midpiece defects and immature sperm forms 
(118). After adjusting for potential confounders, these 
effects included reduced testis size and higher serum 
levels of the follicle stimulating hormone, 
testosterone, and oestradiol (105). In men with median 
blood cadmium level of 0.20 µg L-1, a positive 
association between blood cadmium and inhibin B 
levels in a model adjusted for age, BMI, and current 
smoking or for other metals (119) was found, but there 
were no effects on semen parameters (109). Urinary 
cadmium showed no significant association with 
serum testosterone, follicle stimulating hormone, and 
luteinizing hormone levels after adjusting for potential 
confounders (67).

Several studies (120-122) have indicated that total 
mercury levels >8 μg L-1 in blood or >8 ng L-1 in 
seminal fluid are associated with lower sperm 
concentration and motility and higher abnormal sperm 
count. Median total mercury in blood of 1.10 μg L-1 

has not been associated with parameters of semen 
quality or endocrine function (109, 123). An increased 
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risk of subfertility was found to be associated with 
increasing levels of mercury in hair (124). Consumption 
of seafood can signifi cantly increase methyl-mercury 
in blood, hair, and seminal fl uid. However, blood 
methyl-mercury between 0.11 μg L-1 and 16.59 μg
L-1 (median 2.25 μg L-1) in Swedish fi shermen did not 
affect sperm concentration, count, motility, chromatin 
integrity, or the proportion of Y-chromosome bearing 
sperm (125).

Only one group of researchers have evaluated the 
influence of environmentally relevant levels of 
manganese on male reproductive ability. They found 
that blood manganese was signifi cantly associated 
with low sperm concentration and motility (123, 126), 
higher inhibin B, and lower prolactin levels (109, 119), 
although adjusting for confounders produced slightly 
different results.

The same group of researchers has published 
results on reproductive toxicity of environmental 
arsenic in men. Blood arsenic levels higher than 
5.8 µg L-1 were associated with low sperm motility 
after adjusting for smoking and age, although the 
dose response trend was not linear in all groups 
(109). In a model adjusted for other metals, arsenic 
was a signifi cant risk factor for low semen volume. 
In the same group of subjects, blood arsenic 
increased the risk of low luteinizing hormone level 
after adjusting for age, BMI, and current smoking 
(119).

In a study of environmental chromium exposure, 
seminal chromium levels were not signifi cantly 
different between fertile and infertile men (127). 
However, blood chromium was significantly 
associated with an increase in serum prolactin (107), 
and a non-linear decrease in serum inhibin B (119) 
after adjusting for age, BMI, and smoking status, 
or other metals in both studies.

There is no data regarding the reproductive effects 
of environmental exposure to boron in men.

With regard to environmental exposure to metals, 
most information on reproductive effects concern lead, 
cadmium, and mercury. Some of these studies have 
been well designed with a sufficient number of 
participants and appropriately adjusted for potential 
confounders. However, effects of smoking intensity 
and alcohol consumption are often not considered, 
although tobacco smoke and alcohol drinks may be 
an important source of non-occupational metal 
exposure. Moreover, smoking and/or alcohol itself 
may have some detrimental effects on reproductive 
health in men (128-131).

REPRODUCTIVE EFFECTS OF EXPOSURE 
TO METALS AS NANOPARTICLES

Humans have always been exposed to airborne 
nanoparticles in dust storms, volcanic ash, and other 
natural processes (132), but this exposure has recently 
dramatically increased due to the rapid advancement 
of nanotechnology. Several researchers have expressed 
concern about the possible adverse effects of 
nanoparticles on human health because of their ability 
to pass through biological membranes (132-134) and 
“translocate through the circulatory, lymphatic, and 
nervous systems to many tissues and organs” (132). 
Potential reproductive and developmental toxicity of 
manufactured nanomaterials was investigated in 
several experimental in vivo and in vitro studies 
reviewed by Ema et al. (135). It was found that “high 
concentrations of TiO2 nanoparticles affect the 
viability and proliferation of mouse Leydig cells, that 
gold nanoparticles reduced the motility of human 
sperm, that silver, aluminium, and molybdenum 
trioxide were toxic to mouse spermatogonia stem 
cells, that silica nanoparticles inhibited the 
differentiation of mouse embryonic stem cells and 
midbrain cells, respectively, and that cadmium 
selenium-core quantum dots inhibited pre- and 
postimplantation development of mouse embryos”. 
There is no epidemiological study regarding the 
reproductive effects of nanoparticles.

