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Sleepiness is a widespread phenomenon in the busy industrial countries, and many studies have identifi ed 
its signifi cant negative impacts on individuals and society. Particularly important are the data that associate 
sleepiness with the risk of accidents at workplace and in transport, pointing to shift workers as the most 
vulnerable population. It is generally accepted that two basic physiological processes regulate sleepiness:  
homeostatic and circadian rhythmic processes. Recent research has proposed the third component regulating 
sleepiness, that is, the wake drive or the arousal system. The role of the arousal system in regulating 
sleepiness has partly been addressed by the studies of the pathophysiology of insomnia, which is often 
described as a disorder of hyperarousal. Experimental and correlational studies on the relation between 
sleepiness and arousal in good sleepers have generally indicated that both physiological and cognitive 
arousal are related to the standard measures of sleepiness. Taking into account the role of the arousal system 
in regulating sleepiness widens the possibilities for the management of sleep disorders and could also help 
in solving the problem of excessive sleepiness at work and the wheel.
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Sleep research and sleep medicine often defi ne 
sleepiness as a state refl ecting physiological sleep need 
(1). Other terms used in addition to sleepiness are sleep 
propensity and sleep tendency. Sleepiness is measured 
by how long it takes to fall asleep, with tests such as 
the Multiple Sleep Latency Test (MSLT) (2) and the 
Maintenance of Wakefulness Test (MWT) (3). 
Sleepiness is also measured by behaviour such as eye 
closing, yawning, specifi c head movement (bobbing), 
facial expressions, and performance in various 
psychomotor and cognitive tasks (4). In the subjective 
domain, measurements include various single- or 
multi-facetted sleepiness rating scales (5, 6) and scales 
assessing the tendency to fall asleep in various 
situations (7).

Although sleepiness is a normal physiological state 
related to sleep need, in certain cases it can be a 
symptom of a serious disease or condition. In such 

cases the term pathological or excessive sleepiness is 
used. The American Academy of Sleep Medicine 
defi nes excessive sleepiness as sleepiness that occurs 
in situations when a person is expected to be awake 
and alert (8), which interferes with person’s daily 
functioning such as work or school performance, 
cognitive functioning, mood, and social interaction.

Empirical data indicate that sleepiness signifi cantly 
contributes to vehicle accidents and that mortality in 
these accidents is very high, especially in persons 
younger than 25 years (9-12). Furthermore, sleepiness 
at the workplace is associated with lower performance 
and greater risk of occupational accidents and injuries, 
especially in industrial operations and transportation 
services (10, 13-15). Shift workers run the greatest 
risk of sleepiness at the workplace because their 
working time often coincides with the time of the day 
when humans are biologically programmed to sleep. 
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On the other hand, shift workers often sleep at the time 
when circadian factors promote wakefulness, which 
can delay the onset and reduce the quality of sleep 
(16).

Epidemiological studies indicate that excessive 
sleepiness, that which occurs at least three times a 
week, affects 4 % to 21 % of the general population, 
while the prevalence of serious cases, those that occur 
every day or with extreme manifestations, is around 
5 % (17). Excessive sleepiness may be a symptom of 
sleep disorder, if related to fragmented sleep caused 
by brief arousals (as in sleep apnoea syndrome or 
restless legs syndrome), sudden intrusion of REM 
sleep into wakefulness (as in narcolepsy), irregularity 
of the sleep-wake cycle (as in delayed sleep phase 
syndrome), or to no apparent cause (as in idiopathic 
hypersomnia) (18). Furthermore, excessive sleepiness 
can be associated with different medical and 
neurological disorders, or can be a side effect of a drug 
(8). Finally, excessive sleepiness can appear in 
otherwise healthy individuals, most often as a result 
of chronically restricted sleep (insufficient sleep 
syndrome).

The consequences of a long-term restriction of 
sleep on daily functioning, especially when sleep is 
restricted to 4.5 h to 6.5 h, are still poorly recognised, 
even though this kind of sleep restriction is the most 
common. One of the reasons could be the inconsistent 
results of studies that investigated the cumulative 
effects of partial sleep restriction on daytime 
functioning (19-22). Van Dongen et al. (23) emphasised 
that the lack of evidence about the negative effects of 
long-term sleep restriction could be owed to 
methodological limitations such as small sample sizes, 
few and inadequate measures of neurobehavioral 
functioning, and no experimental control over sleep 
that subjects really obtained over 24 hours. Therefore, 
taking into account methodological limitations of the 
previous studies, they performed a laboratory study 
of the consequences of partial sleep restriction on 
different aspects of neurobehavioral functioning in 
healthy subjects over 14 consecutive days. The authors 
found signifi cant cumulative defi cits in cognitive 
performance where sleep was restricted to 4 h or 6 h 
per night. Subjective sleepiness also increased as a 
function of cumulative sleep loss, but only in the fi rst 
days of sleep restriction. In the subsequent days, the 
progressive deterioration in cognitive tasks was not 
accompanied with further increase in subjective 
sleepiness. The authors concluded that these results 
could explain why the phenomenon of chronic sleep 

deprivation was so widespread – people feel that they 
have adapted to shorter sleep because they do not feel 
so much sleepy, although with further sleep restriction 
their performance continues to deteriorate.

HOMEOSTATIC AND CIRCADIAN 
COMPONENTS IN THE REGULATION OF 
SLEEPINESS

It is widely accepted that sleepiness is regulated 
by two basic physiological processes, one of which 
refl ects the homeostatic need for sleep and the other 
body’s circadian processes (24). To explore the 
homeostatic component of sleepiness regulation, 
researchers measured levels of sleepiness-alertness 
after manipulating the duration of wake and sleep 
periods. When wakefulness was prolonged above the 
usual hours and in conditions of partial sleep 
restriction, sleep latency measured by the MSLT, 
signifi cantly dropped (25, 26). Carskadon and Dement 
(20) reported that even a modest partial restriction of 
sleep accumulated over several nights had progressively 
reduced sleep latency. Furthermore, studies of partial 
and total sleep deprivation (21, 26, 27) reported that 
subjective ratings of sleepiness increased and 
performance deteriorated. In general, prolonged 
wakefulness or restricted sleep inevitably lead to 
increased sleep propensity (usually measured as the 
speed of falling asleep) and to increased subjective 
sleepiness, so that after a certain amount of sleep loss 
a person will fi nally fall asleep, even if it were only 
brief sleep episodes called microsleeps (28). On the 
other hand, the extension of time in bed beyond the 
usual seven to eight hours a day in healthy subjects 
resulted in decreased sleepiness measured with the 
MSLT (29, 30). It was also found that naps of relatively 
short duration, usually less than 30 minutes, improved 
alertness both after a normal and after a restricted 
overnight sleep (31, 32).

Circadian modulation of sleepiness is independent 
of the homeostatic one and is expressed through cyclic 
24-hour variations in sleep propensity. These variations 
primarily depend on the signals from the circadian 
pacemaker, which closely interacts with different 
environmental and social time cues. Earlier studies 
have already shown that daily variations in subjective 
sleepiness and objective sleep propensity are closely 
associated with circadian variations in body 
temperature. The highest subjective sleepiness is 
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around the time of temperature minimum and the 
lowest around the time of temperature maximum (33). 
When time cues are present, people usually fall asleep 
several hours after body temperature starts to decline, 
while in the experimental conditions without time cues 
they usually choose to go to sleep around the time 
when temperature reaches its minimum (34).