CONCLUDING REMARKS

The overall results of this review provide evidence 
for adverse effects of lead on certain reproductive 
parameters, and cadmium on prostate impairment and 
serum testosterone levels, even at moderate to low 
exposure levels. It seems that mercury and manganese 
affect semen quality and serum hormone levels, 
although more studies are needed to confi rm these 
results. Less consistent evidence indicates that arsenic 
and chromium might adversely affect the male 
reproductive system, whereas there is no clear 
evidence that boron exposure might do the same.

Most published studies report the effects of a single 
metal, although human exposure combines toxic and 
essential metals that can interact. Infl uence of other 
risk factors that can affect metal concentration and/or 
reproductive parameters in men is rarely considered. 
No epidemiological study assessing the reproductive 
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effects of nanoparticles is available. There is 
insuffi cient data for establishing quantitative dose-
response relationships and no-adverse-effect exposure 
thresholds for metal-induced reproductive effects in 
men.

Only a few well-designed epidemiological studies 
have investigated combined exposure to metals and 
have been controlled for potential confounders.

Further research evaluating the effects of a 
particular metal on reproductive health in men should 
take into account the contribution of other metals, 
agents, and the lifestyle. A combined analysis could 
provide useful information about individual health 
risk.
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Sažetak

UTJECAJ TOKSIČNOSTI METALA NA REPRODUKCIJSKU FUNKCIJU U MUŠKARACA 

Postoje indikacije da kombinacija genetskih, okolišnih i čimbenika načina života pridonosi uočenom 
poremećaju reprodukcijskog zdravlja u muškaraca. Metali su široko rasprostranjeni u čovjekovu okolišu 
te u hrani, vodi, zraku, cigaretnom dimu i alkoholnim pićima. Rezultati eksperimentalnih istraživanja 
sugeriraju štetne učinke većine ispitivanih metala na mušku reprodukcijsku funkciju. Međutim, odgovarajuća 
su istraživanja u ljudi oskudna. Ovaj rad sažima rezultate dosadašnjih epidemioloških istraživanja o 
učincima izloženosti metalima na mušku reprodukcijsku funkciju. Poseban naglasak dan je istraživanjima 
koja su razmatrala utjecaj istodobne izloženosti različitim metalima uz čimbenike čovjekova načina života 
i njihovo međudjelovanje na reprodukcijske učinke. Objavljeni rezultati daju dovoljno dokaza o štetnom 
djelovanju olova na neke reprodukcijske parametre te kadmija na poremećaj prostate i razinu testosterona 
u serumu, čak u uvjetima umjerene do niske razine izloženosti. Manje je dokaza o štetnom djelovanju na 
kvalitetu sjemena i razinu spolnih hormona nađeno za mangan. Podaci koji upućuju na moguće štetno 
djelovanje žive, arsena ili kroma nisu dosljedni, dok o štetnom djelovanju bora na mušku reprodukcijsku 
funkciju nema jasnih podataka. Utjecaj potencijalno uzročnih varijabli uzet je u obzir samo u nekoliko 
radova. Stoga buduća istraživanja poremećaja reprodukcijskog zdravlja u muškaraca trebaju razmatrati 
doprinos istovremene izloženosti različitim metalima koji u kombinaciji s ostalim čimbenicima mogu 
utjecati na osobnu (pre)osjetljivost.

KLJUČNE RIJEČI: kvaliteta sjemena u ljudi, metali, metaloidi, međudjelovanje metala, spolni 
hormoni
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