Sleep propensity is relatively stable during normal 
waking hours, except for a possible transient increase 
in the midafternoon, and it increases rapidly if 
wakefulness is extended above the usual hours (26, 
35). Based on the mathematical simulations of the 
two-process model of sleep regulation, Borbély at al. 
(25) hypothesised that during habitual waking period 
circadian pacemaker counteracted homeostatic sleep 
propensity and preserved the stability of sleep 
propensity during regular waking hours. This 
hypothesis was further tested in an experimental study 
performed by Edgar et al. (36). The authors analysed 
the effects of lesions of the suprachiasmatic nucleus 
(SCN), which is a major circadian pacemaker in 
mammals, on different sleep parameters in squirrel 
monkeys. The monkeys with SCN lesions lost their 
major circadian rhythms; they slept shorter but more 
often and at different times of the day, and their total 
sleep time was signifi cantly greater than in monkeys 
without the lesions. The authors concluded that SCN 
actively promoted wakefulness and opposed the 
increasing homeostatic sleep propensity during the 
wake period. The importance of circadian factors to 
sleepiness regulation was even more emphasised by 
studies performed according to the protocol of forced 
desynchrony (37, 38). This protocol allows to 
separately investigate circadian and homeostatic 
factors as well as their interaction. These studies have 
shown that in the usual entrained conditions the 
interaction between circadian and homeostatic factors 
serves to consolidate both wakefulness and sleep and 
to facilitate transitions between these states.

AROUSAL COMPONENT IN THE 
REGULATION OF SLEEPINESS

Arousal and sleepiness have traditionally been 
regarded as related constructs, but the role of arousal 
has never been discussed in the frame of classical 
models of sleepiness regulation, which are primarily 
focused on the homeostatic and circadian determinants 
of sleepiness (24, 39). Ideas to add arousal to the 

classical models of regulation of sleepiness came from 
several sources. Firstly, studies on insomnia have 
proposed the hyperarousal hypothesis (40, 41) 
whereby constantly high arousal creates diffi culties 
in falling asleep and maintaining sleep in insomnia 
patients. They suggest that high arousal is the major 
reason for lower sleep propensity in insomniacs. 
Secondly, experimental studies in which the level of 
arousal was manipulated by physical activity (42, 43) 
showed that heightened physiological activation 
increased sleep latency in good sleepers. Bonnet and 
Arand (44) have suggested that standard measures of 
sleepiness, including the MSLT, always measure a 
combination of sleep need and the level of arousal, 
where arousal has both trait and state components. 
Furthermore, experimental studies in which the 
subjects were exposed to acute stressors before going 
to sleep (45, 46) showed that increased cognitive 
arousal resulted in longer sleep latency. Additionally, 
several correlational studies in healthy subjects 
showed that sleep propensity and subjective sleepiness 
were associated with different indices of physiological 
and cognitive arousal (47-49). In general, these studies 
have confi rmed earlier ideas about the effects of 
various environmental, behavioural, and cognitive 
factors on sleepiness (28, 50, 51), even though they 
have not directly been associated with arousal.

Chronic insomnia and the hyperarousal hypothesis

Insomnia has often been described as a disorder 
of hyperarousal in the sense that level of arousal in 
insomniacs interferes with the initiation and 
maintenance of sleep (52). Earlier studies produced 
surprising fi ndings that insomnia patients, in spite of 
complaints about fatigue and chronically shorter or 
poorer night sleep, were not sleepier during the day 
than normal subjects, as measured with the MSLT (41, 
53, 54). Stepanski (55) found that insomniacs were 
even more alert than normal sleepers on the MSLT 
and hypothesised that these results were the 
consequence of chronic physiological hyperarousal in 
insomnia patients. Bonnet and Arand (56) used 
caffeine-induced hyperarousal in healthy subjects as 
an experimental paradigm to test this hypothesis. In 
this study, subjects took 400 mg of caffeine three times 
a day for seven days. Caffeine increased their body 
metabolism, reduced sleep duration, lowered sleep 
effi ciency, and reduced sleepiness. In the beginning 
of the study, the subjects reported increased vigour 
but by the end of the study they complained of daytime 
fatigue, even though their objective sleepiness, 
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measured by the MSLT, remained low. Bonnet and 
Arand concluded that the discrepancy between 
subjective fatigue and objective sleepiness, which 
corresponded to the fi ndings in insomnia patients, 
could be regarded as the consequence of chronically 
elevated arousal (in this case due to caffeine intake), 
and that these results supported the hyperarousal 
hypothesis. In their review article (40), Bonnet and 
Arand described insomnia as a 24-hour disorder in 
which high levels of physiological arousal were 
responsible for both disturbed night sleep and daytime 
symptoms of insomnia.

Many other studies tested the hyperarousal 
hypothesis of insomnia. Most compared insomnia 
patients with good sleepers using different indicators 
of physiological arousal. Earlier fi ndings that insomnia 
patients had higher body temperature than good 
sleepers (57, 58) have been contested by recent studies 
(59, 60). Other studies found evidence of higher 
electrodermal activity (61), muscle activity (62), and 
generally higher metabolic activity in insomnia 
patients (63). Several studies found a higher heart rate 
and/or smaller variability of heart rate in insomnia 
patients compared to healthy persons (64, 65), but 
several recent studies reported insignifi cant differences 
in heart activity between these groups (66, 67).

Several studies indicated increased secretion of 
adrenocorticotropic hormone and cortisol in insomnia 
patients compared to healthy sleepers (57, 68, 69). In 
contrast, a recent study (70) showed no signifi cant 
differences in cortisol levels between insomnia 
patients and good sleepers between 19:00 and 9:00 
hours. In the same study, the insomnia group showed 
lower melatonin levels, which is in agreement with 
an earlier study (71). There is evidence about increased 
norepinephrine secretion in insomnia patients 
compared to healthy persons (57) and persons 
suffering from depression (72).

A recent study (73) performed with positron 
emission tomography revealed that insomnia patients 
had greater cerebral glucose metabolism than healthy 
subjects, both awake and during the non-REM sleep. 
In addition, in the transition from wake to sleep state, 
insomnia patients had a smaller decline in glucose 
metabolism in specifi c brain regions that are considered 
to promote wakefulness: the ascending reticular 
activating system, hypothalamus, thalamus, insular 
cortex, amygdala, and hippocampus. Spectral analyses 
of the EEG activity showed that, compared to good 
sleepers, patients with insomnia had a higher-
frequency EEG activity (in the beta and gamma 

bandwidth) both around sleep onset and during the 
non-REM sleep (74-77). Overall, these studies indicate 
that chronic insomnia patients are characterised by 
autonomic and CNS hyperarousal.

Cognitive arousal has also been considered the 
reason for sleep problems in insomnia. It usually refers 
to the tendency to excessively worry and ruminate, 
although it can exist in the form of non-anxious, 
neutral thoughts. Patients with insomnia are prone to 
worry about daytime events, especially when they try 
to fall asleep. When insomnia becomes chronic, 
worries are very often related to the inability to fall 
asleep or to the negative effects of insuffi cient sleep 
on daytime functioning (78). Insomnia patients seem 
to blame cognitive arousal as the main cause of their 
sleep problems (79, 80).

Perlis et al. (76, 77) suggested the importance of 
cortical arousal, which occurs as a result of classical 
conditioning in the pathophysiology of insomnia. The 
authors assume that increased cortical arousal, which 
is operationalised as the high-frequency EEG activity, 
results in enhanced information processing at sleep 
onset and during the non-REM sleep. Furthermore, 
enhanced information processing can explain not only 
sleep difficulties but also different sleep-related 
phenomena in insomniacs, such as their errors in sleep 
perception and their tendency to underestimate sleep 
duration. The authors stress that thinking and worrying 
before falling asleep, which are often seen in 
insomniacs, are not primarily responsible for their 
sleep diffi culties, but that they are themselves the 
consequences of prolonged wakefulness.

Arousing effects of environmental factors

Audio and visual stimuli such as noise and light 
have arousing effects on human physiology and can 
affect the level of sleepiness. The effects of noise were 
mostly investigated in relation to sleep continuity and 
sleep structure rather than in relation to sleepiness 
(81-84). These studies showed that exposure to noise 
during sleep (e.g. traffic noise) led to increased 
autonomic and cortical arousal that could cause 
frequent awakenings and affect sleep depth. The 
effects of listening to the radio were explored in a 
study performed by Reyner and Horne (85); subjects 
were listening to the radio while driving in a car 
simulator after a night of restricted sleep. Listening to 
the radio did not decrease the rate of road accidents 
in the simulator and there were no signifi cant changes 
in the EEG measure of sleepiness, although the 
subjects did report feeling less sleepy than subjects 
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who did not listen to the radio. Bonnet and Arand (86) 
explored the effects of listening to favourite music on 
the ability to fall asleep measured with the MSLT and 
the ability to maintain wakefulness measured with the 
MWT. As expected, sleep latencies were longer in 
both tests when the subjects were listening to the 
music, but this effect was much smaller after the 
subjects were deprived of sleep. In addition, music 
was associated with higher heart rate, which is in 
accordance with the hypothesis that music increases 
sleep latency by increasing physiological arousal.

Light, as another environmental factor, primarily 
affects the circadian rhythms, but its physiological and 
behavioural effects have also been noted. Factors such 
as light intensity, timing, and wavelength determine 
how light affects alertness. Exposure to bright light 
(≥1000 lx) during evening or night hours increases 
body temperature, suppresses melatonin secretion, and 
enhances alertness and performance (87-90). 
Treatment with bright light is often recommended to 
workers who want to improve their adaptation to work 
at night, but also to re-adapt to day life (91-93). More 
recent studies (94-96) showed that positive effects of 
bright light on sleepiness and performance occurred 
both during night-time or daytime hours. In a study 
by Cajochen et al. (89) subjects were exposed to light 
in a range between 3 lx and 9100 lx for 6.5 h during 
early biological night (before body temperature 
minimum), and the effects of light were measured with 
three indices of alertness (reduction of subjective 
sleepiness, EEG activity in the theta-alpha frequency, 
and the incidence of slow eye movements). The 
relationship between the intensity of light and all three 
indices of alertness was nonlinear; exposure to lower 
intensities, even within the range of typical room light 
(90 lx to 180 lx), had a relatively great alerting effect. 
After reaching a certain point, further increases in light 
intensity did not produce additional effect. Recent 
studies of the alerting effects of different light 
wavelengths (97-99) consistently showed that short 
wavelengths (≤470 nm), such as blue light, had the 
greatest alerting impact.

Arousing effects of behavioural and cognitive 
factors

Sleep is basically a behavioural state, so it is not 
surprising that behavioural factors such as posture and 
physical activity have been suggested as powerful 
determinants of sleep propensity (50, 51). It is 
common knowledge that lying down will facilitate 
sleep onset, while standing will help us to remain 

awake even if we have not slept for a longer period. 
The effects of body posture on sleep tendency can be 
associated with different levels of autonomic nervous 
system activity that accompany changes in posture; 
sympathetic activity is higher while sitting compared 
to lying and while standing compared to sitting 
(100).

Bonnet and Arand (42) experimentally examined 
the infl uence of physical activity on sleep propensity. 
The authors compared sleep latencies using the MSLT 
in two different situations: after watching TV and after 
a short walk. After a short walk, sleep latency was 
signifi cantly longer and the heart rate, which was used 
as a measure of physiological arousal, was signifi cantly 
higher. The authors concluded that the activation of 
the sympathetic nervous system, which was induced 
by walking and measured with the heart rate, masked 
the basic level of sleepiness and resulted in signifi cantly 
longer sleep latency. The same conclusion can be 
drawn from another Bonnet and Arand’s (43) study in 
which they measured the ability to maintain 
wakefulness during sleep deprivation using an adapted 
version of the MWT. The level of physiological 
arousal was manipulated by varying the level of 
physical activity at the beginning of the stage 1 sleep. 
The ability to maintain wakefulness varied with the 
level of physical activity in a way that sleep latency 
observed was longer as physical activity was more 
demanding. This study established a negative 
correlation between sleep latency and the interval 
between heart beats; the subjects could maintain their 
wakefulness for longer when their heart beat intervals 
were shorter.

Motivational factors were also found to have a 
signifi cant impact on sleep propensity. For example, 
if the standard instruction “try to fall asleep” in the 
MSLT were changed to “try to stay awake”, sleep 
latency would significantly increase (44, 101). 
Comparison of the relative contribution of the 
instruction to stay awake and changes in posture to 
sleep latency (44) showed greater effect of the 
instruction. The change in instruction increased sleep 
latency by 10 minutes compared to the standard MSLT, 
while the posture change increased sleep latency by 
six minutes. The authors also found that motivation 
and posture had additive effects and concluded that 
different results that had been usually obtained with 
the MSLT and the MWT could be explained by 
differences in the sources of arousal in these two 
sleepiness tests.
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Motivation is believed to be one the most infl uential 
determinants of our effectiveness under conditions of 
sleep deprivation. Negative consequences of sleep 
deprivation on task performance are usually best seen 
when performing long monotonous tasks. On the other 
hand, an additional effort that a person invests while 
performing an interesting and stimulating task can 
mask the negative effects of sleepiness on a 
performance, both in experimental settings and real 
life (102). Night work primarily relies on the 
motivation and decision to stay awake during the hours 
when both homeostatic and circadian factors promote 
sleepiness. Furthermore, well known “post-lunch” dip 
often passes without noticing mostly because of the 
alerting effects related to stimulant activities. In one 
study which explored the possible exogenous factors 
that can infl uence circadian-driven sleepiness in the 
early afternoon (103), subjects who were engaged in 
interesting activities reported lower sleepiness and 
performed better in a time reaction task compared to 
subjects who were engaged in boring activities. Higher 
heart rate was noted in the former group, implying 
that the interesting experimental setting increased the 
level of autonomic arousal.

The concept of arousal can be useful in explaining 
the mechanisms through which stressful events and 
daily hassles influence sleep. From everyday 
experience we know that excessive thinking and 
worrying before going to sleep, which are common 
reactions to stress exposure, are associated with shorter 
and poorer sleep and diffi culties in falling asleep. 
Stress is considered to be the most frequent cause of 
transient insomnia, although the number of systematic 
studies on this topic is still relatively scarce, mostly 
due to the transitory and unpredictable nature of the 
stressful events and additionally because of great 
individual variations in subjective interpretation of 
the events that are considered stressful (104).

In several experimental studies the effect of 
cognitive activation (acute stress) on sleep latency was 
examined either before going to sleep or during 
daytime. One of the earlier studies was performed by 
Gross and Borkovec (45), who found signifi cantly 
longer sleep latency in a group of subjects who were 
told that they would have to deliver a speech upon 
waking-up compared to a control group who received 
no instructions before bedtime. However, the results 
obtained for heart and electrodermal activity did not 
confirm the authors’ hypothesis that autonomic 
activation contributed to longer sleep latency. Hall et 
al. (105) performed a study with a similar research 

design, but they measured heart activity before and 
during experimental manipulation and additionally 
during the whole night. The analysis showed that the 
level of sympathetic activity during non-REM sleep 
in subjects who were told that they would have to 
deliver a speech was higher than in subjects who were 
told that they would read magazines after waking-up. 
A higher level of sympathetic activity was associated 
with lower sleep effi ciency and less delta activity, 
implying that sustained autonomic arousal is one of 
the pathways through which stress affects sleep.

De Valck et al. (45) examined the effects of 
cognitive activation on daytime sleep latency after 
partial sleep deprivation. In the experimental situation, 
the participants were asked to give an interview in 
front of a TV camera about their enrolment in the 
study. Sleep latency was signifi cantly longer in the 
experimental situation compared to control, in which 
no such activity was required. Heart rate, which was 
used as a measure of the level of activation, was higher 
in the experimental situation, although it did not 
correlate with sleep latency. On the other hand, in a 
study by Tang and Harvey (106), which also examined 
the effect of the level of arousal on sleep latency 
observed, subjective latency was in contradiction to 
objective latency during an afternoon nap. Subjects 
who expected the interview reported longer sleep 
latency than those who did not, while the difference 
in the objective measure of sleep latency obtained by 
actigraphy was in the opposite direction.

Arousal in the model of sleepiness proposed by 
Cluydts and De Valck

Cluydts and De Valck (107, 108) recently proposed 
a model that extends beyond traditional models of 
sleepiness regulation. According to this model, the 
level of sleepiness in a certain moment depends on 
the relation between the level of the sleep drive (sleep 
need) and the level of the wake drive, which the 
authors equate with the level of arousal. Furthermore, 
Cluydts and De Valck assume that both drives have 
their state and trait components. State components are 
generally related to momentary variations in the sleep 
drive and variations of arousal due to situational 
factors. Trait components refer to the level of the sleep 
drive and arousal that are relatively stable and typical 
for an individual. According to this model, high 
sleepiness can be the result of habitual or acutely high 
sleep drive, habitually or acutely low arousal or the 
result of their combination. This model supports the 
idea that sleepiness is a multidimensional construct 
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and that each measure of sleepiness can be more or 
less suitable for the measurement of certain aspects 
of this phenomenon. Bakotić (109) tested this model 
in a study of the effects of different levels of 
experimentally induced physiological and cognitive 
arousal on daytime sleepiness after partial sleep 
deprivation. The study has shown that even a small 
increase in physiological and cognitive arousal affects 
daytime sleepiness in good sleepers and has confi rmed 
the importance of situational arousal in the regulation 
of daytime sleepiness. However, it has not confi rmed 
the importance of the trait arousal, operationalised 
with electrodermal lability, and trait sleepiness, 
measured with the Epworth Sleepiness Scale, for the 
level of daytime sleepiness. Further studies in the 
frame of this model are needed to evaluate the concept 
and measurement of sleepiness and the mechanisms 
of its regulation.

PRACTICAL IMPLICATONS

Taking arousal as the third component in the 
regulation of sleepiness, in addition to circadian and 
homeostatic factors, widens the possibilities for the 
management of sleep problems on the one hand, and 
for the maintenance of alertness in different work 
settings and transportation on the other. In clinical and 
counselling psychology, different behavioural and 
cognitive strategies have already been used to treat 
chronic insomnia (110, 111). For example, patients 
are taught relaxation techniques to decrease the level 
of somatic arousal and cognitive techniques to stop 
intrusive thoughts and worries while trying to fall 
asleep. Avoiding stimulants and activities that can 
increase arousal before going to sleep, such as caffeine, 
nicotine, and exercise close to bedtime, are already 
among the standard recommendations for better sleep 
for either insomnia patients or good sleepers (112). 
These are being disseminated through public health 
education aimed at adolescents (113, 114).

Further studies of the arousal component of 
sleepiness could be useful for work psychology. These 
studies could show the way to strategies to maintain 
alertness and performance of workers in automated 
industries that depend on vigilant monitoring, and of 
workers who usually spend a lot of time in sedentary 
activities such as doing a computer work, offi ce work, 
and driving (115). These strategies could take into 
account alerting effects of different environmental 
stimuli and cognitive-behavioural factors such as 

physical activity and motivation that affect the level 
of sleepiness and performance.

A special population who may particularly benefi t 
from strategies against sleepiness at the work place 
are shift workers. Some of the most serious 
environmental disasters such as the oil spill of the 
Exxon Valdez (116) and the explosion of the nuclear 
reactor in Chernobyl (117) have been associated with 
the combined effects of circadian factors and sleep 
deprivation of the workers who made critical decisions. 
In addition, many shift workers experience problems 
with sleeping during the day, in spite of increased sleep 
need after a night shift, which is usually attributed to 
the alerting effects of the circadian factors and 
environmental stimuli such as increased daytime 
noise. However, problems with falling asleep and 
maintaining daytime sleep in shift workers could 
partly be the consequence of psychosocial stress, 
which could interfere with sleep through somatic and 
cognitive arousal. A recent study by Morishima et al. 
(118) explored the role of autonomic activity in 
subjects who felt sleepy but could not fall asleep in 
relaxed conditions during daytime. They found that 
problems with sleeping during the daytime happened 
to persons whose autonomic nervous activity did not 
show the expected decrease in the sympathetic and 
increase in parasympathetic activity in conditions 
which were convenient for relaxation and sleeping. 
Further studies in this area should use various 
measures of arousal and focus on the effects of 
psychosocial stress on daytime sleepiness.

CONCLUSION

The importance of the arousal system in the 
regulation of sleepiness has been recognised by 
insomnia research, and scientifi c knowledge about the 
relation between arousal and sleepiness has already 
been used in practice. However, some aspects of this 
relation still need to be explored, such as the interaction 
between sleep promoting factors and arousal in 
regulation of sleep tendency. Studies should also 
address different situational factors which, according 
to model by Cluydts and De Valck, modify the basal 
levels of arousal and sleepiness, as well as the 
underlying physiological mechanisms. Further studies 
could also help better understand the effects of stress 
on sleep and the pathways of this infl uence. In this 
sense, it would be important to explore whether subtle 
changes in the arousal level, which probably 
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accompany our exposure to daily stressors, could also 
affect subjective sleepiness and the ability to fall 
asleep.
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Sažetak

ULOGA AKTIVACIJSKOGA SUSTAVA U REGULACIJI POSPANOSTI

Pospanost je raširena pojava u industrijskim zemljama i njeni negativni učinci na pojedince i društvo 
ustanovljeni su u brojnim istraživanjima. Od posebne su važnosti podaci koji upućuju na to da pospanost 
povećava vjerojatnost nesreća na radu i u prometu, što je naročito izraženo u populaciji smjenskih radnika. 
Općenito je prihvaćeno da pospanost reguliraju dva temeljna fi ziološka procesa, od koji se jedan odnosi 
na homeostazu spavanja, a drugi na cirkadijurno funkcioniranje organizma. Nedavno objavljeni modeli 
pospanosti predložili su uključivanje nagona za budnošću, odnosno razine aktivacije, kao trećeg čimbenika 
koji sudjeluje u regulaciji pospanosti. Ideje o važnosti aktivacijskog sustava u regulaciji pospanosti dijelom 
su proizašle iz ispitivanja patofi ziologije nesanice koja se često opisuje kao poremećaj pretjerane 
pobuđenosti. Eksperimentalna i korelacijska istraživanja odnosa između pospanosti i aktivacije kod dobrih 
spavača općenito su pokazala kako su fi ziološka i kognitivna aktivacija povezane sa standardnim mjerama 
pospanosti. Uvažavanje aktivacijskog sustava u regulaciji pospanosti otvara šire mogućnosti za rješavanje 
problema sa spavanjem te bi također moglo pomoći u rješavanju problema pretjerane pospanosti u različitim 
radnim okruženjima i prometu.

KLJUČNE RIJEČI: cirkadijurni ritmovi, homeostaza spavanja, nagon za budnošću, nesanica, smjenski 
rad
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